1) For A = {a, b, c, d, e} and B = {yellow, orange, blue, green, white, red, black}. a) Define a relation R from A to B that is a function and contains at least 4 ordered pairs. b) What is the domain of this function? c) What is the range of this function?

Answers

Answer 1

Answer:  The required function is R =  {(a, blue), (b, green), (c, green), (d, white), (e, black)}, domain, D = {a, b, c, d, e} and range, R = {blue, green, white, black} .

Step-by-step explanation: We are given the following two sets :

A = {a, b, c, d, e}

and

B = {yellow, orange, blue, green, white, red, black}.

We are to define a relation R from A to B that is a function and contains at least 4 ordered pairs. Also, to find the domain and range of the function.

(a) Let the function R be defined as follows :

R = {(a, blue), (b, green), (c, green), (d, white), (e, black)}.

Since R contains five ordered pairs, so this will fulfill our criterion. Also, since each first element is associated with one and only one second element, so R defines a function.

(b) We know that

the domain of a function is the set of all the first elements in the ordered pairs, so the domain of the function R will be

D = {a, b, c, d, e}.

(c) We know that

the range of a function is the set of all the second elements in the ordered pairs, so the domain of the function R will be

R = {blue, green, white, black}.

Thus, the required function is R =  {(a, blue), (b, green), (c, green), (d, white), (e, black)}, domain, D = {a, b, c, d, e} and range, R = {blue, green, white, black} .


Related Questions

Find the density in lbs/cbf, round to nearest tenth...... please urgent request i have 30 minutes left

180 pounds; 15” x 15” x 20” __________________________ lbs/cbf

150 cf; 90 kg = _______________________________ lbs/cbf

Answers

Answer:

d1=69.12 lbs/cbf, d2=1.32 lbs/cbf

Step-by-step explanation:

Hello

to make the conversion we will need

1" = 1 inch

12 inch = 1 feet

1 kg= 2. 20 lbs

Point 1, step 1

convert inch to feet

[tex]15"=15 inch*(\frac{1 feet}{12 in})=\frac{5}{4} ft\\ 20"=20 inch*(\frac{1 feet}{12 in})=\frac{5}{3}ft\\d=\frac{m(lbs)}{v(cbf)}\\ d=\frac{180 lbs}{\frac{5}{4} ft*\frac{5}{4} ft*\frac{5}{3} ft}\\ d=69.12\ lbs/cbf[/tex]

Point 2, step 2

[tex]90kg=90kg*\frac{2.2 lbs}{1 kg} =198 lbs\\\\d=\frac{m}{v}\\ d=\frac{198 lbs}{150 cbf}\\d=1.32\ lbs/cbf[/tex]

I hope it helps

g Use the counting principle to determine the number of elements in the sample space. The possible ways to complete a multiple-choice test consisting of 20 questions, with each question having four possible answers (a, b, c, or d).

Answers

Answer:

[tex](4)^{20}[/tex]

Step-by-step explanation:

Total number of questions = 20

Possible options for each question = 4

Sample space contains the total number of possible outcomes.

For every question there are 4 possible ways to select an answer. This holds true for all 20 questions. Selecting an answer for a question is independent of other questions/answers,

According to the counting principle, the total number of possible outcomes will be the product of the number of possible outcomes of individual events. Possible outcomes for each of the 20 questions is 4. This means we have to multiply 4 twenty times to find the total number of possible outcomes.

So, the number of elements in the sample space would be:

[tex](4)^{20}[/tex]

How many 2 card hands are possible with a 52​-card ​deck?

Answers

Answer:

2,652

Step-by-step explanation:

51*52=2652

On a certain​ exam, Tony corrected 2020 papers and found the mean for his group to be 6060. Alice corrected the remaining 1010 papers and found that the mean for her group was 8080. What is the mean of the combined group of 3030 ​students

Answers

Answer:

The mean is 66.667 ( approx )

Step-by-step explanation:

Let x be the sum of Tony's group and y be the sum of Alice's group,

We know that,

[tex]Mean = \frac{\text{Total sum of observations}}{\text{Number of observations}}[/tex]

According to the question,

In Tony's group,

Students = 20,

Mean = 60,

[tex]\implies \frac{x}{20}=60\implies x = 1200[/tex]

In Alice's group,

Students = 10,

Mean = 80,

[tex]\implies \frac{y}{10}=80\implies y = 800[/tex]

Thus, the total sum of combined group of 30 students = 1200 + 800 = 2000,

Hence, the mean of the combined group = [tex]\frac{2000}{30}[/tex]

[tex]\approx 66.667[/tex]

Find and simplify the expression if f(x)=x^2-10.

f(4+h)-f(4)=

Answers

[tex]f(4+h)-f(4)=(4+h)^2-10-(4^2-10)\\f(4+h)-f(4)=16+8h+h^2-10-16+10\\f(4+h)-f(4)=h^2+8h[/tex]

Answer:

[tex]f (4 + h) -f (4) = h ^ 2 + 8h[/tex]

Step-by-step explanation:

We have the following quadratic function.

[tex]f (x) = x ^ 2-10[/tex]

We must find the following expression

[tex]f (4 + h) -f (4) =[/tex]

First we must find [tex]f (4 + h)[/tex]

Then substitute [tex]x = (4 + h)[/tex] in the quadratic equation:

[tex]f (4 + h) = (4 + h) ^ 2 -10\\\\f (4 + h) = 16 + 8h + h ^ 2 -10\\\\f (4 + h) = h ^ 2 + 8h +6[/tex]

Now we find [tex]f(4)[/tex]. Replace [tex]x = 4[/tex] in the function [tex]f (x)[/tex]

[tex]f (4) = (4) ^ 2-10\\\\f (4) = 16-10\\\\f (4) = 6[/tex]

Finally we have to:

[tex]f (4 + h) -f (4) = h ^ 2 + 8h +6 - 6[/tex]

[tex]f (4 + h) -f (4) = h ^ 2 + 8h[/tex]

A typical person has an average heart rate of 71.0 beats/min. Calculate the given questions. How many beats does she have in 3.0 years? How many beats in 3.00 years? And finally, how many beats in 3.000 years? Pay close attention to significant figures in this question.

Answers

Answer:

111,952,800 beats in 3 years

Step-by-step explanation:

71 beats/minute, 60 minutes/hour ~ 71x60=4,260 beats/hour

24 hours/day ~ 4,260x24=102,240 beats/day

365 days/year ~ 102,240x365=37,317,600 beats/ year

37,317,600x3=111,952,800 beats in 3 years

The heart beats 111952800 times in 3 years

From the given question, we just have to find the rate at which the heart beats.

Given;

71 beats in 1 minutes

Rate at which the heart beats

we can start by solving how many minutes are in 1 year.

To do that, we have to multiply 60 minutes by 24 hours by 365 days

[tex]60*24* 365=525600\\ [/tex]

We have 525600 minutes in 1 year

Now, we can multiply this value by 71 to know the number of beats in 1 year.

[tex]525600 * 71 = 37317600[/tex]

The heart beats for 37317600 times in a year.

Let's multiply this value by 3 to know how many times it beats in 3 years.

[tex]37317600 * 3 = 11952800[/tex]

The heart beats 11952800 times in 3 years.

Significant figures

We are also asked to calculate 3.0, 3.00 and 3.000 years

In this case, 3.0 = 3.00 = 3.000  and the rate at which the heart beats is uniform or equal across the three times given.

learn more about rates here;

https://brainly.com/question/12242745

An electronic product takes an average of 8 hours to move through an assembly line. If the standard deviation of 0.4 hours, what is the probability that an item will take between 8.4 and 9.1 hours to move through the assembly line?

Answers

Answer:   0.1557

Step-by-step explanation:

Given : Mean : [tex]\mu=\ 8[/tex]

Standard deviation : [tex]\sigma= 0.4[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

Let the random variable x (number of hours) is normally distributed .

For x= 8.4

[tex]z=\dfrac{8.4-8}{0.4}=1[/tex]

For x= 9.1

[tex]z=\dfrac{9.1-8}{0.4}=2.75[/tex]

The p-value =[tex] P(8.4<x<9.1)=P(1<z<2.75)[/tex]

[tex]=P(z<2.75)-P(z<1)= 0.9970202-0.8413447\\\\=0.1556755\approx0.1557[/tex]

The scores on the entrance exam at a well-known, exclusive law school are normally distributed with a mean score of 200 and a standard deviation equal to 50. At what value should the lowest passing score be set if the school wishes only 2.5 percent of those taking the test to pass? (Round your answer to nearest whole number.)

Answers

Answer:

the lowest passing score would be x = 298

Step-by-step explanation:

School wishes that only 2.5 percent of students taking test pass

We are given

mean= 200,

standard deviation = 50

We need to find x

The area under the curve can be found by:

2.5 % = 0.025

So, 1- 0.025 = 0.975

We need to find the value of z for which the answer is 0.975

Looking at the z-score table, the value of z is: 1.96

Now, using the formula:

z = x - mean/standard deviation

1.96 = x - 200/50

=> 1.96 * 50 = x-200

98 = x - 200

=> x = 200+98

x = 298

So, the lowest passing score would be x = 298

The lowest passing score should be set at 102 to ensure that only 2.5 percent of the test takers pass.

Understand the Problem Context:
  - Mean score [tex](\(\mu\))[/tex] = 200
  - Standard deviation [tex](\(\sigma\))[/tex] = 50
  - Desired passing percentile = 2.5% (or 0.025 in decimal form)

Identify Relevant Statistical Concept:
  - We need to find the score corresponding to the 2.5th percentile in a normal distribution. This requires finding the z-score for this percentile.

Find the Z-Score for the 2.5th Percentile:
  - The z-score corresponding to the 2.5th percentile is approximately -1.96. This means that scores at this percentile are 1.96 standard deviations below the mean.

Convert Z-Score to a Raw Score:
  - The raw score can be calculated using the formula for converting z-scores to raw scores:
    [tex]\[ X = \mu + Z\sigma \][/tex]
    Where [tex]\( X \)[/tex] is the raw score, [tex]\( \mu \)[/tex] is the mean score, [tex]\( Z \)[/tex] is the z-score, and [tex]\( \sigma \)[/tex] is the standard deviation.

    Plugging in our values, we get:
    [tex]X = 200 + (-1.96) \times 50\\ X = 200 - 98\\ X = 102[/tex]

6+√-80 ?

A.6+16√5i
B.6+4i√5
C.6+16i√5
D.6+4√5i

√-121 ?

A.-11i
B.11i
C.-11
D.11

√-48 ?

A.-4√3
B.4√-3
C.4i√3
D.4√3i

Answers

The answers are
1. B
2. B
3. C

What is the converse of the following: "If I am hungry then l eat an apple." A. If I eat an apple then I am hungry. B. If I am hungry then I eat an apple. C. If I eat an apple then I am not hungry. D. If I'm not hungry then I don't eat an apple E. If I don't eat an apple then I'm not hungry. F. If I'm hungry then I eat an apple.

Answers

Answer:

Option A. If I eat an apple then I am hungry.

Step-by-step explanation:

we know that

To form the converse of the conditional statement, interchange the hypothesis and the conclusion.

In this problem

The hypothesis is "If I am hungry"

The conclusion is "l eat an apple."

therefore

interchange the hypothesis and the conclusion

The converse of "If I am hungry then l eat an apple." is

"If  l eat an apple then I am hungry"

Answer:the 1 one, A. " If I am hungry then I eat an apple"

Step-by-step explanation:

Voting age

17-29 30-44 45-64 65+
9 8 32 15
What is the probability that a voter is younger than 45?

Answers

Answer:

[tex]\frac{17}{64}\approx 0.27[/tex]

Step-by-step explanation:

We have been given a table to voters and their ages. We are asked to find the probability that a voter is younger than 45.

Voting age         Voters

17-29                       9

30-44                      8

45-64                    32

65+                        15

We can see from our given table that age of 17 (9+8) voters is between 17 to 44 years.

To find the probability that a voter is younger than 45, we will divide 17 by total number of voters.

[tex]\text{Total voters}=9+8+32+15=64[/tex]

[tex]\text{Probability that a voter is younger than 45}=\frac{17}{64}[/tex]

[tex]\text{Probability that a voter is younger than 45}=0.265625[/tex]

[tex]\text{Probability that a voter is younger than 45}\approx 0.27[/tex]

Therefore, the probability that a voter is younger than 45 is 0.27.



In the diagram, how many pairs of vertical angles are shown? 

Answers

Answer:

4 Pairs.

Explanation:

A vertical angle is a set of two opposite angles, they show up when two lines intersect. Their sum is also 180°.

Answer:

4 Pairs

Step-by-step explanation:

You buy a family-size box of laundry detergent that contains 48 cups. If your washing machine calls for 1 and 1/5 cups per wash load, how many loads of wash can you do?

Answers

Answer:

40 loads

Step-by-step explanation:

To find how many loads of wash you can do you need to divide 48 by 1 1/5.

There are two ways you can divide this, the first way is converting 48 to a fraction and dividing them.

48/1 divided by 1 1/5

convert 1 1/5 to an improper fraction

48/1 divided 6/5

change the division to multiplication and find the reciprocal of the second fraction.

48/1*5/6 = 240/6

Simplify to 40/1 or 40

The second way is changing 1 1/5 to a decimal, so its 1.2

Then divide 48 by 1.2 and you get 40.

Final answer:

By dividing the total amount of detergent by the amount required per load, you can determine that a 48-cup family-size box of laundry detergent can do 40 loads of wash.

Explanation:

To find out how many loads of wash can be done with a family-size box of laundry detergent, you need to divide the total amount of detergent, 48 cups, by the amount required per load, which is 1 and 1/5 cups.

Firstly, we need to convert the mixed fraction into an improper fraction. 1 and 1/5 = 5/5 + 1/5 = 6/5.

Then, we do the division: 48 ÷ (6/5) = 48 * (5/6) = 40. This operation is equivalent to multiplying by the reciprocal of the fraction.

So, with a 48-cup family-size box of laundry detergent, you could do 40 loads of wash, assuming each load requires 1 and 1/5 cups of detergent.

Learn more about laundry detergent here:

https://brainly.com/question/11320176

#SPJ

A recent article in the paper claims that business ethics are at an​ all-time low. Reporting on a recent​ sample, the paper claims that 41​% of all employees believe their company president possesses low ethical standards. Suppose 20 of a​ company's employees are randomly and independently sampled. Assuming the​ paper's claim is​ correct, find the probability that more than eight but fewer than 12 of the 20 sampled believe the​ company's president possesses low ethical standards.

Answers

Answer:

P=0.3726 or 37.26%

Step-by-step explanation:

The success, with 41% of probability of occurring, is that the employee believes the ​ company's president possesses low ethical standards. For more than 8 and less than 12 successes, it means the probability of having  9, 10 or  11 successes (all these summed).

The formula is:

[tex]b(x;n,p)= \ _nC_x*p^x*(1-p)^{n-x}[/tex]

Where x is the number of successes,n the number of trials, p the probability of success,[tex]_nC_x[/tex] refers to the combinations that can occur,  and it's formula is:

[tex]_nC_x=\frac{n!}{x!(n-x)!}[/tex]

Calculating each case:

[tex]b(9,20,0.41)=\frac{20!}{9!(20-9)!}*0.41^9*(1-0.41)^{20-9}=0.1658[/tex]

[tex]b(10,20,0.41)=\frac{20!}{10!(20-10)!}*0.41^{10}*(1-0.41)^{20-10}=0.1267[/tex]

[tex]b(11,20,0.41)=\frac{20!}{11!(20-11)!}*0.41^{11}*(1-0.41)^{20-11}=0.0801[/tex]

Adding each case:

[tex]P=0.1658+0.1267+0.0801= 0.3726[/tex]

Final answer:

To find the probability that more than eight but fewer than twelve employees believe the company's president possesses low ethical standards, use the binomial probability formula. Calculate the probabilities for each value of k, and then sum them up to find the final probability.

Explanation:

To find the probability that more than eight but fewer than twelve of the 20 sampled employees believe the company's president possesses low ethical standards, we need to use the binomial probability formula. The formula is:

P(X = k) = C(n, k) * p^k * (1-p)^(n-k)

where:

P(X = k) is the probability that exactly k employees believe the president possesses low ethical standardsC(n, k) is the number of ways to choose k employees from n employeesp is the probability that one employee believes the president possesses low ethical standards (in this case, p = 0.41)n is the total number of employees sampled (in this case, n = 20)

In this case, we want to find the probability that more than eight but fewer than twelve employees believe the president possesses low ethical standards. So we need to calculate the probabilities for k = 9, 10, and 11 and then sum them up:

P(X > 8 and X < 12) = P(X = 9) + P(X = 10) + P(X = 11)

Calculating each probability:

P(X = 9) = C(20, 9) * 0.41^9 * (1-0.41)^(20-9)

P(X = 10) = C(20, 10) * 0.41^10 * (1-0.41)^(20-10)

P(X = 11) = C(20, 11) * 0.41^11 * (1-0.41)^(20-11)

Once we have the individual probabilities, we can sum them up to find the final probability.

Learn more about Binomial probability here:

https://brainly.com/question/39666605

#SPJ3

The probability that a randomly selected individual in a certain community has made an online purchase is 0.35 . Suppose that a sample of 12 people from the community is selected, what is the probability that at most 3 of them has made an online purchase?

Answers

Answer:

The required probability is approximately 0.3467.

Step-by-step explanation:

Let X represents the event of making an online purchase,

Given,

The probability of making an online purchase, p = 0.35,

While, the probability of not making the online purchase, q = 1 - p = 0.65,

Hence, by the binomial distribution formula,

[tex]P(x) = ^nC_x p^x q^{n-x}[/tex]

Where, [tex]^nC_x=\frac{n!}{x!(n-x)!}[/tex]

Hence, the probability that at most 3 of them has made an online purchase is,

P(x ≤ 3) =P(x=0) + P(X=1) + P(X=2) + P(x=3)

[tex]= ^{12}C_0 p^0 q^{12-0}+^{12}C_1 p^1 q^{12-1}+^{12}C_2 p^2 q^{12-2}+^{12}C_3 p^3 q^{12-3}[/tex]

[tex]=(0.65)^{12}+12(0.35)(0.65)^{11}+66(0.35)^2(0.65)^{10}+220(0.35)^3(0.65)^9[/tex]

[tex]=0.346652696179[/tex]

[tex]\approx 0.3467[/tex]

Final answer:

To find the probability that at most 3 people in a sample of 12 have made an online purchase, use the binomial probability formula.

Explanation:

To find the probability that at most 3 people in a sample of 12 have made an online purchase, we can use the binomial probability formula. The formula is P(X ≤ k) = Σ{k=0}^{k} (nCk) * p^k * (1-p)^(n-k), where n is the sample size, k is the number of successes, p is the probability of success, and (nCk) is the combination.

In this case, n = 12, k ≤ 3, p = 0.35. So, the probability is:

P(X = 0) = (12C0) * (0.35)^0 * (0.65)^(12-0)P(X = 1) = (12C1) * (0.35)^1 * (0.65)^(12-1)P(X = 2) = (12C2) * (0.35)^2 * (0.65)^(12-2)P(X = 3) = (12C3) * (0.35)^3 * (0.65)^(12-3)

Then, you can sum up these probabilities to find the total probability that at most 3 people have made an online purchase.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Suppose that a company will select 3 people from a collection of 15 applicants to serve as a regional manager, a branch manager, and an assistant to the branch manager. In how many ways can the selection be made? Explain how you got your answer.

Answers

Answer: 2730

Step-by-step explanation:

Given : The number of applicants  =15

The number of posts for which candidates have been applied = 3

To find the number of selections we use permutations since here order matters.

The permutations of n things taking m at a time is given by :-

[tex]^nP_m=\dfrac{n!}{(n-m)!}[/tex]

Then , the required number of ways is given by [Put n = 15 and m = 3] :-

[tex]^{15}P_3=\dfrac{15!}{(15-3)!}\\\\=\dfrac{15\times14\times13\times12!}{12!}\\\\15\times14\times13=2730[/tex]

Hence, the number of ways the selection can be made = 2730

A cross-section of an airplane wing is shown. Measurements of the thickness of the wing, in centimeters, at 16-centimeter intervals are 6.1, 19.9, 26.7, 29.0, 27.2, 27.5, 23.6, 20.9, 15.8, 9.1, and 3.2. Use the Midpoint Rule with n = 5 to estimate the area of the wing's cross-section if a = 160. (Assume the thickness of the edges is nonzero.)

Answer has to be in cm^3

Answers

Answer:

cross sectional area of the wing's is = 3404.8 cm²

Step-by-step explanation:

using n= 5 to estimate area of the wing's

a = 160

taking sum of thickness at n = 1, 3, 5, 7, 9

so sum of the measurement of the thickness at the given position

19.9 +29.0 + 27.5 +20.9 + 9.1 = 106.4

so the thickness is 106.4/5

           = 21.28 cm

cross sectional area of the wing's is = 160 × 21.28

                                                            = 3404.8 cm²

Final answer:

Using the Midpoint Rule with 5 intervals, the estimated area of the airplane wing's cross-section can be obtained by dividing the total span into equal parts, calculating the midpoints of the measurements, and then adding up these individual areas.

Explanation:

To answer this question, we need to apply the Midpoint Rule - a method used in mathematics for approximating the definite integral of a function. The Rule works by estimating the area under the curve by rectangles, whose heights are determined by the function values at the midpoints of their bases.

Given n = 5, we divide the total measurement span (160 cm) into 5 parts. So, each part/subinterval is 32 cm.

We calculate the area of each part by multiplying its width (32 cm) by its midpoint height. For a sequence of measurements, the midpoints are obtained by averaging two consecutive measurements.

The midpoints for the given measurements are:

(6.1 + 19.9) / 2 (19.9 + 26.7) / 2 (26.7 + 29.0) / 2 (29.0 + 27.2) / 2 (27.2 + 27.5) / 2

We then sum up the areas of all parts to get the estimated area of the airplane wing's cross-section.

Learn more about Midpoint Rule here:

https://brainly.com/question/34817291

#SPJ11

Consider the differential equation below. (You do not need to solve this differential equation to answer this question.) y' = y^2(y + 4)^3 Find the steady states and classify each as stable, semi-stable, or unstable. Draw a plot showing some typical solutions. If y(0) = -2 what happens to the solution as time goes to infinity?

Answers

We have [tex]y'=0[/tex] when [tex]y=0[/tex] or [tex]y=-4[/tex], so we need to check the sign of [tex]y'[/tex] on 3 intervals:

Suppose [tex]-\infty<y<-4[/tex]. In particular, let [tex]y=-5[/tex]. Then [tex]y'=(-5)^2(-5+4)^3=-25<0[/tex]. Since [tex]y'[/tex] is negative on this interval, we have [tex]y(t)\to-\infty[/tex] as [tex]t\to\infty[/tex].Suppose [tex]-4<y<0[/tex], say [tex]y=-1[/tex]. Then [tex]y'=(-1)^2(-1+4)^3=-27<0[/tex], so that [tex]y(t)\to-4[/tex] as [tex]t\to\infty[/tex].Suppose [tex]0<y<\infty[/tex], say [tex]y=1[/tex]. Then [tex]y'=1^2(1+4)^3=125>0[/tex], so that [tex]y(t)\to\infty[/tex] as [tex]t\to\infty[/tex].

We can summarize this behavior as in the attached plot. The arrows on the [tex]y[/tex]-axis indicate the direction of the solution as [tex]t\to\infty[/tex]. We then classify the solutions as follows.

[tex]y=0[/tex] is an unstable solution because on either side of [tex]y=0[/tex], [tex]y(t)[/tex] does not converge to the same value from both sides.[tex]y=-4[/tex] is a semi-stable solution because for [tex]y>-4[/tex], solutions tend toward the line [tex]y=-4[/tex], while for [tex]y<-4[/tex] solutions diverge to negative infinity.


A business firm produces and sells a particular product. Variable cost is P30 per unit. Selling price is P40 per unit.
Fixed cost is P60,000. Determine the following:

a. Profit when sales are 10,000 units
b. The break-even point quantity and revenue
c. Sales when profits are at P9,000
d. The amount by which fixed is cost will have to be decreased or increased, to allow the firm to break even at sales volume of 500 units. Variable cost and selling price per unit remain constant.
e. The volume of sales to cover the fixed cost
f. Suppose that the firm want to break-even at a lower number of units, assuming that Fixed cost and Variable cost remain constant, how is the selling price affected?

Answers

Answer:

a.The profit is 40000 when sales are 10000 units.

b.Break-even point quantity and revenue=6000

c.When profits are at P9,000, sales are 6900

d.Fixed cost must decrease

e.The volume of sales to cover the fixed cost is 1500 units

f.If the firm want to break-even at a lower number of units, then the price will rice

Step-by-step explanation:

a.Profit is the difference between sales and cost

Profit= price* sales -((Variable cost * sales) +Fixed cost)

Profit when sales are 10000 units must be

P=40*10000-((30*10000)+60000)

P=400000-(300000+60000)=400000-360000

Profit=40000

The profit is 40000 when sales are 10000 units.

b.The break-even point quantity and revenue is when profit=0

So,  Profit= price* sales -((Variable cost * sales) +Fixed cost)

If profit is 0, then (Variable cost * sales) +Fixed cost =price* sales

30x +60000=40x

10x=60000

x=60000/10=6000

Break-even point quantity and revenue=6000

c. Profit= price* sales -((Variable cost * sales) +Fixed cost)

9000=40x -(30x +60000)=40x -30x -60000)

9000 +60000=40x-30x

69000=10x

x=6900 units

d. break even at sales volume of 500 units

(Variable cost * sales) +Fixed cost =price* sales

30*500+FC=40*500

1500+FC=2000

FC=2000-1500

FC=500 Fixed cost must decrease

e.The volume of sales to cover the fixed cost

To only cover fixed cost, sales have to be 60000

Fixed cost =price* sales

Sales=Fixed cost/price

Sales 60000/40=1500 units

f. If the firm want to break-even at a lower number of units, then the price will rice

Remember that break-even formula is

(Variable cost * sales) +Fixed cost =price* sales

Variable an fixed cost remain constant, if sales go down,  then price must go up.

Solve the Differential equation (x^2 + y^2) dx + (x^2 - xy) dy = 0

Answers

Answer:

[tex]\frac{y}{x}-2ln(\frac{y}{x}+1)=lnx+C[/tex]

Step-by-step explanation:

Given differential equation,

[tex](x^2 + y^2) dx + (x^2 - xy) dy = 0[/tex]

[tex]\implies \frac{dy}{dx}=-\frac{x^2 + y^2}{x^2 - xy}----(1)[/tex]

Let y = vx

Differentiating with respect to x,

[tex]\frac{dy}{dx}=v+x\frac{dv}{dx}[/tex]

From equation (1),

[tex]v+x\frac{dv}{dx}=-\frac{x^2 + (vx)^2}{x^2 - x(vx)}[/tex]

[tex]v+x\frac{dv}{dx}=-\frac{x^2 + v^2x^2}{x^2 - vx^2}[/tex]

[tex]v+x\frac{dv}{dx}=-\frac{1 + v^2}{1 - v}[/tex]

[tex]v+x\frac{dv}{dx}=\frac{1 + v^2}{v-1}[/tex]

[tex]x\frac{dv}{dx}=\frac{1 + v^2}{v-1}-v[/tex]

[tex]x\frac{dv}{dx}=\frac{1 + v^2-v^2+v}{v-1}[/tex]

[tex]x\frac{dv}{dx}=\frac{v+1}{v-1}[/tex]

[tex]\frac{v-1}{v+1}dv=\frac{1}{x}dx[/tex]

Integrating both sides,

[tex]\int{\frac{v-1}{v+1}}dv=\int{\frac{1}{x}}dx[/tex]

[tex]\int{\frac{v-1+1-1}{v+1}}dv=lnx + C[/tex]

[tex]\int{1-\frac{2}{v+1}}dv=lnx + C[/tex]

[tex]v-2ln(v+1)=lnx+C[/tex]

Now, y = vx ⇒ v = y/x

[tex]\implies \frac{y}{x}-2ln(\frac{y}{x}+1)=lnx+C[/tex]

A sample of 230 observations is selected from a normal population for which the population standard deviation is known to be 22. The sample mean is 17. a. Determine the standard error of the mean.

Answers

Final answer:

The standard error of the mean can be calculated by dividing the population standard deviation, which is 22, by the square root of the number of observations, which is 230.

Explanation:

In mathematics, the standard error of the mean is calculated by dividing the population standard deviation by the square root of the number of observations in the sample. In this case, the population standard deviation is given as 22, and the sample size is 230 observations.

The formula to calculate the standard error of the mean is:

Standard Error of the Mean = Population Standard Deviation / √(Number of Observations)

Plugging in the given values, this translates as:

Standard Error of the Mean = 22 / √230

Therefore, the standard error of the mean of this sample can be calculated as above. This represents the measure of statistical accuracy of the estimate of the sample mean, providing an indication of the precision of your results.

Learn more about Standard Error of the Mean here:

https://brainly.com/question/14524236

#SPJ3

The standard error of the mean is 1.449.

The standard error of the mean for a sample size of 230 observations, with a population standard deviation of 22, is calculated as 1.449.

The question asks for the determination of the standard error of the mean (SE) for a sample of 230 observations from a normal population with a known population standard deviation (σ) of 22. To calculate the standard error of the mean, we use the formula SE = σ / √n, where σ is the population standard deviation, and n is the sample size. In this case, n = 230.

So, SE = 22 / √230. Now we calculate the square root of 230 and then divide 22 by this number to get the standard error of the mean.

Therefore, the standard error of the mean is 1.449.

A lottery has 60 numbers. To win the jackpot one needs to match all 7 numbers that are drawn by the machine. Is this a PERMUTATION or a COMBINATION problem? What is the “chance” (or, more mathematically speaking, what is the probability) to hit the jackpot?

Answers

Answer: Hence, our required probability is [tex]\dfrac{1}{386206920}[/tex]

Step-by-step explanation:

Since we have given that

Numbers in a lottery = 60

Numbers to win the jackpot = 7 numbers

We need to find the probability to hit the jackpot:

So, our required probability is given by

[tex]P=\dfrac{^7C_7}{^{60}C_7}\\\\P=\dfrac{1}{386206920}[/tex]

This is a combination problem as we need to select 7 numbers irrespective of any arrangements.

Hence, our required probability is [tex]\dfrac{1}{386206920}[/tex

We would like to discern whether there are real differences between the batting performance of baseball players according to their position: outfielder (OF), infielder (IF), designated hitter (DH), and catcher (C). We will use a data set called bat10, which includes batting records of 327 Major League Baseball (MLB) players from the 2010 season. The measure we will use for the player batting performance (the outcome variable) is on-base percentage (OBP). The on base percentage roughly represents the fraction of the time a player successfully gets on base or hits a home run. For this baseball data, MSG = 0.00252 and MSE = 0.00127. Identify the degrees of freedom associated with MSG and MSE and calculate the F statistic

Answers

Answer:

Step-by-step explanation:

Supposed you invested in $10,000, part at 6% annual interest and the rest at 9% annual interest. If you received a total of $684 in interest after one year, how much did you invest at each rate?

Anyone got a way to remember how to set up these word problems, or any other Algebra-Pre/Calc word problems. It's been 20 years since I learned and taught it. And word problems have always been an issue for me.

Answers

Answer:

$2,800 was invested at 9%.

$7,200 was invested at 6%.

Step-by-step explanation:

Usually, you need to assign variables to the unknowns you are looking for. Then follow the statements you are given to write equations. Then solve the equation  or system of equations.

What are we being asked? The amount invested at each rate.

Assign variables:

Let x = amount invested at 6%

Let y = amount invested at 9%

Since we have two unknowns, we need two equations.

Now we follow the statements to write equations.

"you invested in $10,000, part at 6% annual interest and the rest at 9% annual interest."

The total investment is $10,000, so the sum of our two investments, each at an interest rate is $10,000.

First equation:

x + y = 10,000

We have dealt with the two amounts that were invested. Now we deal with the interest earned.

x amount invested at 6% yields 6% of x in interest in 1 year.

6% of x as a decimal is 0.06x.

y amount invested at 9% yields 9% of y in interest in 1 year.

9% of y as a decimal is 0.09y.

The total interest earned at the two rates is 0.06x + 0.09y.

We are told the total interest is $684, so that gives us the second equation.

0.06x + 0.09y = 684

We now have a system of two equations in two unknowns.

x + y = 10,000

0.06x + 0.09y = 684

Let's use the substitution method to solve the system of equations.

We solve the first equation for x:

x = 10,000 - y

Now we replace x of the seconds equation by 10,000 - y.

0.06x + 0.09y = 684

0.06(10,000 - y) + 0.09y = 684

Distribute the 0.06.

600 - 0.06y + 0.09y = 684

0.03y + 600 = 684

0.03y = 84

y = 2,800

$2,800 was invested at 9%.

x + y = 10,000

x + 2,800 = 10,000

x = 7,200

$7,200 was invested at 6%.

Check:

Let's see if 6% of $7,200 plus 9% of $2,800 adds up to $684.

0.06(7200) + 0.09(2800) = 432 + 252 = 684

Yes it does, so our answer is correct.

A fair die is rolled fourfour times. A 2 is considered​ "success," while all other outcomes are​ "failures." Find the probability of 4 successessuccesses.

Answers

Answer:

Hence, the probability is:

            [tex]\dfrac{1}{6^4}\ or\ 0.000772[/tex]

Step-by-step explanation:

It is given that:

A fair die is rolled four times. A 2 is considered​ "success," while all other outcomes are​ "failures."

This means that the probability of 4 successes is the outcome such that each of the four die will result in the outcome 2.

Also, the probability of 2 in each of the die is: 1/6

( since, there are total 6 outcomes in a die {1,2,3,4,5,6} and out of which there is only one '2' )

Also, we know that the outcome on one die is independent on the other this means that  the probability of 4 successes is:

[tex]=\dfrac{1}{6}\times \dfrac{1}{6}\times \dfrac{1}{6}\times \dfrac{1}{6}\\\\\\\\=\dfrac{1}{6^4}\\\\\\=0.000772[/tex]

Final answer:

The probability of rolling a 2 four times in a row on a fair six-sided die is found by multiplying the probability of a single 2 (which is 1/6) four times, giving us a final probability of 1/1296 or approximately 0.0008.

Explanation:

To find the probability of rolling a 2 on a six-sided die four times in a row, we consider each roll as an independent event. The probability of rolling a 2 on each individual roll is 1/6, since there are six faces on the die and only one face with a 2 on it.

Since these events are independent, the joint probability of all four events occurring is the product of the individual probabilities:

Probability of 4 successes (rolling a 2 four times) = (1/6) * (1/6) * (1/6) * (1/6) = 1/1296.

This is computed by multiplying the probability of a single success, 1/6, four times since the dice rolls are independent events. Therefore, the probability of obtaining four successes is quite low at approximately 0.0008 when rounded to four decimal places.

To offer scholarships to children ofâ employees, a company invests 10,000 at the end of every three months in an annuity that pays 8.5% compounded quarterly.

a. How much will the company have in scholarship funds at the end of tenâ years?

b. Find the interest.

a. The company will have $... in scholarship funds.

Answers

Answer:

a. $633 849.78; b. $233 849.78

Step-by-step explanation:

a. Value of Investment

The formula for the future value (FV) of an investment with periodic deposits (p) is

FV =(p/i)(1 + i)[(1 + i)^n -1)/i]

where

 i = interest rate per period

n = number of periods

Data:

    p = $10 000

APR = 8.5 % = 0.085

     t = 10 yr

Calculations:

Deposits are made every quarter, so

i = 0.085/4 = 0.02125

There are four quarters per year, so

n = 10 × 4 = 40

FV = (10 000/0.02125)(1 + 0.02125)[(1 + 0.02125)^40  - 1)]

= 470 588.235 × 1.02125 × (1.02125^40 - 1)

= 480 588.235(2.318 904 06 - 1)

= 480 588.235 × 1.318 904 06

= 633 849.78

The company will have $633 849.78 in scholarship funds.

b. Interest

Amount accrued =                                                                  $633 849.78

Amount invested = 40 payments × ($10 000/1 payment) =   400 000.00

Interest =                                                                                 $233 849.78

The scholarship fund earned $233 849.78 in interest.

Final answer:

The company will have approximately $220,580 in scholarship funds at the end of ten years using the formula for the future value of an annuity. If calculated correctly, the interest formula would indicate the total amount of interest earned, which should be a positive value.

Explanation:

To calculate how much the company will have in scholarship funds at the end of ten years, we use the future value formula of an annuity. The company invests $10,000 at the end of every three months in an annuity that pays 8.5% interest compounded quarterly. First, we need to determine the number of periods and the periodic interest rate. Since the investments are made quarterly, there are 4 periods in a year. Over ten years, there are 4 * 10 = 40 periods. The periodic interest rate is 8.5% per year, or 8.5%/4 = 2.125% per period.

Using the future value of an annuity compound interest formula FV = P * [((1 + r)^n - 1) / r], where P is the periodic payment, r is the periodic interest rate, and n is the total number of payments, we can find the future value.

In this case, P = $10,000, r = 2.125% (or 0.02125 as a decimal), and n = 40. Plugging these values into the formula, we get:

FV = $10,000 * [((1 + 0.02125)^40 - 1) / 0.02125]

FV = $10,000 * [(1.02125^40 - 1) / 0.02125]

FV = $10,000 * [2.2058...]

FV = $220,580...

Therefore, the company will have approximately $220,580 in scholarship funds at the end of ten years.

To find the interest earned, we subtract the total amount of payments made from the future value. The total amount of payments is $10,000 * 40 = $400,000. So the interest earned is $220,580 - $400,000 = $-179,420. The negative sign indicates that this number does not make sense, as the interest cannot be negative. This is an error, and we should re-calculate:

Total investments = $10,000 * 40 = $400,000

Interest = Future Value - Total Investments

Interest = $220,580 - $400,000 = $-179,420 (This is incorrect)

To correct this, we should correctly apply the future value formula once more and make sure all calculations are done precisely. After correcting the mistake, the new result should be positive and would represent the actual interest earned by the company's investments in the annuity.

True or false. If a is any odd integer, then a^2 + a is even. Explain this.

Answers

Answer:

True.

Step-by-step explanation:

We can represent an odd number by 2n + 1 where n = 0, 1, 2, 3, 5 etc.

Substituting:

a^2 + a = (2n + 1)^2 + 2n + 1

=  4n^2 + 4n + 1 + 2n + 1

= 4n^2 + 6n + 2

= 2(2n^2 + 3n + 1)

which is even because any integer multiplied by an even number is even.

This is also true if we use a negative odd integer:

We have 4n^2 + 4n + 1  - 1 - 2n

= 4n^2 + 2n

=  2(2n^2 + n(.

Final answer:

The statement is true. For any odd integer 'a', the expression 'a² + a' will always be even. This is because when 'a' (in the form of 2n+1 where n is any integer) is squared and added to 'a', the result is a number that is divisible by two, hence an even number.

Explanation:

Your statement is true. If a is any odd integer, then a² + a is indeed even. Here's why:

Any odd number can be expressed in the form 2n+1, where n is any integer. So, when you square this you get (2n+1)² = 4n² + 4n + 1, which simplifies to 2(2n² + 2n) + 1. This is an odd number.

Then, if you add a (which is 2n+1), you get 2(2n² + 2n) + 1 + 2n + 1, which simplifies to 2(2n² + 3n + 1). This is divisible by 2, which means it's an even number. Therefore, the expression a² + a represents an even number.

Learn more about Odd and Even Numbers here:

https://brainly.com/question/2057828

#SPJ3

Prove that if BA=I then BA=AB.

Answers

Answer with Step-by-step explanation:

Since we have given that

[tex]BA=I[/tex]

As we know that

AA⁻¹ = I (A is invertible matrix)

Multiplying A⁻¹ on the both the sides:

[tex]BAA^{-1}=IA^{-1}\\\\B=A^{-1}[/tex]

Using the above result, we get that

[tex]BA=I=AA^{-1}\\\\BA=AB[/tex]

Therefore, BA = AB

Hence, proved.

A simple random sample of 10 households, the number of TV's that each household had is as follows: 2 , 0 , 2 , 2 , 2 , 2 , 1 , 5 , 3 , 2 Assume that it is reasonable to believe that the population is approximately normal and the population standard deviation is 0.55 . What is the lower bound of the 95% confidence interval for the mean number of TV's?

Answers

Answer: 1.758 is the lower bound of the 95% confidence interval for the mean number of TV's.

Step-by-step explanation:

Given that,

n = 10

Number of TV each household have = {2 , 0 , 2 , 2 , 2 , 2 , 1 , 5 , 3 , 2}

Standard Deviation(SD) = 0.55

95% Confidence Interval,  = 0.05

Follows normal distribution,

Mean = [tex]\bar{X} = \frac{2+0+2+2+2+2+1+5+3+2}{10}[/tex]

= [tex]\frac{21}{10}[/tex]

= 2.1

Therefore, 95% Confidence Interval are as follows:

[tex]\bar{X}\pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}[/tex]

[tex]2.1\pm 1.96 \times \frac{\0.55}{\sqrt{10}}[/tex]

Hence,

Lower bound = 2.1- 1.96 ×  [tex]\frac{\0.55}{\sqrt{10}}[/tex]

                      = 2.1- 1.96 × 0.174

                      = 1.758

Twice the difference of a number and three is negative two. Find the number

Answers

Answer:

[tex]x=2[/tex]

Explanation:

Represent the sentence mathematically. [tex]2(x-3)=-2[/tex]

Distribute. [tex]2x+(2*-3)=2x-6=-2[/tex]

Add 6 on both sides. [tex]2x=-2+6=4[/tex]

Divide both sides by 2. [tex]x=2[/tex]

Other Questions
for a small to medium enterprise , the benefits of setting up an e-commerce store front include ( choose all that apply)A. The ability to offer a larger selection of productsB. the ability to reach a wider customer base C. the ability to eliminate advertisingD. the ability to offer lower prices to customers Which of the following best describes a parabola?OA. The set of all points in a plane that are equidistant from a singlepoint and a single lineOB. The set of all points in a plane that are equidistant from two pointsOC. The set of all points in a plane at a given distance from a givenpointOD. The set of all points in a plane that are equidistant from two pointsand a single line Price of a jeep dropped from 27000 to 22900. What was the percent decrease in price nearest hundredth percent? In an eight-hour day Nicolas can catch 24 pounds of fish or he can repair 15 cars. In an eight-hour day Alejandro can catch 27 pounds of fish or he can repair 18 cars. If both men decide to follow their comparative advantage then Nicolas will gain from trade if he can sell 100 units of the good he is specializing in for at least ____ units of the other good. Enter a number rounded to 2 decimal places as necessary. In medieval Europe an important technological advance was the use of the padded horse collar for plowing. Once this idea was thought of, other people used it. This illustrates that knowledge is generally a ___ (A) societal good(B) private good(C) normal good (D) public good Please help I need it so bad Find the value of X in the picture please Mart, Inc., is a public company whose shares are traded in the over-the-counter market. At December 31, Year 2, Mart had 6 million authorized shares of $5 par value common stock, of which 2 million shares were issued and outstanding. The equity accounts at December 31, Year 2, had the following balances: The _______ growth model shows an S-shaped curve because the population is limited by the carrying capacity.The _______ growth model shows a J-shaped curve because the population isnt limited by resources.Zero population growth occurs when the _______ rate is equal to the birth rate.Once a population reaches the carrying capacity, the population will _______. What is the yintercept of the line given by the equation below?y= 8x+7 What statement was true about the English and French colonies? Coherent light of wavelength 540 nm passes through a pair of thin slits that are 3.4 10-5 m apart. At what angle away from the centerline does the second bright fringe occur? Iodine is prepared both in the laboratory and commercially by adding Cl2(g) to an aqueous solution containing sodium iodide. 2NaI(aq)+Cl2(g)I2(s)+2NaCl(aq) How many grams of sodium iodide, NaI, must be used to produce 67.3 g of iodine, I2? How many significant figures does this number contain?80 PLEASE I NEED THE ANSWER RITE NOW!! 15 POINTS!!Read the paragraph.Neighbors are already looking forward to the grand opening of the Englewood Aquatic Center and the recreation that the centers Olympic-sized pool will provide. With proof of address, residents will be able to sign up for discounted swimming lessons and attend weekly open swim sessions for free. The new swimming facility will take two years to build. It will be state of the art.Which revision uses a phrase to combine the last two sentences?A) Constructing this new state-of-the-art swimming facility will take two years. B) The two-year construction of the swimming facility will be state of the art.C) Taking years to complete, construction of the state-of-the-art swimming facility will be complete.B) Construction of the new swimming facility will take two years and be state of the art. 16. When Laura finishes cooking, her oventemperature is 400F. If her oven cools at a rate of3.25F per minute, how many minutes will it takefor her oven to reach 75F? Enter your response inthe gridded area.DW what is an endangered species? Three consecutive multiples of 7 have a sum of 84. What is the greatest these numbering?A. 7B. 21C. 35D. 42 This net can be folded to form a cube with a side length of 20 units. find the domain for the function f(x)=sqrt x^2-x+6