10. Sarah is planning to fence in her backyard garden. One side of the garden is 34 feet long, another side is 30 feet long, and the third side is 67 feet long.Find the perimeter of Sarah’s garden to determine the amount of fencing material needed.

A.262 ft.
B.68,340 ft.
C.250 ft.
D.131 ft.

Answers

Answer 1

Answer:

131ft is the amount of fencing material needed

Step-by-step explanation:

Perimeter is the distance around a shape: we have to sum all the distances

P = d1 + d2 + d3

P = 34 ft + 30 ft + 67 ft = 131 ft

Answer 2

Answer:

D. 131 ft.

Step-by-step explanation:

If Sarah is planning to fence in her backyard garden and one side of the garden is 34 feet long, another side is 30 feet long, and the third side is 67 feet long. The perimeter of Sarah’s garden to determine the amount of fencing material needed is 131 feet.


Related Questions

​ Assume the trait for brown eyes is completely dominant to blue eyes and this trait is controlled by a single gene. If 400 people in a population of 10,000 have blue eyes, how many people would be expected to be heterozygous for this trait? (Hint: Use the Hardy-Weinberg formula.)

Answers

Answer:

3200 people

Step-by-step explanation:

p = The frequency of the dominant gene

q = The frequency of the recessive gene

[tex]q^2=\frac{400}{10000}\\\Rightarrow q^2=0.04\\\Rightarrow q=0.2[/tex]

p+q = 1

⇒p = 1-q

⇒p = 1-0.2

⇒p = 0.8

Hardy-Weinberg formula

p² + 2pq + q² = 1

Now for heterozygous trait

2pq = 2×0.8×0.2 = 0.32

Multiplying with the population

0.32×10000 = 3200

∴ 3200 people would be expected to be heterozygous for this trait.

Final answer:

According to the Hardy-Weinberg formula, the expected number of people heterozygous for the eye color trait can be calculated as 768 in a population of 10,000. This calculation takes into account the dominance of the brown eye color trait and the frequency of blue-eyed individuals.

Explanation:

In this scenario, we are considering a single gene controlling the trait for eye color, with brown eyes being completely dominant to blue eyes.

Using the Hardy-Weinberg formula, we can calculate the expected frequency of each genotype in the population. The formula is: p^2 + 2pq + q^2 = 1.

We are given that 400 people have blue eyes in a population of 10,000. Therefore, the frequency of the recessive allele (q) can be calculated as the square root of the frequency of the blue-eyed individuals, which is 400/10,000 = 0.04.

Since brown eyes are completely dominant, the frequency of the dominant allele (p) can be calculated as 1 - q, which is 1 - 0.04 = 0.96.

Now we can calculate the expected number of heterozygous individuals (2pq): 2 * 0.96 * 0.04 * 10,000 = 768.

Therefore, we would expect 768 people to be heterozygous for the eye color trait in this population.

Learn more about Hardy-Weinberg formula here:

https://brainly.com/question/34695712

#SPJ3

A farmer builds a fence to enclose a rectangular pasture. He uses 160 feet of fence. Find the total area of the pasture if it is 50 feet long

Answers

Answer:

  1500 ft²

Step-by-step explanation:

The sum of two adjacent sides of the pasture is half the perimeter (160 ft/2 = 80 ft), so the side adjacent to the 50 ft side will be 80 ft - 50 ft = 30 ft.

The product of adjacent sides of a rectangle gives the area of the rectangle. That area will be ...

  area = (50 ft)(30 ft) = 1500 ft²

The probability that a randomly chosen citizen-entity of Cygnus is of pension age† is approximately 0.7. What is the probability that, in a randomly selected sample of four citizen-entities, all of them are of pension age?

Answers

Answer: 0.2401

Step-by-step explanation:

The binomial distribution formula is given by :-

[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex]

where P(x) is the probability of x successes out of n trials, p is the probability of success on a particular trial.

Given : The probability that a randomly chosen citizen-entity of Cygnus is of pension age† is approximately: p =0.7.

Number of trials  : n= 4

Now, the required probability will be :

[tex]P(x=4)=^4C_4(0.7)^4(1-0.7)^{4-4}\\\\=(1)(0.7)^4(1)=0.2401[/tex]

Thus, the probability that, in a randomly selected sample of four citizen-entities, all of them are of pension age =0.2401


The correct conversion from metric system to household system is

A. 5 ml equals 1 tablespoon

B. 15 ml equals 1 teaspoon

C. 30 ml equals 1 fluid ounce

D. 500 ml equals 1 measuring cup

Answers

Answer:

The closest conversion would be C. 30 ml equals 1 fluid ounce , it is only off by 0.43 ml

Step-by-step explanation:

Great question, it is always good to ask away in order to get rid of any doubts you may be having.

The metric system is a decimal system of measurement while the household system is a system of measurement usually found with kitchen utensils. The correct conversions are the following.

5 ml equals 0.33814 tablespoon

15 ml equals 3.04326 teaspoon

29.5735 ml equals 1 fluid ounce

236.588 ml equals 1 measuring cup

So the closest conversion would be C. 30 ml equals 1 fluid ounce , it is only off by 0.43 ml

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

Final answer:

The correct conversion between the metric and household system provided in the choices is 30ml equals 1 fluid ounce. However, 5ml is equivalent to 1 teaspoon, 15 ml to 1 tablespoon, and 250 ml to 1 measuring cup.

Explanation:

The correct conversion from the metric system to the household system among the options given is C. 30 ml equals 1 fluid ounce. The rationale behind this is that 30 ml is universally accepted as being equal to 1 fluid ounce in the household system.

Option A, B and, D are incorrect conversions. More accurate conversions would be: A. 5 ml equals 1 teaspoon; B. 15 ml equals 1 tablespoon; D. 250 ml equals 1 measuring cup.

Learn more about Conversion here:

https://brainly.com/question/33720372

#SPJ6

The population of a town grows at a rate proportional to the population present at time t. The initial population of 500 increases by 25% in 10 years. What will be the population in 20 years? (Round your answer to the nearest person.) persons How fast is the population growing at t20 (Round your answer to two decimal places.) persons/yr

Answers

Answer:

The population would be 781.

The population is growing with the rate of 12.50 persons/yr.

Step-by-step explanation:

Since, the formula for calculating the population, increasing with a rate per period,

[tex]A=P(1+r)^{n}[/tex]

Where, P is the initial population,

r is the rate per period,

n is the number of period,

t is the total years,

Here, P = 500, r = 25 % = 0.25, n = 2 ( the number of '10 year period' of in 20 years is 2 )

Hence, the population in 20 years would be,

[tex]A=500(1+0.25)^2=500(1.25)^2=781.25\approx 781[/tex]

Now, the rate of increasing per 10 year is 25 %,

⇒ The rate of increasing per year is 2.5 %,

Thus, the growing people per year = 2.5 % of 500 = 0.025 × 500 = 12.50

Hence, the population is growing at 12.50 person per year.

The chickens at Colonel​ Thompson's Ranch have a mean weight of 1700 ​g, with a standard deviation of 200 g. The weights of the chickens are closely approximated by a normal curve. Find the percent of all chickens having weights more than 1560 g.

Answers

Answer:

75.8%

Step-by-step explanation:

Mean weight of chickens = u = 1700 g

Standard deviation = [tex]\sigma[/tex] = 200g

We need to calculate the percentage of chickens having weight more than 1560 g

So,

x = 1560 g

Since the weights can be approximated by normal distribution, we can use concept of z-score to solve this problem.

First we need to convert the given weight to z score. The formula for z score is:

[tex]z=\frac{x-u}{\sigma}[/tex]

Using the values, we get:

[tex]z=\frac{1560-1700}{200} \\\\ z = -0.7[/tex]

So now we have to calculate what percentage of values lie above the z score of -0.7. Using the z-table or z-calculator we get:

P(z > -0.7) = 0.758

This means 0.758 or 75.8% of the values are above z score of -0.7. In context of our question we can write:

75.8% of the chickens will have weight more than 1560 g

Final answer:

To find the percent of chickens having weights more than 1560 g, calculate the z-score for 1560 g and find the area to the right of this z-score in the standard normal distribution curve.

Explanation:

To find the percent of all chickens having weights more than 1560 g, we need to calculate the z-score for 1560 g and then find the area to the right of this z-score in the standard normal distribution curve.

First, calculate the z-score using the formula: z = (x - μ) / σ, where x is the weight of the chicken, μ is the mean weight, and σ is the standard deviation.

For the weight 1560 g, the z-score is calculated as: z = (1560 - 1700) / 200 = -0.7

Using a standard normal distribution table or calculator, find the area to the right of -0.7. This area represents the percent of chickens having weights more than 1560 g.

Learn more about Normal distribution here:

https://brainly.com/question/34741155

#SPJ11

What is the value of x?



Enter your answer in the box.

Answers

Answer:

x = 25

Step-by-step explanation:

Step 1: Identify the similar triangles

Triangle DQC and triangle DBR are similar

Step 2: Identify the parallel lines

QC is parallel to BR

Step 3: Find x

DQ/QB = DC/CR

40/24 = x/15

x = 25

!!

Answer: [tex]x=25[/tex]

Step-by-step explanation:

In order to calculate the value of "x", you can set up de following proportion:

[tex]\frac{BQ+QD}{QD}=\frac{RC+CD}{CD}\\\\\frac{24+40}{40}=\frac{15+x}{x}[/tex]

Now, the final step is to solve for "x" to find its value.

Therefore, its value is the following:

[tex]1.6=\frac{15+x}{x}\\\\1.6x=x+15\\\\1.6x-x=15\\\\0.6x=15\\\\x=\frac{15}{0.6}\\\\x=25[/tex]

James is able to sell 15 of Product A and 16 of Product B a week, Sally is able to sell 25 of Product A and 10 of Product B a week, and Andre is able to sell 18 of Product A and 13 of Product B a week. If Product A sells for exist35.75 each and Product B sells for exist42.25 each, what is the difference in the amount of money earned between the most profitable and the least profitable seller? a exist91.00 b exist97.50 c exist104.00 d exist119.50 e exist123.50

Answers

Answer: Option(e) exist 123.50 is correct.

Step-by-step explanation:

James earns:

Product A: 15 × 35.75 = 536.25

Product B: 16 × 42.25 = 676

Total Earnings = 1212.25

Sally earns:

Product A: 25 × 35.75 = 893.75

Product B: 10 × 42.25 = 422.5

Total Earnings = 1316.25

Andre earns:

Product A: 18 × 35.75 = 643.5

Product B: 13 × 42.25 = 549.25

Total Earnings = 1192.75

Above calculation shows that Sally is the most profitable seller and Andre is the least profitable seller.

So, the difference between the most profitable seller i.e Sally (1316.25) and the least profitable seller i.e. Andre (1192.75) is 123.50.

Let P2 be the vector space of all polynomials of degree 2 or less, and let H be the subspace spanned by 10x2+4xâ1, 3xâ4x2+3, and 5x2+xâ1. The dimension of the subspace H is . Is {10x2+4xâ1,3xâ4x2+3,5x2+xâ1} a basis for P2? Be sure you can explain and justify your answer. A basis for the subspace H is { }. Enter a polynomial or a comma separated list of polynomials.

Answers

I suppose

[tex]H=\mathrm{span}\{10x^2+4x-1,3x-4x^2+3,5x^2+x-1\}[/tex]

The vectors that span [tex]H[/tex] form a basis for [tex]P_2[/tex] if they are (1) linearly independent and (2) any vector in [tex]P_2[/tex] can be expressed as a linear combination of those vectors (i.e. they span [tex]P_2[/tex]).

Independence:

Compute the Wronskian determinant:

[tex]\begin{vmatrix}10x^2+4x-1&3x-4x^2+3&5x^2+x-1\\20x+4&3-8x&10x+1\\20&-8&10\end{vmatrix}=-6\neq0[/tex]

The determinant is non-zero, so the vectors are linearly independent. For this reason, we also know the dimension of [tex]H[/tex] is 3.

Span:

Write an arbitrary vector in [tex]P_2[/tex] as [tex]ax^2+bx+c[/tex]. Then the given vectors span [tex]P_2[/tex] if there is always a choice of scalars [tex]k_1,k_2,k_3[/tex] such that

[tex]k_1(10x^2+4x-1)+k_2(3x-4x^2+3)+k_3(5x^2+x-1)=ax^2+bx+c[/tex]

which is equivalent to the system

[tex]\begin{bmatrix}10&-4&5\\4&3&1\\-1&3&-1\end{bmatrix}\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}a\\b\\c\end{bmatrix}[/tex]

The coefficient matrix is non-singular, so it has an inverse. Multiplying both sides by that inverse gives

[tex]\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}-\dfrac{6a-11b+19c}3\\\dfrac{3a-5b+2c}3\\\dfrac{15a-26b+46c}3\end{bmatrix}[/tex]

so the vectors do span [tex]P_2[/tex].

The vectors comprising [tex]H[/tex] form a basis for it because they are linearly independent.

Final answer:

To determine if a set of polynomials forms a basis for P2, they need to be linearly independent and span the vector space P2. If the only solution to a homogeneous system of equations is trivial (all coefficients equal zero), they are linearly independent. Whether they span P2 or not depends on if any polynomial of degree 2 or less can be expressed as a linear combination of these polynomials.

Explanation:

In order to determine if the set of polynomials {10x2+4x, 3x-4x2+3, 5x2+x} forms a basis for P2, we need to prove two properties: they should be linearly independent and they should span the vector space P2.

Linear independence means that none of the polynomials in the given set can be expressed as a linear combination of the others. The simplest way to prove this is to set up a system of equations called a homogeneous system, and solve for the coefficients. If the only solution to this system is the trivial solution (where all coefficients equal zero), then they are linearly independent.

Spanning means that any polynomial of degree 2 or less can be expressed as a linear combination of these polynomials.

So, depending on the outcome of checking those two properties, we can determine if the given set of polynomials is a basis for P2 or not.

Learn more about Basis for P2 here:

https://brainly.com/question/32589589

What is the optimal solution for the following problem?

Minimize

P = 3x + 15y

subject to

2x + 4y ? 12

5x + 2y ? 10

and

x ? 0, y ? 0.

(x, y) = (2, 0)

(x, y) = (0, 3)

(x, y) = (0, 0)

(x, y) = (1, 2.5)

(x, y) = (6, 0)

Answers

Answer:Find the slope of the line that passes through the points shown in the table.

The slope of the line that passes through the points in the table is

.

Step-by-step explanation:

Final answer:

By substitifying the given points into the objective function, we can evaluate the minimum P. The point (x, y) = (0, 0) gives the minimum value of P = 0, which is the optimal solution for this problem.

Explanation:

This problem is a classic example of a linear programming problem, a method to achieve the best outcome in a mathematical model whose requirements are represented by linear relationships. In this case, we are asked to minimize P = 3x + 15y subject to the constraints [tex]2x + 4y \leq 12, 5x + 2y \leq 10, and ,x \geq 0, y \geq 0.[/tex] In other words, we are looking for values of x and y that satisfy the constraints and result in the smallest possible value of P.

By substituting our given points into the equation for P we can compare the results. The smallest value for P corresponds to the point (x, y) = (0, 0) with P = 0. This is the optimal solution for this problem because it results in the lowest value for P while still satisfying all the constraints.

Learn more about Linear Programming here:

https://brainly.com/question/34674455

#SPJ5

Two solutions to y'' – 2y' – 35y = 0 are yı = e, Y2 = e -5t a) Find the Wronskian. W = 0 Preview b) Find the solution satisfying the initial conditions y(0) = – 7, y'(0) = 23 y = ( Preview

Answers

Answer:

a.[tex]w(t)=-12e^{2t}[/tex]

b.[tex] y(t)=-\frac{9}{2}e^{7t}-\frac{5}{2}e^{-5t}[/tex]

Step-by-step explanation:

We have a differential equation

y''-2 y'-35 y=0

Auxillary equation

[tex](D^2-2D-35)=0[/tex]

By factorization method we are  finding the solution

[tex]D^2-7D+5D-35=0[/tex]

[tex](D-7)(D+5)=0[/tex]

Substitute each factor equal to zero

D-7=0  and D+5=0

D=7  and D=-5

Therefore ,

General solution is

[tex]y(x)=C_1e^{7t}+C_2e^{-5t}[/tex]

Let [tex]y_1=e^{7t} \;and \;y_2=e^{-5t}[/tex]

We have to find Wronskian

[tex]w(t)=\begin{vmatrix}y_1&y_2\\y'_1&y'_2\end{vmatrix}[/tex]

Substitute values then we get

[tex]w(t)=\begin{vmatrix}e^{7t}&e^{-5t}\\7e^{7t}&-5e^{-5t}\end{vmatrix}[/tex]

[tex]w(t)=-5e^{7t}\cdot e^{-5t}-7e^{7t}\cdot e^{-5t}=-5e^{7t-5t}-7e^[7t-5t}[/tex]

[tex]w(t)=-5e^{2t}-7e^{2t}=-12e^{2t}[/tex]

a.[tex]w(t)=-12e^{2t}[/tex]

We are given that y(0)=-7 and y'(0)=23

Substitute the value in general solution the we get

[tex]y(0)=C_1+C_2[/tex]

[tex]C_1+C_2=-7[/tex]....(equation I)

[tex]y'(t)=7C_1e^{7t}-5C_2e^{-5t}[/tex]

[tex]y'(0)=7C_1-5C_2[/tex]

[tex]7C_1-5C_2=23[/tex]......(equation II)

Equation I is multiply by 5 then we subtract equation II from equation I

Using elimination method we eliminate[tex] C_1[/tex]

Then we get [tex]C_2=-\frac{5}{2}[/tex]

Substitute the value of [tex] C_2 [/tex] in  I equation then we get

[tex] C_1-\frac{5}{2}=-7[/tex]

[tex] C_1=-7+\frac{5}{2}=\frac{-14+5}{2}=-\frac{9}{2}[/tex]

Hence, the general solution is

b.[tex] y(t)=-\frac{9}{2}e^{7t}-\frac{5}{2}e^{-5t}[/tex]

In BPMN diagram the actors are represented by ____________.

Circles

Swimlanes

Rounded rectangles

Dashed arrows

Answers

Answer: Dashed Arrows

Step-by-step explanation:

Connector lines speak to arrangement streams when they interface two items in the equivalent BPMN pool. Items in various BPMN pools can't be associated by grouping stream, however they can synchronize through message stream. A connector line between two items in various pools that speaks to a message stream shows with a dashed line. Moving an article starting with one pool then onto the next likewise breaks the arrangement stream and changes over the association with a message-style line.

Final answer:

In a BPMN diagram, actors are represented by swimlanes, which denote responsibilities within a process and can be assigned to individuals, systems, or organizational units.

Explanation:

In a Business Process Model and Notation (BPMN) diagram, the actors are represented by swimlanes. These swimlanes are horizontal or vertical rectangles and they denote the different responsibilities within a process. Each swimlane is often dedicated to one actor, which can be a person, a system, or an organization unit involved in the process. For example, in a loan application process, there can be swimlanes representing the applicant, the loan officer, and the credit check system.

Learn more about BPMN Diagram here:

https://brainly.com/question/32580440

#SPJ12

Find the decimal form of 2/4

Answers

Answer:

Step-by-step explanation:

.5

Answer is provided in image attached.

Problem Page
A supply company manufactures copy machines. The unit cost C (the cost in dollars to make each copy machine) depends on the number of machines made. If x machines are made, then the unit cost is given by the function C (x) = 0.5x^2-150 + 21,035. How many machines must be made to minimize the unit cost?
Do not round your answer.

Answers

Answer:

1 machine must be made to minimise the unit cost.

Step-by-step explanation:

Step 1: Identify the function

x is the number of machines

C(x) is the function for unit cost

C (x) = 0.5x^2-150 + 21,035

Step 2: Substitute values in x to find the unit cost

C (x) = 0.5x^2-150 + 21,035

The lowest value of x could be 1

To check the lowest cost, substitute x=1 and x=2 in the equation.

When x=1

C (x) = 0.5x^2-150 + 21,035

C (x) = 0.5(1)^2-150 + 21,035

C (x) = 20885.5

When x=2

C (x) = 0.5x^2-150 + 21,035

C (x) = 0.5(2)^2-150 + 21,035

C (x) = 20887

We can see that when the value of x i.e. the number of machines increases, per unit cost increases.

Therefore, 1 machine must be made to minimise the unit cost.

!!

The unit cost is minimized when 150 machines are made.

To find the number of machines that must be made to minimize the unit cost, we need to find the minimum value of the function [tex]\( C(x) = 0.5x^2 - 150x + 21,035 \).[/tex] This can be done by finding the vertex of the quadratic function, as the vertex corresponds to the minimum (or maximum) value of the function.

The vertex of a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] is given by the formula:

[tex]\[ x = \frac{-b}{2a} \][/tex]

Given the function [tex]\( C(x) = 0.5x^2 - 150x + 21,035 \)[/tex], we can see that [tex]\( a = 0.5 \) and \( b = -150 \).[/tex]

[tex]\[ x = \frac{-(-150)}{2 \cdot 0.5} \]\[ x = \frac{150}{1} \]\[ x = 150 \][/tex]

So, the number of machines that must be made to minimize the unit cost is 150.

the letters in the word ARIZONA are arranged randomly. write your answers in decimal form. round to the nearest thousandth as needed

what is the probability that the first letter is A

what is the probability that the first letter is z

what is the probability that the first letter is a vowel

what is the probability that the first letter is H

Answers

Final answer:

The probability of the first letter being 'A' or 'Z' in the word ARIZONA is 0.143, the probability of it being a vowel is 0.429, and for the letter 'H', which is not present in the word, the probability is 0.

Explanation:

The probability that the first letter is 'A' in a random arrangement of the letters in the word ARIZONA is simply the number of 'A's divided by the total number of letters. Since there is one 'A' out of seven letters, the probability is 1/7, which in decimal form is approximately 0.143, rounded to the nearest thousandth.

Similarly, for the letter 'Z', since there's one 'Z' in the word ARIZONA, the probability is also 1/7, which is about 0.143 when rounded to the nearest thousandth.

The probability that the first letter is a vowel (A, I, or O in ARIZONA) involves adding the probabilities of each individual vowel being the first letter. There are three vowels out of seven letters, so the probability is 3/7, which is approximately 0.429, rounded to the nearest thousandth.

Since the letter 'H' is not in the word ARIZONA, the probability that the first letter is 'H' is 0.

14. Let R^2 have inner product defined by ((x1,x2), (y,, y2)) 4x1y1 +9x2y2 A. Determine the norm of (-1,2) in this space B. Determine the norm of (3,2) in this space.

Answers

The norm of a vector [tex]\vec x[/tex] is equal to the square root of the inner product of [tex]\vec x[/tex] with itself.

a. [tex]\|(-1,2)\|=\sqrt{\langle(-1,2),(-1,2)\rangle}=\sqrt{4(-1)^2+9(2)^2}=\sqrt{40}=2\sqrt{10}[/tex]

b. [tex]\|(3,2)\|=\sqrt{\langle(3,2),(3,2)\rangle}=\sqrt{4(3)^2+9(2)^2}=\sqrt{72}=6\sqrt2[/tex]

A professor has noticed that even though attendance is not a component of the grade for his class, students who attend regularly obtain better grades. In fact, 35% of those who attend regularly receive A's in the class, while only 5% of those who do not attend regularly receive A's. About 65% of students attend class regularly. Given that a randomly chosen student receives an A grade, what is the probability that he or she attended class regularly? (Round the answer to four decimal places.)

Answers

Answer:  Probability that she attended class regularly given that she receives A grade is 0.9286.

Step-by-step explanation:

Since we have given that

Probability of those who attend regularly receive A's in the class = 35%

Probability of those who do not regularly receive A's in the class = 5%

Probability of students who attend class regularly = 65%

We need to find the probability that she attended class regularly given that she receives an A grade.

Let E be the event of students who attend regularly.

P(E) = 0.65

And P(E') = 1-0.65 = 0.35

Let A be the event who attend receive A in the class.

So, P(A|E) = 0.35

P(A|E') = 0.05

So, According to question, we have given that

[tex]P(E|A)=\dfrac{P(E)P(A|E)}{P(E)P(A|E)+P(E')P(A|E')}\\\\P(E|A)=\dfrac{0.65\times 0.35}{0.65\times 0.35+0.35\times 0.05}\\\\P(E|A)=\dfrac{0.2275}{0.2275+0.0175}=\dfrac{0.2275}{0.245}=0.9286[/tex]

Hence, Probability that she attended class regularly given that she receives A grade is 0.9286.

Final answer:

The probability that a student attended class regularly given they received an A is approximately 0.9286, or 92.86% when rounded to four decimal places, calculated using Bayes' theorem.

Explanation:

To solve the problem, we need to calculate the conditional probability that a student attended class regularly given they received an A grade. To do this, we'll use Bayes' theorem, which allows us to reverse conditional probabilities.

Let's denote Attendance as the event that a student attends class regularly and A as the event of a student receiving an A grade. According to the question:

P(Attendance) = 0.65 (65% of students attend class regularly)P(A|Attendance) = 0.35 (35% of regular attendants receive A's)P(A|Not Attendance) = 0.05 (5% of irregular attendants receive A's)

The overall probability of receiving an A, P(A), is computed as follows:

P(A) = P(A|Attendance) × P(Attendance) + P(A|Not Attendance) × P(Not Attendance)
    = 0.35 × 0.65 + 0.05 × (1 - 0.65)
    = 0.2275 + 0.0175
    = 0.2450

Now we use Bayes' theorem to find P(Attendance|A), the probability of attendance given an A:

P(Attendance|A) = (P(A|Attendance) × P(Attendance)) / P(A)
       = (0.35 × 0.65) / 0.245
       = 0.2275 / 0.245
       ≈ 0.9286

Therefore, the probability that a student attended class regularly given that they received an A grade is approximately 0.9286, or 92.86% when rounded to four decimal places.

Let S u, v be a linearly independent set. Prove that the {u + v,u - v} is linearly independent

Answers

Answer with explanation:It is given that {u,v} be a linearly independent set of a set S.

This means that there exist constant a,b such that if:

                                au+bv=0

                             then a=b=0

Now we are asked to prove that:

{u+v,u-v} is a linearly independent set.

Let us consider there exists constant c,d such that:

                            c(u+v)+d(u-v)=0

To show:   c=d=0

The expression could also be written as:

 cu+cv+du-dv=0

( Since, using the distributive property)

Now on combining the like terms that is the terms with same vectors.

cu+du+cv-dv=0

i.e.

(c+d)u+(c-d)v=0

Since, we are given that u and v are linearly independent vectors this means that:

c+d=0------------(1)

and c-d=0 i.e c=d-----------(2)

and from equation (1) using equation (2) we have:

2c=0

i.e. c=0

and similarly by equation (2) we have:

         d=0

Hence, we are proved with the result.

We get that the vectors {u+v,u-v} is linearly independent.

solve the system of equation by guess sidle method

8x1 + x2 + x3 = 8

2x1 + 4x2 + x3 = 4

x1 + 3x2 + 5x3 = 5

Answers

Answer: The solution is,

[tex]x_1\approx 0.876[/tex]

[tex]x_2\approx 0.419[/tex]

[tex]x_3\approx 0.574[/tex]

Step-by-step explanation:

Given equations are,

[tex]8x_1 + x_2 + x_3 = 8[/tex]

[tex]2x_1 + 4x_2 + x_3 = 4[/tex]

[tex]x_1 + 3x_2 + 5x_3 = 5[/tex],

From the above equations,

[tex]x_1=\frac{1}{8}(8-x_2-x_3)[/tex]

[tex]x_2=\frac{1}{4}(4-2x_1-x_3)[/tex]

[tex]x_3=\frac{1}{5}(5-x_1-3x_2)[/tex]

First approximation,

[tex]x_1(1)=\frac{1}{8}(8-(0)-(0))=1[/tex]

[tex]x_2(1)=\frac{1}{4}(4-2(1)-(0))=0.5[/tex]

[tex]x_3(1)=\frac{1}{5}(5-1-3(0.5))=0.5[/tex]

Second approximation,

[tex]x_1(2)=\frac{1}{8}(8-(0.5)-(0.5))=0.875[/tex]

[tex]x_2(2)=\frac{1}{4}(4-2(0.875)-(0.5))=0.4375[/tex]

[tex]x_3(2)=\frac{1}{5}((0.875)-3(0.4375))=0.5625[/tex]

Third approximation,

[tex]x_1(3)=\frac{1}{8}(8-(0.4375)-(0.5625))=0.875[/tex]

[tex]x_2(3)=\frac{1}{4}(4-2(0.875)-(0.5625))=0.421875[/tex]

[tex]x_3(3)=\frac{1}{5}(5-(0.875)-3(0.421875))=0.571875[/tex]

Fourth approximation,

[tex]x_1(4)=\frac{1}{8}(8-(0.421875)-(0.571875))=0.875781[/tex]

[tex]x_2(4)=\frac{1}{4}(4-2(0.875781)-(0.571875))=0.419141[/tex]

[tex]x_3(4)=\frac{1}{5}(5-(0.875781)-3(0.419141))=0.573359[/tex]

Fifth approximation,

[tex]x_1(5)=\frac{1}{8}(8-(0.419141)-(0.573359))=0.875938[/tex]

[tex]x_2(5)=\frac{1}{4}(4-2(0.875938)-(0.573359))=0.418691[/tex]

[tex]x_3(5)=\frac{1}{5}(5-(0.875938)-3(0.418691))=0.573598[/tex]

Hence, by the Gauss Seidel method the solution of the given system is,

[tex]x_1\approx 0.876[/tex]

[tex]x_2\approx 0.419[/tex]

[tex]x_3\approx 0.574[/tex]

You can afford monthly deposits of $270 into an account that pays 4.8% compounded monthly. How long will it be until you have $8,200 to buy a​ boat?

Answers

Answer:

  29 months

Step-by-step explanation:

My TVM solver says that balance will be reached after about 29 monthly payments.

Final answer:

This question pertains to compound interest. You are depositing $270 monthly into an account with a monthly compound interest rate of 4.8%. By using the compound interest formula with logarithmic adjustments for monthly deposits, you can determine how long it will take you to save $8200.

Explanation:

The subject of the question is how long it would take to save up $8,200 for a boat by making $270 monthly deposits into an account that has a monthly compound interest rate of 4.8%. This is a question of compound interest. The formula for compound interest is A = P (1 + r/n)^(nt), where A is the total amount of money accumulated after n years, including interest, P is the principal amount (the initial amount of money), r is the annual interest rate (in decimal form), n is the number of times that interest is compounded per year, and t is the time the money is invested for, in years.

In this case, we require to find 't' when we have A = $8200 , P = $270 (deposited every month), r = 4.8% (in decimal form, it becomes 0.048) and n = 12 (compounded monthly). However, as $270 is getting compounded every month, a slightly adjusted formula to calculate the number of months, t is required which is t = [log(A/P)] /[n * log(1 + r/n)]. By substituting A = $8200 and P = $270 and other values to this formula, we can find the time needed. This would require logarithmic math which is done usually in high school math courses or higher.

Learn more about Compound interest here:

https://brainly.com/question/14295570

#SPJ3

To fill out a function's ___ ___, you will need to use test numbers before and after each of the function's ___ and asymtopes
A). Sign chart; Values
B). rational equation; values
C). sign chart; zeroes
D). rational equation; zeroes

Answers

Answer:

  C).  sign chart; zeroes

Step-by-step explanation:

A function potentially changes sign at each of its zeros and vertical asymptotes. So, to fill out a sign chart, you need to determine what the sign is on either side of each of these points. You can do that using test numbers, or you can do it by understanding the nature of the zero or asymptote.

Examples:

f1(x) = (x -3) . . . . changes sign at the zero x=3. Is positive for x > 3, negative for x < 3.

f2(x) = (x -4)^2 . . . . does not change sign at the zero x=4. It is positive for any x ≠ 4. This will be true for any even-degree binomial factor.

f3(x) = 1/(x+2) . . . . has a vertical asymptote at x=-2. It changes sign there because the denominator changes sign there.

f4(x) = 1/(x+3)^2 . . . . has a vertical asymptote at x=-3. It does not change sign there because the denominator is of even degree and does not change sign there.

Which represents the inverse of the function f(x) = 4x?

Answers

For this case we must find the reversal of the following function:[tex]f (x) = 4x[/tex]

For it:

We change[tex]f (x)[/tex] by y:[tex]y = 4x[/tex]

We exchange the variables:

[tex]x = 4y[/tex]

We cleared "y":

[tex]y = \frac {x} {4}[/tex]

We change y for [tex]f^{-1}(x)[/tex]:

[tex]f ^ {- 1} (x) = \frac {x} {4}[/tex]

Answer:

The inverse of the given function is:[tex]f ^ {-1} (x) = \frac {x} {4}[/tex]

Find all the zeros of the polynomial function f(x) = x + 2x² - 9x - 18 a) (-3) b) (-3. -2,3) c) (-2) d) (-3.2.3) e) none

Answers

Answer:x=-3,-2,3

Step-by-step explanation:

Given equation of polynomial is

[tex]x^{3}+2x^2-9x-18=0[/tex]

taking [tex]x^3[/tex] and -9x together and remaining together we get

[tex]x^3-9x+2x^2-18=0[/tex]

[tex]x\left ( x^2-9\right )+2\left ( x^2-9\right )[/tex]

[tex]x\left ( \left ( x+3\right )\left ( x-3\right )\right )+2\left ( \left ( x+3\right )\left ( x-3\right )\right )[/tex]

[tex]taking \left ( x+3\right )\left ( x-3\right ) as common[/tex]

[tex]\left ( x+2\right )\left ( x+3\right )\left ( x-3\right )=0[/tex]

therefore

x=-3,-2,3

Suppose that administrators of a large school district wish to estimate the proportion of children in the district enrolling in kindergarten who attended preschool. They took a simple random sample of children in the district who are enrolling in kindergarten. Out of 75 children sampled, 51 had attended preschool. Construct a large-sample 99% z ‑confidence interval for p, the proportion of all children enrolled in kindergarten who attended preschool. Give the limits of the confidence interval as decimals, precise to at least three decimal places.

Answers

Answer: (0.541, 0.819)

Step-by-step explanation:

The confidence interval for proportion is given by :-

[tex]p\pm z_{\alpha/2}\sqrt{\dfrac{p(1-p)}{n}}[/tex]

Given : The proportion of children attended the school = [tex]p=\dfrac{51}{75}=0.68[/tex]

Significance level : [tex]\alpha=1-0.99=0.01[/tex]

Critical value : [tex]z_{\alpha/2}=z_{0.005}=\pm2.576[/tex]

Now, the 99% z ‑confidence interval for proportion will be :-

[tex]0.68\pm (2.576)\sqrt{\dfrac{0.68(1-0.68)}{75}}\approx0.68\pm 0.139\\\\=(0.68-0.139,0.68+0.139)=(0.541,\ 0.819)[/tex]

Hence, the 99% z ‑confidence interval for p, the proportion of all children enrolled in kindergarten who attended preschool = (0.541, 0.819)

(a) Find parametric equations for the line through (3, 1, 8) that is perpendicular to the plane x − y + 4z = 7. (Use the parameter t.) (x(t), y(t), z(t)) = (b) In what points does this line intersect the coordinate planes?
xy-plane (x, y, z) =
yz-plane (x, y, z) =
xz-plane (x, y, z) =

Answers

Answer:

• (x, y, z) = (3+t, 1-t, 8+4t) . . . equation of the line

• xy-intercept (1, 3, 0)

• yz-intercept (0, 4, -4)

• xz-intercept (4, 0, 12)

Step-by-step explanation:

The line's direction vector is given by the coordinates of the plane: (1, -1, 4). So, the parametric equations can be ...

(x, y, z) = (3, 1, 8) + t(1, -1, 4) . . . . . parametric equation for the line

or

(x, y, z) = (3+t, 1-t, 8+4t)

__

The various intercepts can be found by setting the respective variables to zero:

xy-plane: z=0, so t=-2. (x, y, z) = (1, 3, 0)

yz-plane: x=0, so t=-3. (x, y, z) = (0, 4, -4)

xz-plane: y=0, so t=1. (x, y, z) = (4, 0, 12)

If 50 is 80% , then how many percent is 38 ?

Answers

Answer: 1.64

Step-by-step explanation:

80% = 50

20% = 12.5

100% = 62.5

38% = 1.64

Write the sum of five consecutive even numbers if the middle one is 4n The sum is (Simplify your answer)

Answers

Answer: The sum of five consecutive even numbers for this sequence is 20n.

Step-by-step explanation:

Since we have given that

Number of consecutive even numbers = 5

Middle value = 4n

Since there are 5 consecutive even numbers:

4n-4,4n-2,4n,4n+2,4n+4

So, Sum of five consecutive even numbers would be

[tex]4n-4+4n-2+4n+4n+2+4n+4\\\\=20n[/tex]

Hence, the sum of five consecutive even numbers for this sequence is 20n.

The area of a rectangle is 1 square inches. Express the perimeter P(w) as a function of the width w.

Answers

Answer:

[tex]P(w)=2w+\frac{2}{w}[/tex]

Step-by-step explanation:

We are given the area of a rectangle is 1 inch square.

You can find the area of a rectangle if you know the dimensions. Let's pretend the dimensions are w and l.

So we given w*l=1.

Now the perimeter of a rectangle with dimensions l and w is 2w+2l.

We want to express P=2w+2l in terms of w only.

We are given that w*l=1 so l=1/w (just divided both sides of w*l=1 by w).

So let's plug it in for l (the 1/w thing).

[tex]P=2w+2(\frac{1}{w})[/tex]

So [tex]P(w)=2w+\frac{2}{w}[/tex].

Answer:

P (w) = [tex]\frac{2}{w} +2w[/tex]

Step-by-step explanation:

We are given that the area of a rectangle is 1 square inches and we are to express the perimeter [tex]P(w)[/tex] as a function of the width [tex]w[/tex].

We know that:

Area of a rectangle = [tex]l \times w[/tex]

Substituting the given value of area in the above formula:

[tex]1=l \times w[/tex]

[tex]l=\frac{1}{w}[/tex]

Perimeter of a rectangle = [tex]2(l +w)[/tex]

Substituting the values in the formula to get:

Perimeter = [tex]2(\frac{1}{w}+w) =  \frac{2}{w} +2w[/tex]

A diver starts out at 480 feet below the surface (or −480 feet). She then swims upward 248 feet. Use a signed number to represent the diver's current depth.

Answers

Final answer:

The diver's current depth can be represented using signed numbers by subtracting the upward distance swum from the initial depth.

Explanation:

To represent the diver's current depth, we need to subtract the distance the diver has swum upward from the initial depth. The diver starts at -480 feet below the surface and swims upward 248 feet. Using signed numbers, we can represent the diver's current depth as -480 + 248 = -232 feet below the surface.

Learn more about Representing diver's current depth here:

https://brainly.com/question/29151160

#SPJ3

1. Tom thought of a natural number, multiplied all its digits and after that he multiplied the result by the initial number. Is it possible to get 1716 as a result?

2. What is the largest prime factor of the factorial 49! ?

3. The GCD(a, b) = 18, LCM(a, b) = 108. If a=36, findb.

Answers

Answer:

1. No

2. 7

3. b=54

Step-by-step explanation:

1. We can answer this by assuming a number.

Let our number be 23

Multiplying its digits = 6

Multiplying the result with initial number = 6 * 23 = 138

So it is not possible to get 1716 as a result by thinking of a natural number and applying the operation mentioned in the question.

2. What is the largest prime factor of the factorial 49! ?

First of all we have to define prime factors:

Prime factors are the prime numbers that can be multiplied together to equal the original number.

The factors of 49 are: 1, 7, 49

7 is the largest prime factor of 49

3. The GCD(a, b) = 18, LCM(a, b) = 108. If a=36, findb.

We will use the relationship:

[tex]GCD * LCM = a*b\\18*108=36b\\1944=36b\\b= \frac{1944}{36} \\b=54[/tex]

..

Other Questions
21. A courier company has motorbikes which can travel 300 km starting with a full tank. Two couriers, Anna and Brian, set off from the depot together to deliver a letter to Connor's house. The only refuelling is when they stop for Anna to transfer some fuel from her tank to Brian's tank. She then returns to the depot while Brian keeps going, delivers the letter and returns to the depot. What is the greatest distance that Connor's house could be from the depot? (A) 180km (B) 200 km (C) 225 km (D) 250 km (E) 300 km 9. Which of the following do you need to know to determine the surface area and volume of a sphere? A. The radius of the sphere B. The eccentricity of the sphere C. The circumference of a great circle on the sphere D. The radius and eccentricity of the sphere Kevin wants to buy an area rug for his living room. He would like the area rug to be no smaller that 48 square feet and no bigger than 80 square feet. If the length is 2 feet more than the width, what are the range of possible values for the width? Let X be a random variable with mean X = 25 and X = 6 and let Y be a random variable with mean Y = 30 and Y = 4. It is known that X and Y are independent random variables. Suppose the random variables X and Y are added together to create new random variable W (i.e., W = X + Y). What is the standard deviation of W? What polynomial is equivalent to (x-4)(3x^2-x+3)? How easy are you swayed by the action of others? A circular loop of flexible iron wire has an initial circumference of 167 cm, but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 0.500 T, which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop.A) Find the magnitude of the emf E induced in the loop after exactly 8.00 s has passed since the circumference of the loop started to decrease.B) Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. (Clockwise or Counterclockwise?) how would you use a grignard reaction of an aldehyde or ketone to synthesize 2-pentanol? draw the grignard reagent and the aldehyde or ketone you would use below. Diversification a. increases the likely fluctuation in a portfolios return. Thus, the likely standard deviation of the portfolios return is higher. b. reduces the likely fluctuation in a portfolios return. Thus, the likely standard deviation of the portfolios return is higher. c. reduces the likely fluctuation in a portfolios return. Thus, the likely standard deviation of the portfolios return is lower. d. increases the likely fluctuation in a portfolios return. Thus, the likely standard deviation of the portfolios return is lower. What kinds of daily activitycan contribute pollution to Surface waterrunoff or to the ground water sources deseneinfiltration and recharge ? Describe twoactivities and tell how these would contributepollution to water resources so Why did the soviet union decide to send missiles to cuba Which musical style was a twentieth-century trend, particularly current in the period between the two World Wars, in which composers sought to return to aesthetic precepts associated with the broadly defined concept of "classicism", namely order, balance, clarity, economy, and emotional restraint? one way parents and guardians can influence technology use is to model proper use for their children. what outcome will you expect if this guideline was followed WILL MARK AS BRAINLIEST!!!Meningitis and food poisoning are two examples of illness caused by which type of pathogen? A. Parasite B. Bacteria C. Virus D. Fungi . Marble is a rock that is composed primarily of the carbonate minerals calcite (CaCO3) and dolomite (Ca,Mg(CO3)2). In Exercise 2, you saw the way carbonate minerals react to a drop of acetic acid. Based on this observation, why do you think people who care for monuments and sculptures made of marble are concerned about acid rain? Programming: Write a recursive function to_number that forms the integer sum of all digit characters in a string. For example, the result of to_number("3ac4") would be 7. Hint: If next is a digit character ('0' through '9'), function is_digit(next) in header will return true. Chymotrypsina. is secreted by the pancreatic acinar cellsb. digests proteins into peptidesc. works in the small intestined. all of the above What equation is the inverse of y = 7x2 10? Simplify 8(x + 6) - 10. NEED YOUR HELP PLEASE!! 30 points Read the excerpt from chapter 10 of Animal Farm.Which theme is revealed by Orwells use of parody in this passage?A) Nave citizens enable social division.B) Ideals can become corrupted in practice.C) The abuse of power is linked to the abuse of language.D) There is equality among people in power.