1) Solve the word problem for the portion, rate, or base.


A quality control process finds 46.8 defects for every 7,800 units of production. What percent of the production is defective?


2) Solve the word problem for the portion, rate, or base.


A medical insurance policy requires Ana to pay the first $100 of her hospital expense. The insurance company will then pay 90% of the remaining expense. Ana is expecting a short surgical stay in the hospital, for which she estimates the total bill to be about $4,800.


How much (in $) of the total bill will Ana owe?

Answers

Answer 1

Answer:

1) 0.6% of the production is defective.

2) Ana will owe $570.

Step-by-step explanation:

Both questions here are percentage problems

Percentage problems can be explained as a rule of three problem

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too. In this case, the rule of three is a cross multiplication.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease. In this case, the rule of three is a line multiplication.

Percentage problems have a direct relationship between the measures.

1) The problem states that a quality control process finds 46.8 defects for every 7,800 units of production. And asks what percent of the production is defective? We have to answers how many defects are there for 100 units of production. So:

46.8 defects - 7,800 units

x defects - 100 units

7,800x = 4680

[tex]x = \frac{4680}{7800}[/tex]

x = 0.6

0.6% of the production is defective.

2) The problem states that the medical insurance policy requires Ana to pay the first $100 of her hospital expense. The insurance company will then pay 90% of the remaining expense. The total bill is expected to be about $4,800.

Ana has to pay:

P = P1 + P2

-P1 :The first $100

-P2: 10% of the remaining expense. The remaining expense is $4,800-$100 = $4,700. Ana has to pay 10% of this. So

4700 - 100%

P2 - 10%

100P2 = 47000

[tex]P2 = \frac{47000}{100}[/tex]

P2 = $470

Ana will owe P = P1 + P2 = $100 + $470 = $570.

Answer 2
Final answer:

To find the percentage of defective units in the production, set up a ratio and calculate the percentage. Approximate 0.6% of the production is defective. To find how much Ana will owe of the total bill, subtract $100 from the total bill and calculate 10% of the remaining expense. Ana will owe $470 of the total bill.

Explanation:

To find the percent of the production that is defective, we need to find the ratio of the number of defective units to the total number of units produced. In this case, we have 46.8 defects for every 7,800 units of production. So, we can set up the ratio as:

Defective Units / Total Units = 46.8 / 7,800

To find the percentage, we can multiply the ratio by 100:

Percentage of Defective Units = (46.8 / 7,800) * 100

Now, calculate the value of the ratio and simplify to find the percentage:

Percentage of Defective Units = 0.006 * 100 = 0.6%

Therefore, approximately 0.6% of the production is defective.

For the second question, to find how much of the total bill Ana will owe, we need to calculate the 10% of the remaining expense after she pays the first $100. First, subtract $100 from the total bill:

Remaining Expense = $4,800 - $100 = $4,700

Next, calculate 10% of the remaining expense:

Amount Ana will owe = 10% of $4,700 = ($4,700 * 10) / 100 = $470

Therefore, Ana will owe $470 of the total bill.


Related Questions

I need help in "Matlab' with how to "Create a column vector from 15 to -25 with a step size of 5"

Answers

Answer:

x=[15:-5:-25]'

Step-by-step explanation:

In order to create a vector you need to use this command:

x = [j:i:k]'

This creates a regularly-spaced vector x using i as the increment between elements. j is the initial value and k is the final value. Besides you need to add the character ' at the end in order to convert the arrow vector in a column vector

What is the principal square root of -4

Answers

Answer:

The principal square root of -4 is 2i.

Step-by-step explanation:

[tex]\sqrt{-4}[/tex] = 2i

We have the following steps to get the answer:

Applying radical rule [tex]\sqrt{-a} =\sqrt{-1} \sqrt{a}[/tex]

We get [tex]\sqrt{-4} =\sqrt{-1} \sqrt{4}[/tex]

As per imaginary rule we know that [tex]\sqrt{-1}=i[/tex]

= [tex]\sqrt{4} i[/tex]

Now [tex]\sqrt{4} =2[/tex]

Hence, the answer is 2i.

find the unpaid balance on the debt after 5 years of monthly payments on $190,000 at 3% for 25 years

Answers

Answer:

the unpaid balance after the 5 years will be 125400.

Step-by-step explanation:

Given,

Principal amount, P = 190,000

rate,r = 3%

total time,t = 25 years

So, the total interest after 25 years will be,

[tex]I\ =\ \dfrac{P\times r\times t}{100}[/tex]

   [tex]=\ \dfrac{190,000\times 3\times 25}{100}[/tex]

    = 142500

amount will be paid in 3 years with same interest rate can be given by

[tex]I_p\ =\ \dfrac{P\times r\times t}{100}[/tex]

       [tex]=\ \dfrac{190,000\times 3\times 3}{100}[/tex]

       = 17100

So, the amount of interest to be paid= 142500 - 17100

                                                             = 125400

so, the unpaid amount of interest after the 5 years will be 125400.

solve each equation with steps.
6r+7=13+7

Answers

6r+7=20
6r=13
r=13/6
r=2.16

The sugar content of the syrup is canned peaches is normally distributed. Assumethe can is designed to have standard deviation 5 milligrams. A random sample ofn= 10 cans is studied. What is the sampling distribution of the sample variance?The data yields a sample standard deviation of 4.8 milligrams. What is the chanceof observing the sample standard deviation greater than 4.8 milligrams?

Answers

Answer: 0.50477

Step-by-step explanation:

Given : The sugar content of the syrup is canned peaches is normally distributed.

We assume the can is designed to have standard deviation [tex]\sigma=5[/tex] milligrams.

The sampling distribution of the sample variance is chi-square distribution.

Also,The data yields a sample standard deviation of [tex]s=4.8[/tex] milligrams.

Sample size : n= 10

Test statistic for chi-square :[tex]\chi^2=\dfrac{s^2(n-1)}{\sigma^2}[/tex]

i.e. [tex]\chi^2=\dfrac{(4.8)^2(10-1)}{(5)^2}=8.2944[/tex]

Now, P-value = [tex]P(\chi^2>8.2944)=0.50477[/tex]  [By using the chi-square distribution table for p-values.]

Hence, the chance of observing the sample standard deviation greater than 4.8 milligrams = 0.50477

At Lamppost Pizza there are four pizza toppings: pepperoni, sausage, mushrooms, and anchovies. When you order a pizza you can have as few or as many toppings you want from the above list. You can also choose to have none of the above. How many different kinds of pizza could you order?
Please help immediately!!! :(

Answers

Answer:

You could order 16 different kinds of pizza.

Step-by-step explanation:

You have those following toppings:

-Pepperoni

-Sausage

-Mushrooms

-Anchovies

The order is not important. For example, if you choose Sausage and Mushrooms toppings, it is the same as Mushrooms and Sausage. So we have a combination problem.

Combination formula:

A formula for the number of possible combinations of r objects from a set of n objects is:

[tex]C_{(n,r)} = \frac{n!}{r!(n-r!}[/tex]

How many different kinds of pizza could you order?

The total T is given by

[tex]T = T_{0} + T_{1} + T_{2} + T_{3} + T_{4}[/tex]

[tex]T_{0}[/tex] is the number of pizzas in which there are no toppings. So [tex]T_{0} = 1[/tex]

[tex]T_{1}[/tex] is the number of pizzas in which there are one topping [tex]T_{1}[/tex] is a combination of 1 topping from a set of 4 toppings. So:

[tex]T_{1} = \frac{4!}{1!(4-1)!} = 4[/tex]

[tex]T_{2}[/tex] is the number of pizzas in which there are two toppings [tex]T_{2}[/tex] is a combination of 2 toppings from a set of 4 toppings. So:

[tex]T_{2} = \frac{4!}{2!(4-2)!} = 6[/tex]

[tex]T_{3}[/tex] is the number of pizzas in which there are three toppings [tex]T_{3}[/tex] is a combination of 3 toppings from a set of 4 toppings. So:

[tex]T_{3} = \frac{4!}{3!(4-3)!} = 4[/tex]

[tex]T_{0}[/tex] is the number of pizzas in which there are four toppings. So [tex]T_{4} = 1[/tex]

Replacing it in T

[tex]T = T_{0} + T_{1} + T_{2} + T_{3} + T_{4} = 1 + 4 + 6 + 4 + 1 = 16[/tex]

You could order 16 different kinds of pizza.

The number (in millions) of employees working in educational services in a particular country was 14.4 in 2005 and 18.8 in 2014. Letx=5 correspond to the year 2005, and estimate the number of employees in 2011. Assume that the data can be modeled by a straight line and that the trend continues indefinitely. Use two data points to find such a line and then estimate the requested quantity Let y represent the number of employees. The linear equation that best models the number of employees (in Millions) is (Simplify your answer. Use integers or decimals for any numbers in the equation. Round to the nearest hundredth as needed.)

Answers

Answer:

For 2011 the number of employees will be 17.33 millions.The linear equation that best models the number of employees (in Millions) is [tex]y(x)  = 0.49 * x + 11.94 [/tex]

Step-by-step explanation:

If we wish to model the data as a straight line, we need to use the straight line formula:

[tex]y(x)  = m * x + b[/tex]

where x is the years that have passed since the year 2000, m is the slope of the line and b the value of y when x=0, and y the numer (in millions) of employees.

For x=5 we know that y(5) = 14.4. So, we have:

[tex]y(5)  = m * 5 + b = 14.4 [/tex]

And for x=14 we know that y(14)= 18.8

[tex]y(14)  = m * 14 + b = 18.8 [/tex]

Subtracting the first equation from the second one:

[tex]y(14) - y(5) = m * 14 + b  - m * 5 - b = 18.8 -  14.4 [/tex]

[tex] m * (14  - 5 ) + b - b = 4.4[/tex]

[tex] m * 9  = 4.4[/tex]

[tex] m  = 4.4 / 9[/tex]

[tex] m  = 0.49 [/tex]

Putting this in the second equation

[tex]y(14)  = 0.49 * 14 + b = 18.8 [/tex]

[tex] 6.86 + b = 18.8 [/tex]

[tex]  b = 18.8 - 6.86 [/tex]

[tex]  b = 11.94 [/tex]

So, our equation will be:

[tex]y(x)  = 0.49 * x + 11.94 [/tex]

For 2011 the number of employees will be

[tex]y(11)  = 0.49 * 11 + 11.94 =17.33[/tex]

For 2011 the number of employees will be 17.33 millions.

The linear equation that best models the number of employees (in Millions) is  

Step-by-step explanation:

If we wish to model the data as a straight line, we need to use the straight line formula:

where x is the years that have passed since the year 2000, m is the slope of the line and b the value of y when x=0, and y the numer (in millions) of employees.

For x=5 we know that y(5) = 14.4. So, we have:

And for x=14 we know that y(14)= 18.8

Subtracting the first equation from the second one:

Putting this in the second equation

So, our equation will be:

For 2011 the number of employees will be

Decide whether the statement is true or false. The solution set of 2x-7=4x +9 is (-8) Choose the correct answer below O True ○ False

Answers

Answer:

2x - 4x -7 = 4x -4x + 9

-2x -7 +7 = 9 + 7

-2x ÷ (- 2 ) = 16 ÷ (-2)

x = -8

Martinez Company’s relevant range of production is 7,500 units to 12,500 units. When it produces and sells 10,000 units, its average costs per unit are as follows:

Average Cost per Unit
Direct materials $ 6.10
Direct labor $ 3.60
Variable manufacturing overhead $ 1.40
Fixed manufacturing overhead $ 4.00
Fixed selling expense $ 3.10
Fixed administrative expense $ 2.10
Sales commissions $ 1.10
Variable administrative expense $ 0.55
2. For financial accounting purposes, what is the total amount of period costs incurred to sell 10,000 units? (Do not round intermediate calculations.)

Answers

Answer:

$68,500

Step-by-step explanation:

The following costs are included in the period costs:

Fixed selling expense = $3.10

Fixed administrative expense = $2.10

Sales commissions = $1.10

Variable administrative expense = $0.55

Hence,

the total period costs incurred

= Sum of the above expenses × Total number of  units sold

= ( $3.10 + $2.10 + $1.10 + $0.55 ) × 10,000

= $68,500

9 + 22 = x + 1

HALPP

Answers

Answer:

x = 30

Step-by-step explanation:

9 + 22 = x + 1

9 + 22 = 31

31 = x + 1

-1          -1

30 = x

x = 30

Add all like terms.
So 22 and 9 are added together.
Which equals to 31.
31= x+1
Subtract 1 on both sides.
31-1= x+1-1
This cancel the 1s on the right side.
Which gives you 30=x

Answer: x= 30

Please help me with this question.
Will mark brainliest
Thanks so much

Answers

Answer:

☑ 30y²

☑ 30y² + x

Step-by-step explanation:

Polynomials contain indeterminates [variables] and operation performances, non-including negative exponents, fractional exponents, etcetera.

I am joyous to assist you anytime.

x dx − y^2 dy = 0, y(0) = 1

Answers

The solution is [tex]\(\frac{x^2}{2} + \frac{y^3}{3} = C\)[/tex], where \(C\) is the constant of integration.

To solve the differential equation [tex]\( xdx + y^2 dy = 0 \),[/tex] we can separate the variables and integrate both sides:

[tex]\[ \int x \, dx + \int y^2 \, dy = 0 \][/tex]

Integrating each term separately:

[tex]\[ \frac{x^2}{2} + \frac{y^3}{3} = C \][/tex]

Where  C is the constant of integration.

Complete question : Solve the following differential equation xdx+y2dy=0.

What is the area under the curve y=x−x^2and above the x-axis?

Answers

Answer:

The area between the x-axis and the given curve equals 1/6 units.

Step-by-step explanation:

given any 2 functions f(x) and g(x) the area between the 2 figures is calculated as

[tex]A=\int_{x_1}^{x_2}(f(x)-g(x))dx[/tex]

The area needed is shown in the attached figure

The points of intersection of the given curve and x-axis are calculated as

[tex]x-x^2=0\\\\x(1-x)=0\\\\\therefore x=0,x=1[/tex]

hence the points of intersection are[tex](0,0),(1,0)[/tex]

The area thus equals

[tex]A=\int_{0}^{1}(x-x^2-0)dx\\\\A=\int_{0}^{1}xdx-\int_{0}^{1}x^2dx\\\\A=1/2-1/3\\\\A=1/6[/tex]

Prove: If n is a positive integer andn2 is
divisible by 3, then n is divisible by3.

Answers

Answer and Step-by-step explanation:

n > 0

n² divisible by 3 ⇒ n is divisible by 3.

Any number divisible by 3 has the sum of their components divisible by 3.

If n² is divisible by 3,  we can say that n² can be written as 3*x.

n² = 3x ⇒ n = √3x

As n is a positive integer √3x must be a integer and x has to have a 3 factor. (x = 3.a.b.c...)

This way, we can say that x = 3y and y is a exact root, because n is a integer.

n² = 3x ⇒ n = √3x ⇒ n = √3.3y ⇒ n = √3.3y ⇒ n = √3²y ⇒ n = 3√y

Which means that n is divisible by 3.

Possible grades for a class are A, B, C, D, and F. (No +/− 's.)

(a) How many ways are there to assign grades to a class of eight students?


(b) How many ways are there to assign grades to a class of seven students if nobody receives an F and exactly one person receives an A?

Answers

Answer: a) 390,625, b) 2916.

Step-by-step explanation:

Since we have given that

Number of possible grades = 5

a) Number of students = 8

Using the "Fundamental theorem of counting", we get that

[tex]5\times 5\times 5\times 5\times 5\times 5\times 5\times 5\\\\=5^8\\\\=390,625[/tex]

b) Number of students = 7

Number of students receive F = 0

Number of students receive A = 1

Number of remaining grades = 4

So, Using fundamental theorem of counting , we get that

[tex]4\times 3\times 3\times 3\times 3\times 3\times 3\\\\=4\times 3^6\\\\=2916[/tex]

Hence, a) 390,625, b) 2916.

Final answer:

There are 390,625 ways to assign grades to a class of eight students. Also, there are 4,096 ways to assign grades to a class of seven students if nobody receives an F and exactly one person receives an A.

Explanation:

(a)  In this case, each student can receive one of the five possible grades (A, B, C, D, or F). So, for each student, there are 5 choices. Since there are 8 students, we multiply the number of choices for each student together:

5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 = 58 = 390,625

Therefore, there are 390,625 ways to assign grades to the class of eight students.

(b)  In this case, the first student has only one choice, which is to receive an A. The remaining six students can receive one of the four possible grades (B, C, D, or F). So, for each of the remaining six students, there are 4 choices:

1 * 4 * 4 * 4 * 4 * 4 * 4 = 46 = 4,096

Therefore, there are 4,096 ways to assign grades to the class of seven students if nobody receives an F and exactly one person receives an A.

The dimensions of a nicotine transdermal patch system are 4.7 cm by 4.8 cm. Express these dimensions in corresponding inches if 1 inch is equivalent to 25.4 mm.

Answers

Answer:

1.85 inches by 1.89 inches.

Step-by-step explanation:

We have been given that the dimensions of a nicotine transdermal patch system are 4.7 cm by 4.8 cm.

First of all, we will convert given dimensions into mm.

1 cm equals 10 mm.

4.7 cm equals 47 mm.

4.8 cm equals 48 mm.

We are told that 1 inch is equivalent to 25.4 mm, so to find new dimensions, we will divide each dimension by 25.4 as:

[tex]\frac{47\text{ mm}}{\frac{25.4\text{ mm}}{\text{inch}}}=\frac{47\text{ mm}}{25.4}\times \frac{\text{ inch}}{\text{mm}}=1.85039\text{ inch}\approx 1.85\text{ inch}[/tex]

[tex]\frac{48\text{ mm}}{\frac{25.4\text{ mm}}{\text{inch}}}=\frac{48\text{ mm}}{25.4}\times \frac{\text{ inch}}{\text{mm}}=1.8897\text{ inch}\approx 1.89\text{ inch}[/tex]

Therefore, the corresponding dimensions would be 1.85 inches by 1.89 inches.

Final answer:

To convert the dimensions of a nicotine transdermal patch from centimeters to inches, multiply the centimeter measurements by 10 to get millimeters, and then divide by 25.4 to get inches. The patch measures approximately 1.85 inches by 1.89 inches.

Explanation:

The student is asking to convert the dimensions of a nicotine transdermal patch system from centimeters to inches.

Given that 1 inch equals 25.4 millimeters (mm), this can be done by first converting the dimensions from centimeters (cm) to millimeters and then from millimeters to inches.

Since 1 cm equals 10 mm, the dimensions of the patch in millimeters are 47 mm by 48 mm. To convert these dimensions to inches, we would divide each by 25.4 (since there are 25.4 mm in an inch).

So, the dimension in inches for the patch's length would be 47 mm / 25.4 mm/inch ≈ 1.85 inches, and its width would be 48 mm / 25.4 mm/inch ≈ 1.89 inches.

Therefore, the nicotine patch measures approximately 1.85 inches by 1.89 inches.

In Exercises 15-22, change the number given as a percent to a decimal number. 15. 7% 0.07 18, 0.75% 0.0075 212 135.9% 1.359 17, 5.15% 00515 16.39% 0.39 19, %00025 22, 298.7% 2.987 20. % 0.00375 27.

Answers

Step-by-step explanation:

We are asked to convert given percent to a decimal number.

We know to convert a number to decimal, we divide given percent by 100 as percent means per hundred.

We also know that to divide a number by hundred, we need to move decimal to two digits to left.

(15). [tex]7\%[/tex]

[tex]7\%=\frac{7}{100}=0.07[/tex]

(16). [tex]39\%[/tex]

[tex]39\%=\frac{39}{100}=0.39[/tex]

(17). [tex]5.15\%[/tex]

[tex]5.15\%=\frac{5.15}{100}=0.0515[/tex]

(18). [tex]0.75\%[/tex]

[tex]0.75\%=\frac{0.75}{100}=0.0075[/tex]

(19). [tex]\frac{1}{4}\%[/tex]

[tex]\frac{1}{4}\%=\frac{\frac{1}{4}}{100}=\frac{1}{4*100}=\frac{1}{400}=0.0025[/tex]

(20). [tex]\frac{3}{8}\%[/tex]

[tex]\frac{3}{8}\%=\frac{\frac{3}{8}}{100}=\frac{1}{8*100}=\frac{3}{800}=0.00375[/tex]

(21). [tex]135.9\%[/tex]

[tex]135.9\%=\frac{135.9}{100}=1.359[/tex]

(22). [tex]298.7\%[/tex]

[tex]298.7\%=\frac{298.7}{100}=2.987[/tex]

2. A random sample of 500 households was identified in a major North American city using the municipal voter registration list. Five hundred questionnaires went out, directed at one adult in each household, which asked a series of questions about attitudes regarding the municipal recycling program. Eighty of the 500 surveys were filled out and returned to the researchers. a. Can the 80 households that returned questionnaires be regarded as a random sample of households? Why or why not? b. What type of bias might affect the survey outcome?

Answers

Answer:

a. No, Returned questionnaires can't be regarded as a random sample of households.

b. Non Response Bias

Step-by-step explanation:

a. Among the 500 households only 80 responses to the survey. This type of sample can't be regarded as a random sample. Because it is possible that the question asked to people contain any embarrassing information that peoples refuse to answer the questionnaire.

b. This type of bias is known as Non-Response Bias.

Further, Non Response bias can be considered as, In conducting a survey some people did not respond to our survey, this sometimes affects our survey result very much.

For Example: It can happen that some people may refuse to participate in a survey, as the question asked to people contain personal detail or illegal activities or asking any embarrassing information, so people refused to participate in the survey. This non-response causes the results of the survey to be biased.

What is 1/4 divided by 1/2, and create and solve a real-world word problem that uses the above division expression.

Answers

Answer:

1/4 divided by 1/2 equals 1/2

Real-world problem:

A constructor official knows that he needs 1/2 sack of cement to produce 10 blocks of concrete for a wall. The official only has 1/4 of the sack left and want to know how many blocks he can produce with this material.

Step-by-step explanation:

Since you know that 1/2 of the sack is needed to make 10 blocks, you can use this information to find the number of blocks that 1/4 of a sack can make. The question you want to answer is:  

if [tex]\frac{1}{2}[/tex] of a sack produces 10 blocks, how may blocks [tex]\frac{1}{4}[/tex] of a sack can produce?

Using the Rule of Three you can solve

[tex]\frac{\frac{1}{4} }{\frac{1}{2}} =\frac{2}{4}=\frac{1}{2}[/tex]

Now you know that 1/4 of a sack can produce 1/2 the number of blocks that 1/2 of the sack can produces, this means that you can produce 5 blocks of concrete.

Answer:

if you have 1/4 of a rope and you need to give 7/16 to your friend how much rope did you give to your friend?

Step-by-step explanation:

what is the purpose of proof in mathematics?

Answers

The mathematical proofs are useful to show that a mathematical statement is true. Generally a mathematical proof use other statements like theorems, or axioms. Also mathematical proofs are useful to know if the development of a theoretical process in other areas like physics is well done. Other thing that is useful of the proofs in mathematics is that it use a formal language  with symbols that minimize the ambiguity and make it universal.

If you roll one die and flip one coin, what are all the possible outcomes?

Answers

Answer: [tex](1,T), (2,T), (3,T), (4, T), (5,T), (6,T)\\(1,H), (2,H), (3,H), (4, H), (5,H), (6,H)[/tex]

Step-by-step explanation:

The total outcomes on a die = {1,2,3,4,5,6}=6

The total outcomes on a coin = {Tails  or Heads}=2

The number of possible outcomes =[tex]6\times2=12[/tex]

If you roll one die and flip one coin, then the possible outcomes are:  

[tex](1,T), (2,T), (3,T), (4, T), (5,T), (6,T)\\(1,H), (2,H), (3,H), (4, H), (5,H), (6,H)[/tex]

Here T denotes for Tails and H denotes for heads.

What is the yarn number* of a 60 grain/yd sliver in cotton hanks/lb?

Answers

Answer:

0.138 hanks/lb

Step-by-step explanation:

Given:

Silver = 60 grain/yd

Now,

1 hank = 840 yd

or

1 yd = [tex]\frac{\textup{1}}{\textup{840}}[/tex] hank

And,

1 lb = 7000 grain.

or

1 grain = [tex]\frac{\textup{1}}{\textup{7000}}[/tex] lb

Thus,

60 grain/yd = [tex]\frac{60\times\frac{1}{7000}}{1\times\frac{1}{840}}[/tex] lb/hanks

or

60 grain/yd = 7.2 lb/ hanks

or

[tex]\frac{\textup{1}}{\textup{7.2}}[/tex] hanks/lb

or

0.138 hanks/lb

find cardinality of set B

B = {∅, {1}, {1, 2}, {1, 2,3}, · · · , {1, 2, · · · , m}}

Answers

Answer:

m + 1

Step-by-step explanation:

Given set,

B = {∅, {1}, {1, 2}, {1, 2,3}, · · · , {1, 2, · · · , m}},

Since, the elements of S are,

{} , {1}, {1, 2}, {1, 2, 3}....... {1, 2,.....m }

Thus, every next set contains one more succeeding natural number than the previous set.

So, if the last set contains m natural numbers.

Then there are 'm + 1' sets in B ( m sets included ∅ )

Hence, the number of elements in B is 'm+1'

I.e. Cardinality of B is m + 1.

Let 'A' and 'B' be subsets of a universal set 'U'. 1. Which of the following describes 'A cap B"?! • 1. The set of all elements of 'Uʻ that are elements of both 'A' and 'B'. • 2. The set of all elements of 'U' that are elements of either 'A' or 'B 3. The set of all elements of ‘Uʻ that are elements of neither ‘A’ nor 'B'. • 4. The set of all elements of 'U' that are elements of either 'A' or 'B' but not both. 2. Which of the following describes '(A cup B)""? • 1. The set of all elements of 'U' that are elements of both 'A' and 'B'. 2. The set of all elements of 'U' that are elements of either 'A' or 'B'. • 3. The set of all elements of 'U' that are elements of neither 'A' nor 'B'. • 4. The set of all elements of 'U' that are elements of either 'A' or 'B' but not both.

Answers

Answer:

  A ∩ B: 1. The set of all elements of 'Uʻ that are elements of both 'A' and 'B'.

  A ∪ B: 2. The set of all elements of 'U' that are elements of either 'A' or 'B'.

Step-by-step explanation:

1. The "intersection" symbol (∩) signifies the members that are in both sets. For example, {1, 2} ∩ {1, 3} = {1}.

__

2. The "union" symbol (∪) signifies the members that are in either set. For example, {1, 2} ∪ {1, 3} = {1, 2, 3}.

The population of Cook Island was always been modeled by a logistic equation with growth rate r=19 and carrying capacity N=8000, with time t measured in years. However, beginning in 2000, 9 citizens of Cook Island have left every year to become a mathematician, never to return. Find the new differential equation modeling the population of the island P(t) after 2000. Use P for P(t) and P' for P′(t)

The answer is P' = P/9(1-P/8000)-9

Answers

Answer:

[tex]P'(t) = 19P(1 - \frac{P}{8000}) - 9[/tex]

Step-by-step explanation:

The logistic equation is given by Equation 1):

1) [tex]\frac{dP}{dt} = rP(1 - \frac{P}{N})[/tex]

In which P represents the population, [tex]\frac{dP}{dt} = P'(t)[/tex] is the variation of the population in function of time, r is the growth rate of the population and N is the carrying capacity of the population.

Now for your system:

The problem states that the population has growth rate r=19.

The problem also states that the population has carrying capacity N=8000.

We can replace these values in Equation 1), so:

[tex]P'(t) = 19P(1 - \frac{P}{8000})[/tex]

However, beginning in 2000, 9 citizens of Cook Island have left every year to become a mathematician, never to return. So, we have to subtract these 9 citizens in the P'(t) equation. So:

[tex]P'(t) = 19P(1 - \frac{P}{8000}) - 9[/tex]

The correct differential equation modeling the population of Cook Island after 2000, taking into account the emigration of 9 citizens every year, is given by:[tex]\[ P' = \frac{P}{9}\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

To derive this equation, we start with the standard logistic growth model, which is given by:

[tex]\[ P' = rP\left(1 - \frac{P}{K}\right) \][/tex]

where \( r \) is the intrinsic growth rate and [tex]\( K \)[/tex] is the carrying capacity of the environment. For the Cook Islands, we have [tex]\( r = 19 \) and \( K = 8000 \)[/tex].

However, since 9 citizens leave the island every year starting from 2000, we need to modify the logistic growth model to account for this emigration. The term representing the natural growth of the population remains the same, but we subtract 9 from the growth rate to represent the annual emigration:

[tex]\[ P' = rP\left(1 - \frac{P}{K}\right) - 9 \][/tex]

Substituting the given values of [tex]\( r \)[/tex] and [tex]\( K \)[/tex] into the equation, we get:

[tex]\[ P' = 19P\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

 Now, we need to adjust the growth rate [tex]\( r \)[/tex] to reflect the fact that the population is also decreasing due to emigration. Since the population decreases by 9 every year, we divide the growth rate by 9 to account for this decrease:

[tex]\[ P' = \frac{19P}{9}\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

However, the growth rate should not be divided by 9, as this would incorrectly alter the per capita growth rate. The correct adjustment is to subtract the constant rate of emigration from the overall growth rate:

[tex]\[ P' = 19P\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

Upon reviewing the provided answer, we see that the growth rate [tex]\( r \)[/tex]has been incorrectly divided by 9. The correct differential equation should not have the growth rate divided by 9. Therefore, the correct differential equation modeling the population of the island [tex]\( P(t) \)[/tex] after 2000 is:

[tex]\[ P' = 19P\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

If angle 1 has a measure of 56° and angle 2 has a measure of 124°, the two angles are complementary.

Question 1 options:
True
False

Answers

Answer:

False.

Step-by-step explanation:

Two angles are complementary when added up, they give a result of 90°.

So, to this question to be true we have to do:

Angle 1 + Angle 2 = 90

But if we resolve 56° + 124° = 180, so this means that this question is false, as the addition of both angles doesn't have a result of 90°.


Which of the following sets are equal to {x | x > 9 and x < 2}

{2, 3, 4, 5, 6, 7, 8, 9}

{ }

{3, 4, 5, 6, 7, 8}

{3, 4, 5, 7, 8}

{4, 5, 6, 7, 8, 9}

Answers

Answer:

  { }

Step-by-step explanation:

There are no numbers that are both greater than 9 and less than 2. The expression describes the empty set.

Let C(x) represent the cost of producing x items and p(x) be the sale price per item if x items are sold. The profit P(x) of selling x items is P(x)=xp(x)-C(x) (revenue minus costs). The average profit per item when x items are sold is P(x)/(x) and the marginal profit is dP/dx. The marginal profit approximates the profit obtained by selling one more item given that x items have already been sold. Consider the following cost functions C and price function p.C(x)=-0.02x^2+40x+80, p(x)=100, a=500a) what is the profit function P.P(x)=?b) find the average profit function and marginal profit function.average profit function: P(x)/(x)=?marginal profit function: dP/dx=?c

Answers

Answer:

(a) Profit function P(x) = 0.02x^2+60x-80

(b) Average profit P(x)/x = P/x = 0.02x+60-80/x

Marginal profit dP/dx = 0.04x+60

Step-by-step explanation:

Cost function: C(x) = -0.02x^2+40x+80

Price function: p(x) = 100

(a) The profit function P(x) = x*p(x)-C(x) can be expressed as:

[tex]P=x*p-C\\P=x*100-(-0.02x^{2} +40x+80)\\P=0.02x^{2}+60x-80[/tex]

(b)Average profit function: P(x)/x

[tex]P/x=(0.02x^{2}+60x-80)/x\\P/x = 0.02x+60-80/x[/tex]

Marginal profit function: dP/dx

[tex]P=0.02x^{2}+60x-80\\dP/dx=0.02*2*x+60+0\\dP/dx=0.04x+60[/tex]

Final answer:

The problem involves calculating the profit, average profit per item, and marginal profit for selling x items based on a given cost and price function. By subtracting the cost function from the revenue, we obtain the profit function P(x) = -0.02x² + 60x + 80. The average profit and marginal profit functions further analyze profitability.

Explanation:

To solve the problem given, we need to start by finding the profit function P(x), which is obtained by subtracting the cost function C(x) from the revenue function, where the revenue is the sale price per item times the number of items sold (xp(x)). Given C(x) = -0.02x² + 40x + 80 and p(x) = 100, the profit function can be determined.

Next, the average profit function is found by dividing the profit function by x, and the marginal profit function, dP/dx, is the derivative of the profit function with respect to x, which provides an approximation of the profit gained by selling one more item after x items have been sold.

Profit Function

Substituting p(x) = 100 into P(x) = xp(x) - C(x), we obtain:

P(x) = x(100) - (-0.02x² + 40x + 80)

P(x) = -0.02x² + 60x + 80

Average Profit Function

The average profit per item for x items sold is:

P(x)/x = (-0.02x² + 60x + 80) / x

Janae was vacuuming the narrow hallway in her house. She went 5 feet forwards in the first 4 seconds, then went 3 feet backwards in the next 4 seconds. She continued to do this, forwards 5 feet in 4 seconds and backwards 3 feet in 4 seconds. If she continues in this way, how many seconds will it take her to reach the end of her hallway, which is 15 feet long? 1.

Answers

Final answer:

Janae will reach the end of the 15-foot hallway in 56.8 seconds. She progresses 2 feet every 8 seconds, and in the last cycle, she only needs an additional 0.8 seconds to cover the final foot.

Explanation:

Calculating Janae's Time to Reach the End of Her Hallway

Janae is vacuuming by moving forwards and backwards in a consistent pattern. She moves 5 feet forwards in 4 seconds and then 3 feet backwards in the next 4 seconds. This means that every 8 seconds, Janae makes a net progress of 2 feet (5 feet - 3 feet = 2 feet).

To cover the entire 15-foot length of the hallway, we need to calculate how many 2-foot increments she can complete before reaching the end.

First, divide the total hallway length by Janae's net progress per cycle: 15 feet ÷ 2 feet per cycle = 7.5 cycles. Since Janae cannot complete half a cycle, she will have to complete a whole 8th cycle. Now, multiply the number of complete cycles by the time per cycle: 8 cycles × 8 seconds per cycle = 64 seconds.

However, in the last cycle, Janae only needs to make 1 extra foot instead of 2, since her total net progress after 7 cycles is 14 feet. Thus, during the 8th cycle, she moves forward 5 feet in 4 seconds, but as soon as she reaches the 15-foot mark, she stops.

This means that she won't need the full 8 seconds of the last cycle. We can calculate the extra time required to move the final foot by setting up a ratio. Since 5 feet take 4 seconds, 1 foot will take 4 seconds ÷ 5 = 0.8 seconds.

The total time Janae takes to reach the end of the hallway is the time for the 7 full cycles plus the time to move the last foot: (7 × 8 seconds) + 0.8 seconds = 56.8 seconds. This is the time required for Janae to reach the end of her 15-foot hallway.

You go to a car dealer and pick out a vehicle that costs $31,210 "out-the-door." Instead of paying all the cash upfront, you can put down an amount and finance the rest of the car loan. The money will be financed over 5 years at 4.5%. By hand, compute the following:

If you put down 15% of the car’s cost, what is the amount of the car loan?

Find the total amount paid for the car (including the down payment)

Answers

Answer:

Cost of car = $31,210

Now we are given that  you put down 15% of the car’s cost.

So, Down payment = [tex]15\% \times 31210[/tex]

                                = [tex]\frac{15}{100} \times 31210[/tex]

                                = [tex]4681.5[/tex]

So, Amount of car loan =  Total cost - Down payment

Amount of car loan =$31210 - $4681.5

                                 =$26528.5

Thus Amount of car loan is $26528.5

Now To find the total amount of car

Principal = $26528.5

Rate of interest = 4.5%

Time = 5 years

[tex]A=P(1+r)^t[/tex]

[tex]A=26528.5(1+\frac{4.5}{100})^5[/tex]

[tex]A=33059.337533[/tex]

Total amount including down payment = $33059.337533+$4681.50 = $37740.837533

Hence  the total amount paid for the car (including the down payment) is $37740.83

Other Questions
Education keeps students off the street and out of the full-time job market for a number of years, keeping levels of unemployment within reasonable bounds. This is an example of a latent function of education the text terms __________. When we throw an object vertically upwards its initial velocity: a. It will be less than the finalb. It will be greater than the finalc. It will be equivalent to the finald. It remains constant until reaching its maximum height What is 7ab(2a+4b-6) When you ride a roller coaster that makes sharp turns ,you feel yourself being pushed to one side . Use Newtons first law of motion to explain this phenomenon How are hurricanes formed? Which model of election configuration is the most accurate? The quantum mechanical atomic model The Rutherford atomic model The Bohr atomic model O Plum pudding atomic model The quantum gravity atomic model What is the relationship between the independent and dependent variable? Cephalizationa) is a feature of most invertebrates, including the spongesb) is characterized by the concentration of sensory organs in the anterior endc) occurs in marine protozoad) results when the brain does not develop properly If there are 2.54 centimeters in 1 inch, how many centimeters are in 500 inches The thermal conductivity of a sheet of rigid, extruded insulation is reported to be k= 0.029 W/ m K. The measured temperature difference across a 25-mm-thick sheet of the material is T1 - T2 = 12C. a. What is the heat flux through a 3 mx 3 m sheet of the insulation? b. What is the rate of heat transfer through the sheet of insulation? c. What is the thermal resistance of the sheet due to conduction? ANSWER PLEASE ITS AN EMERGENCY. COULD SOMEONE ALSO HELP WITH OTHER QUESTIONS TOO?ILL GIVE BRAINLIESTAngle G and Angle K are complementary angles. The measure of Angle K is 5 times the measure of Angle G. Find the measures of Angle G and Angle K.Measure of Angle G =degrees.Measure of Angle K = degrees. A driveway is in the shape of a rectangle 3.0 meters wide by 5.0 meters long. What is its perimeter? how did changing technology promote exploration? A web page design firm has two designs for an online hardware store. To determine which is the more effective design, the firm uses one page when on a mobile platform and a second page when on a desktop. For each visit, the firm records the amount spent by the visitor and the amount of time visiting the site. Complete parts (a) through (c) below (a) What is the explanatory variable in this study? Is it qualitative or quantitative? O A. The explanatory variable is the amount spent by the visitor. This explanatory variable is quantitative. O B. The explanatory variable is the web page design. The explanatory variable is qualitative. C. The explanatory variable is the amount of time visiting the site. This explanatory variable is quantitative O D. The explanatory variable is the age group. This explanatory variable is qualitative. (b) What are the two response variables? For each response variable, state whether it is qualitative or quantitative. Select all that apply. A- One response variable is the amount spent by the visitor. This response variable is quantitative. B. One response variable is the web page design. This response variable is qualitative. C. One response variable is the age group. This response variable is qualitative D. One response variable is the amount of time visiting the site. This response variable is quantitative. (c) Explain how confounding might be an issue with this study. Choose the correct answer below d A. Since there are two response variables in this study, they may interact, causing the results to be misleading or incorrect. B. Since there is only one explanatory variable, and two response variables, the explanatory variable will not affect both response variables equally, resulting in misleading results O C. Since the designs are being tested with two different age groups, preferences depending on the age group may affect the response variables for those groups. O D. Since the variables are not all quantitative or all qualitative, they may interact, causing the results to be misleading or incorrect. what is density and what does it tell you about a substance What is the result of beowulfs battle with the dragon??? xy = (1 y2 ), y(1) = 0 What is the solution to this equation?7x 3( 6) = 30A.x= 12B. = 6C. = 3D. x= 9 We have a separate country known as Lezette-ville. The GDP per capita in 2010 was $18,000 in 2010 dollars. While in 2018, the GDP per capita was $20,725 in 2018 dollars. The CPI in 2010 is 218 while the CPI in 2018 is 251. How would you characterize the growth in GDP per capita from 2010 to 2018? Why does a solid change to liquid when heat is added?O A. The spacing between particles decreases.B. Particles lose energy.C.The spacing between particles increases.D. The temperature decreases.ResetNext