12. The Action of Phospholipases The venom of the Eastern diamondback rattler and the Indian cobra contains phospholipase A2, which catalyzes the hydrolysis of fatty acids at the C-2 position of glycerophospholipids. The phospholipid breakdown product of this reaction is lysolecithin (lecithin is phosphatidylcholine). At high concentrations, this and other lysophospholipids act as detergents, dissolving the membranes of erythrocytes and lysing the cells. Extensive hemolysis may be life- threatening. (a) All detergents are amphipathic. What are the hydrophilic and hydrophobic portions of lysolecithin

Answers

Answer 1

Answer:

Explanation:

Compounds derived from Phosphatidyl choline are referred to as Lysolecithins.  These compounds are  amphiphatic in nature and have both hydrophilic and hydrophobic regions.

Choline, glycerol, and phosphate represent the hydrophyilic portion of lysolecithins,while the fatty acid on C1 is hydrophobic in nature.

Glycerol, choline and phosphate act as a polar tail whereas the fatty acid acts as a long polar head which represents an amphipathic molecule like detergents.


Related Questions

3. Calculate the theoretical value for the number of moles of CO2 that should have been produced in each balloon assuming that 1.45 g of NaHCO3 is present in an antacid tablet. Use stoichiometry (a mole ratio conversion must be present) to find your answers (there should be three: one answer for each balloon). (6 pts)

Answers

Answer:

the theoretical value for the number of moles of [tex]CO_{2(aq)}[/tex]   is 0.0173 moles

Explanation:

The balanced chemical equation for the reaction is represented by:

[tex]H_3C_6H_5O_{7(aq)} + 3NaHCO_{3(aq)} ------>3CO_{2(g)}+3H_2O+Na_3C_6H_5O_{7(aq)}[/tex]

From above equation; we would realize that 3 moles of [tex]NaHCO_{3(aq)}[/tex] reacts with [tex]H_3C_6H_5O_{7(aq)}[/tex] to produce 3 moles of [tex]CO_{2(aq)}[/tex]

However ; the molar mass of [tex]NaHCO_{3(aq)}[/tex]  = 84 g/mol

mass given for [tex]NaHCO_{3(aq)}[/tex]  = 1.45 g

therefore , we can calculate the number of moles of [tex]NaHCO_{3(aq)}[/tex]  by using the expression :

number of moles of [tex]NaHCO_{3(aq)}[/tex]  = [tex]\frac{mass \ given}{ molar \ mass}[/tex]

number of moles of [tex]NaHCO_{3(aq)}[/tex]  = [tex]\frac{1.45}{84}[/tex]

number of moles of [tex]NaHCO_{3(aq)}[/tex]  = 0.0173 mole

Since the ratio of [tex]NaHCO_{3(aq)}[/tex] to [tex]CO_{2(aq)}[/tex] is 1:1; that implies that number of moles of [tex]NaHCO_{3(aq)}[/tex] is equal to number of moles of  [tex]CO_{2(aq)}[/tex] produced.

number of moles of  [tex]CO_{2(aq)}[/tex] = [tex]\frac{mass \ given}{ molar \ mass}[/tex]

0.0173 = [tex]\frac{mass \ given}{ 44 \ g/mol}[/tex]

mass of  [tex]CO_{2(aq)}[/tex]  = 0.0173 × 44

mass of  [tex]CO_{2(aq)}[/tex]  = 0.7612 g

Thus; the theoretical value for the number of moles of [tex]CO_{2(aq)}[/tex]   is 0.0173 moles

Propose a mechanism for the formation of the monobrominated product. Draw all missing reactants and/or products in the appropriate boxes by placing atoms on the canvas and connecting them with bonds. Add charges where needed. Electron flow arrows should start on the electron(s) of an

Answers

Answer:

The mechanism is SN2

Explanation:

See mechanism of monobromination of alkane attached

Answer:

Explanation:

find the solution below

if you have 3.0 moles of argon gas at STP, how much volume will the argon take up?

Answers

if you have 3.0 moles of argon gas at STP u would take up 2.5 volume

Conceptual Checkpoint 18.13 When 1,3-dinitrobenzene is treated with nitric acid and sulfuric acid at elevated temperature, the product is 1,3,5-trinitrobenzene. Draw the sigma complex for each possible pathway to compare the relative stability of each sigma complex. For the mechanism, draw the curved arrows as needed. Include lone pairs and charges in your answer. Do not draw out any hydrogen explicitly in your products. Do not use abbreviations such as Me or Ph.

Answers

Using sulfuric acid in the nitration of benzene generates a more reactive nitronium ion, which then reacts with benzene. The detailed mechanisms of nitration and sulfonation involve sigma complexes with resonance stabilization. An energy diagram for nitration shows intermediates and activation energy.

The importance of using sulfuric acid in the nitration of benzene by nitric acid is to activate the HNO₃, creating a more reactive electrophile, the nitronium ion (NO₂+). This ion then reacts with benzene to form nitrobenzene. In the mechanism of the sulfonation of benzene, sulfur trioxide (SO₃) acts as the electrophile, which is generated from sulfuric acid. The detailed mechanisms for both reactions involve the formation of a sigma complex with resonance forms and the restoration of aromaticity through deprotonation.

For the nitration of benzene, an energy diagram shows the activation energy and intermediates formed. The sigma complex for 1,3-dinitrobenzene undergoing further nitration to form 1,3,5-trinitrobenzene illustrates how the meta position stabilizes the complex by avoiding the creation of high-energy intermediates with adjacent positive charges, as seen in ortho and para substitution.

The equations representing the nitration and sulfonation of benzene are as follows:

Nitration: C₆H₆ + HNO₃ -> C₆H₅NO₂ + H₂OSulfonation: C₆H₆ + SO₃/H₂SO₄ -> C₆H₅SO₃H + H₂O

What will be the pH of 1.0 mol dm-3 of NH4OH, which is 1% dissociated

Answers

reaction is NH4OH <-> NH4+ OH- (note this is reversible)

Draw up an ICE table

Let x be equilibrium conc of OH- assume init conc of OH is 0M and init conc of NH4+ is 0M also. Init conc of NH4OH is 0.1M so equilibrium conc will be 0.1-x.

%dissociation = x/0.1-x * 100%

1 = 100x/0.1-x

0.1-x = 100x

101x = 0.1

x = 0.0009901

pOH = -log(0.0009901) = 3.00

The pH of this solution is 12.

We can solve this question knowing that the ammonium hydroxide, NH₄OH, dissociates in water as follows:

NH₄OH(aq) ⇄ NH₄⁺(aq) + OH⁻(aq)

Based on the reaction, 1 mole of NH₄OH produces 1 mole of OH⁻

With this molarity and the 1% dissociated we can find the molarity of OH⁻. With molarity of OH⁻ we can find pOH (pOH = -log[OH⁻]) and pH (pH = 14-pOH) as follows:

Molarity OH⁻:

A solution 1.0mol dm⁻³ = 1M of NH₄OH produce 1% of OH⁻ ions because only 1% is dissociate, that is:

[tex]1M NH_4OH*(\frac{1MOH^-}{100MNH_4OH}) = 0.01M OH^-[/tex]

Now, we can find pOH as follows:

pOH:

pOH = -log [OH⁻] = 2

And pH:

pH:

pH = 14 - pOH

pH = 12

You can learn more about pH and pOH in:

https://brainly.com/question/17144456

7. If you fill a balloon with 5.2 moles of gas and it creates a balloon with a volume of 23.5 liters, how many moles are in a balloon at the same temperature and pressure that has a volume of 14.9 liters

Answers

Final answer:

To solve this problem, we can use the ideal gas law equation PV=nRT. We can find the number of moles in the first balloon using the given information, and then use that value to find the volume of the second balloon.

Explanation:

To solve this problem, we can use the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

First, we can use the given information to find the number of moles in the first balloon. Rearranging the ideal gas law equation, we have n = PV / RT. Plugging in the values, we get n = (5.2 mol)(23.5 L) / (0.0821 atm L/mol K)(T in Kelvin).

Once we have the number of moles for the first balloon, we can use this value to find the volume of the second balloon. Rearranging the ideal gas law equation, we have V = nRT / P. Plugging in the values and solving for V, we get V = (5.2 mol)(0.0821 atm L/mol K)(T in Kelvin) / (P)

Heat capacity is the amount of heat needed to raise the temperature of a substance 1 ∘ ∘ C or 1 K. Open Odyssey. In the Molecular Explorer, choose Measuring Specific Heat (16). Follow the directions for water only. What variable is plotted on the y - y- axis? total energy What variable is plotted on the x - x- axis? temperature What is the molar heat capacity? molar heat capacity = J ⋅ K − 1 ⋅ mol − 1 J⋅K−1 ⋅mol−1 What is the specific heat capacity?

Answers

Answer:J.K^-1. kg^-1

Explanation:

Heat capacity= H

Mass=m

Specific heat capacity= c

H=mc

J.K^-1 = c ×kg

c= J.K^-1/kg

=J.K^-1.kg^-1

A 25.888 g sample of aqueous waste leaving a fertilizer manufacturer contains ammonia. The sample is diluted with 73.464 g of water. A 10.762 g aliquot of this solution is then titrated with 0.1039 M HCl . It required 31.89 mL of the HCl solution to reach the methyl red endpoint. Calculate the weight percent NH3 in the aqueous waste.

Answers

Answer:

Weight % of NH₃ in the aqueous waste  = 2.001 %

Explanation:

The chemical equation for the reaction

[tex]\\\\NH_3} + HCl -----> NH_4Cl[/tex]

Moles of HCl = Molarity × Volume

= 0.1039 × 31.89 mL × [tex]\frac{1 \ L}{1000 \ mL}[/tex]

= 0.0033 mole

Total mass of original sample = 25.888 g + 73.464 g

= 99.352 g

Total HCl taken for assay = [tex]\frac{10.762 \ g}{99.352 \ g}[/tex]

= 0.1083 g

Moles of NH₃ = [tex]\frac{0.0033 \ mol}{0.1083}[/tex]

= 0.03047 moles

Mass of NH₃ = number of  moles × molar mass

Mass of NH₃ = 0.03047 moles × 17 g

Mass of NH₃  = 0.51799

Weight % of NH₃  = [tex]\frac{0.51799 \ g}{25.888 \ g} * 100%[/tex]%

Weight % of NH₃ in the aqueous waste  = 2.001 %

A sample of NaOH (sodium hydroxide) contains a small amount of Na2CO3 (sodium carbonate). For titration to the phenolphthalein endpoint, 0.200 g of this sample requires 23.98 mL of 0.100 M HCl. An additional 0.700 mL of 0.100 M HCl is required to reach the methyl orange endpoint. What is the percentage of Na2CO3 by mass in the sample?

Answers

Answer:

3.71%

Explanation:

The phenolphthalein endpoint refers to the reactions:

OH⁻ + H⁺ → H₂O

CO₃⁻² + H⁺ → HCO₃⁻

While the methyl orange endpoint to:

HCO₃⁻ + H⁺ → H₂CO₃

So the additional volume required for the second endpoint tells us the amount of HCO₃⁻ species, which in turn is the total amount of Na₂CO₃ in the sample:

0.700 mL * 0.100 M * [tex]\frac{1mmolHCO_{3}^{-}}{1mmolHCl}[/tex] = 0.07 mmol HCO₃⁻

Now we calculate the mass of Na₂CO₃, using its molecular weight:

0.07 mmol HCO₃⁻ = 0.07 mmol Na₂CO₃

0.07 mmol Na₂CO₃ * 106 mg/mmol = 7.42 mg Na₂CO₃

No calculations using the volume of the first equivalence point are required because the problem already tells us the mass of the sample is 0.200 g.

0.200 g ⇒ 0.200 * 1000 = 200 mg

%Na₂CO₃ = 7.42 mg/200 mg * 100 = 3.71%

Addition of AgNO3 to aqueous solutions of the complex results in a cloudy white precipitate, presumably AgCl. You dissolve 0.1000 g of the complex in H2O and perform a precipitation titration with 0.0500 M AgNO3 as the titrant. Using an electrode that is sensitive to [Ag ], you reach the endpoint after 9.00 mL of titrant is added. How many grams of chloride ion were present in the 0.1000-g sample

Answers

Answer:

0.016 grams of chloride ion were present in the 0.1000 grams of sample.

Explanation:

According to question, 9.00 mL of titrant was added to solution with 0.1000 grams of complex to reach the end point.

Molarity of the silver nitrate solution = 0.0500 M

Volume of the silver nitrate solution = V = 9.00 mL = 0.009 L

1 mL = 1000 L

Moles of silver nitrate = n

[tex]Molarity=\frac{Moles}{Volume (L)}[/tex]

[tex]0.0500 M=\frac{n}{0.009 L}[/tex]

n = 0.00045 mol

[tex]Cl^-+AgNO_3\rightarrow AgCl+NO_3^{-}[/tex]

According to 1 mole of silver nitrate reacts with 1 mol of chloride ion, then 0.00045 moles of silver nitrate will :

[tex]\frac{1}{1}\times 0.00045 mol=0.00045 mol[/tex] of chloride ions

Mass of chloride ions :

0.00045 mol × 35.5 g/mol = 0.016 g

0.016 grams of chloride ion were present in the 0.1000 grams of sample.

Problem 19.24a Using the reagents below, list in order (by letter, no period) those necessary to convert the starting material into the given product: Note: More than 1 mole of the starting material may be used. Not all spaces provided may be needed. Type "na" in any space where you have no reagent. a. heat, -CO2 b. NaOEt c. (CH3CH2)2CuLi d. CH2Cl2, PCC e. C3H7C(O)CH(C2H5)C(O)C2H5 f. CH3CH2Li g. CH3C(O)Cl, AlCl3 h. NBS, ROOR i. H2NC(O)NH2 j. HN(CH3)2 k. OH-, H2O, heat then H3O l. H3O

Answers

Answer:

Step 1: The answer is option (b) NaOEt

Step 2: The answer is option (k) OH-, H2O, heat then H3O

Step 3: The answer is option (a) heat, -CO2

Step 4: na (no reagent)

Explanation:

See the attached file for the explanation.

The human body can get energy by metabolizing proteins, carbohydrates or fatty acids, depending on the circumstances. Roughly speaking, the energy it gets comes mostly from allowing all the carbon atoms in the food molecules to become oxidized to carbon dioxide by reaction with oxygen from the atmosphere. Hence the energy content of food is roughly proportional to the carbon content. Let's consider stearic acid , a fatty acid from which fats are made, and fructose , one of the simplest carbohydrates. Using the idea above about energy content, calculate the ratio of the energy the body gets metabolizing each gram of stearic acid to the energy the body gets metabolizing each gram of fructose. Round your answer to the correct number of significant digits.

Answers

Final answer:

The ratio of energy obtained from metabolizing stearic acid to fructose is 3:1.

Explanation:

To calculate the ratio of the energy the body gets metabolizing stearic acid to the energy the body gets metabolizing fructose, we need to compare their carbon content. The molecular formula of stearic acid is C18H36O2, which means it has 18 carbon atoms. The molecular formula of fructose is C6H12O6, which means it has 6 carbon atoms. Since the energy content of food is roughly proportional to the carbon content, we can calculate the ratio by dividing the number of carbon atoms in stearic acid (18) by the number of carbon atoms in fructose (6). This gives us a ratio of 3:1.

Learn more about energy content of food here:

https://brainly.com/question/32218552

#SPJ3

The energy ratio of metabolizing one gram of stearic acid (a fatty acid) to one gram of fructose (a carbohydrate) is 2.25, with stearic acid providing 9 kcal/g and fructose providing 4 kcal/g of energy.

The question asks to calculate the ratio of the energy the body gets metabolizing each gram of stearic acid to the energy the body gets metabolizing each gram of fructose. Stearic acid is a fatty acid, and fructose is a simple carbohydrate. According to the data provided, each gram of carbohydrates yields approximately 4 kcal of energy, while each gram of fat yields about 9 kcal. Therefore, the ratio of energy from fats to carbohydrates is 9 kcal/g to 4 kcal/g.

To calculate the ratio of energy from stearic acid to fructose:

Identify the energy values: 9 kcal/g for stearic acid and 4 kcal/g for fructose.

Divide the energy value of stearic acid by the energy value of fructose: 9 kcal/g \/ 4 kcal/g = 2.25.

This means that metabolizing one gram of stearic acid yields 2.25 times the energy compared to metabolizing one gram of fructose.

Which reaction is an example of heterogeneous catalysis?

Answers

Answer:

Explanation:

Industrial examples

Process Reactants, Product(s)

Ammonia synthesis (Haber–Bosch process) N2 + H2, NH3

Nitric acid synthesis (Ostwald process) NH3 + O2, HNO3

Hydrogen production by Steam reforming CH4 + H2O, H2 + CO2

Ethylene oxide synthesis C2H4 + O2, C2H4O

Answer:

The answer is A - Ethene gas reacts with hydrogen gas by using a nickel catalyst.

Explanation:

just did on Edge

1) Analysis subquestions (7 points): (a) Draw the mechanism of the reaction - remember, there are two main parts to the aldol condensation, the addition step, followed by the elimination. (b) Explain why your reaction forms the enone product, rather than the hydroxyketone intermediate. 2) Critical analysis (7 points): a) You have been given a 1H NMR spectrum of your product. Fully assign this spectrum (i.e. determine which peaks in the 1H NMR correspond to which hydrogens in the product). The peaks have been labeled 1-8 on the spectrum, and the relevant hydrogens Ha-Hh below. b) Calculate the coupling constant between He and Hf. Explain how can this can help determine the stereochemistry (i.e. cis vs. trans) of the double bond. (7) Acetone is a symmetrical molecule, so there are two positions that can react. Draw the product you would expect to obtain if you used two molar equivalents of vanillin rather than one. c) Acetone is a symmetrical molecule, so there are two positions that can react. Draw the product you would expect to obtain if you used two molar equivalents of vanillin rather than one.

Answers

Find the attachments

what is the molecule OH- called?

Answers

Answer:

it hydroxide ion

Hope it will help you

Final answer:

The molecule OH- is termed as a hydroxide ion. It comprises one hydrogen ion and one oxygen ion and holds a negative charge. Hydroxide ions are observed in water-based solutions and play a crucial role in chemical reactions such as hydrolysis; they also impact the pH levels in solutions.

Explanation:

The molecule OH- is called a hydroxide ion. This comes from the fact that it consists of one hydrogen ion (H) and one oxygen ion (O). An ion is an atom or molecule that carries a charge, in this case, the charge of the hydroxide ion is -1 because it has gained one electron. Hydroxide ions are found in solutions resulting from the ionization of water.

The molecule OH- plays an important role in various chemical reactions. For example, in hydrolysis, a molecule of water disrupts a compound; the water splits into H and OH. One part of the divided compound bonds with the hydrogen atom, and the other part bonds with the hydroxide group. The presence of hydroxide ions also has a significant effect in determining the pH of a solution; the higher the concentration of hydroxide ions, the more basic or alkaline the solution is.

Learn more about Hydroxide Ion here:

https://brainly.com/question/36592185

#SPJ2

Can convection occur in both liquids and
gases? Suggest a reason for your answer
using the particle theory.

Answers

Answer:

Yes, Convection can occur in both liquids and gases

Explanation:

  The Particle Theory suggests that Particles are always moving. Convection occurs in the breeze you feel, when the warm particles quickly move upwards resulting in cold air quickly sinking and creating a breeze. Convection also occurs when you boil water, the molecules of warm water quickly move to the top and cold water quickly moves to the bottom resulting in a circle the constantly keeps the water circulating, making it boil.

A 215-g sample of copper metal at some temperature is added to 26.6 g of water. The initial water temperature is 22.22 oC, and the final temperature is 24.44 oC. If the specific heat of copper is 0.385 Jg-1oC-1, what was the initial temperature of the copper? Any additional constants needed can be found in your textbook.

Answers

The initial temperature of the copper metal was 27.38 degrees.

Explanation:

Data given:

mass of the copper metal sample = 215 gram

mass of water = 26.6 grams

Initial temperature of water = 22.22 Degrees

Final temperature of water = 24.44 degrees

Specific heat capacity of water = 0.385 J/g°C

initial temperature of copper material , Ti=?

specific heat capacity of water = 4.186 joule/gram °C

from the principle of:

heat lost = heat gained

heat gained by water is given by:

q water = mcΔT

Putting the values in the equation:

qwater = 26.6 x 4.186 x (2.22)

qwater = 247.19 J

qcopper = 215 x 0.385 x (Ti-24.4)

              = 82.77Ti - 2019.71

Now heat lost by metal = heat gained by water

82.77Ti - 2019.71 = 247.19

Ti = 27.38 degrees

In the equation KClO3 -> KCl + O2, how many moles of oxygen are produced when 3.0 mol of KClO3 decomposes completely?

Answers

Answer:

4.5

Hope this helps!

In the given chemical equation according to stoichiometry, 4.5 moles  of oxygen are produced when 3.0 mole of KClO₃ decomposes completely.

What is stoichiometry?

Stoichiometry is the determination of proportions of elements or compounds in a chemical reaction. The related relations are based on law of conservation of mass and law of combining weights and volumes.

Stoichiometry is used in quantitative analysis for measuring concentrations of substances present in the sample. It is important while making solutions and balancing chemical equations.In the given balanced chemical equation, 2 moles of  KClO₃  gives 3 moles of oxygen , thus 3 mole of  KClO₃ will give 3×3/2=4.5  moles.

Thus, 4.5 moles  of oxygen are produced when 3.0 mole of KClO₃ decomposes completely.

Learn more about stoichiometry,here:

https://brainly.com/question/9743981

#SPJ6

The half-equivalence point of a titration occurs halfway to the equivalence point, where half of the analyte has reacted to form its conjugate, and the other half still remains unreacted. If 0.300 moles of a monoprotic weak acid ( Ka=3.6×10−5 M) is titrated with NaOH , what is the pH of the solution at the half-equivalence point?

Answers

Answer:

pH=pKa

pH=4.44

Explanation:

Since the titration occur between a weak acid and a strong base.

then at half -equivalence point, the pH of the solution is equals to the pKa of the weak acid.

Therefore, pH=pKa

Ka of weak acid=3.6×10^−5

To calculate the pKa of the weak acid using the express below;

pKa =- log(Ka)

p​K​a​=​−​l​o​g​(​3.6×10−5)​=​4.44

From the question, the pKa of the solution is at half -equivalence point

Then,

pH=pKa

pH=4.44

The question says that the titration occurred between a weak acid and a

strong base at half-equivalence point. Then we can deduce that the pH of

the solution is equal to the pKa of the weak acid.

pH=pKa

Ka of monoprotic weak acid=3.6×10⁻⁵

The pKa of the monoprotic weak acid will be calculated by :

pKa = - log(Ka)

p​K​a ​=​ −​l​o​g​(​3.6×10⁻⁵)​ =​ 4.44

Since the pKa of the solution is at half -equivalence point

pH=pKa

pH=4.44

Read more on https://brainly.com/question/15867090

Which of the following statements is TRUE? Question 1 options: There is a "heat tax" for every energy transaction. A spontaneous reaction is always a fast reaction. The entropy of a system always decreases for a spontaneous process. Perpetual motion machines are a possibility in the near future. None of these are true.

Answers

Question:

Which of the following statements is TRUE?

A. Perpetual motion machines are a possibility in the near future.

B. The entropy of a system always decreases for a spontaneous process.

C. A spontaneous reaction is always a fast reaction.

D. There is a "heat tax" for every energy transaction.

E. None of the above are true.

Answer:

The correct answer is D)

There is a "heat tax" for every energy transaction.

Explanation:

Heat and work are two different ways in which energy is moved from one device to another. In the field of thermodynamics the distinction between Heat and Work is significant. The transfer of thermal energy between systems is heat. This is what is referred to as "heat tax".

No other statement in the question above is correct.

Cheers!

Gasoline is a remarkably interesting soup of hydrocarbons of various sorts, with bits of this and that added, but the average chemistry is not too far from being carbon and hydrogen, with two hydrogen atoms for each carbon. Burning involves combining gasoline with oxygen to make water and carbon dioxide. (Other things that are made in small quantities, such as carbon monoxide, are not as nice.) The chemical formula for burning gasoline can then be written something like: CH2+1.5 O2 --> CO2+H2O (If you don’t like having one-and-a-half oxygen molecules, you can think of two hydrocarbons plus three oxygens making two carbon dioxides and two waters; it is the same thing, really.) In burning, each carbon atom, C, in gasoline eliminates two hydrogens and replaces them with two oxygens each carbon atom weighs 12 atomic mass units each hydrogen weighs 1 each oxygen weighs 16; So, CH2 starts out weighing 14 (12 from carbon and 2 from hydrogen), and CO2 ends up weighing 44 (12 from carbon and 32 from oxygen)—the weight has more than tripled. Rounding that off a little, the total weight of CO2 put out by a typical U.S. driver is three times larger than the weight of gasoline burned. To get the number of pounds of CO2 per year from a typical car, then, multiply your answer from the previous question by 3.

Answers

Answer:GASOLINE IS NOT FUYKING SOUP IF YOU EAT IT YOULL DIE

Explanation:

Just a fair warning

This answer explains that during the combustion of gasoline, each carbon atom forms carbon dioxide (CO₂) and each hydrogen atom forms water (H₂O). This process increases the total mass due to the addition of oxygen atoms, resulting in CO₂ emissions being roughly three times the weight of the gasoline burned.

In this question, we explore the combustion of gasoline, a complex mixture of hydrocarbons. The main reaction for burning gasoline can be approximated by the equation:

CH₂ + 1.5 O₂ → CO₂ + H₂O

This indicates that each carbon atom in the gasoline molecule combines with oxygen to form carbon dioxide (CO₂), while each hydrogen atom combines with oxygen to form water (H₂O). The average chemical formula for gasoline is close to CH₂; thus, if you burn hydrocarbons, the products will primarily be CO₂ and H₂O.

For example, burning gasoline with the empirical formula CH₂ involves replacing two hydrogen atoms with oxygen, resulting in carbon dioxide and water. Here's a more balanced version of the reaction:

2 CH₂ + 3 O₂ → 2 CO₂ + 2 H₂O

This reaction results in a mass increase as the products (CO₂ and H₂O) weigh more than the original reactants (CH₂ and O₂). Specifically, for each carbon atom (12 atomic mass units) and two hydrogen atoms (2 atomic mass units) in the gasoline, the resulting CO₂ and H₂O (carbon dioxide: 44 AMU; water: 18 AMU) demonstrate an overall tripling of mass due to the addition of oxygen atoms.

By understanding this principle, one can estimate that the weight of CO₂ released by burning gasoline is roughly three times the weight of the gasoline itself. This is why a typical car emits a substantially larger mass of CO₂ relative to the fuel it consumes.

Which of the following statements concerning gas pressure is/are correct? (1) Gas pressure arises from gas molecules sticking to the wall of the container holding the gas. (2) The force exerted on the inside walls of a gas-filled container is inversely proportional to the number of gas molecules within the container. (3) As the temperature of a gas increases, gas molecules exert more force on the walls of their container.

Answers

Answer:

As the temperature of a gas increases, gas molecules exert more force on the walls of their container.

Explanation:

Pressure is the force exerted by a substance per unit area on another substance. The pressure of a gas is the force that the gas exerts on the walls of its container.

Gases collide frequently with each other and the walls of the container. This pressure of the gas increases with increase in temperature since increase in temperature increases the kinetic energy of gas molecules. They now collide more frequently with the walls of the container hence the answer.

The gas pressure is defined as the force exerted by the gas particles when they collide with the walls of the container. It is the pressure exerted per unit area.

The correct option is:

Option C. As the temperature of a gas increases, gas molecules exert more force on the walls of their container.

The correct explanation can be given as:

The gas molecules are in random motions, and continuously exert pressure on the walls of the container.

As the temperature rises, the kinetic energy of the particles is also increased, which causes a faster collision.

Thus, the gas pressure is increased as the temperature is increased.

Therefore, option C is correct.

To know more about gas pressure, refer to the following link:

https://brainly.com/question/18124975

A chemist fills a reaction vessel with 9.20 atm nitrogen monoxide (NO) gas, 9.15 atm chlorine (CI) gas, and 7.70 atm nitrosyl chloride (NOCI) gas at a temperature of 25.0°C. Under these conditions, calculate the reaction free energy AG for the following chemical reaction: 2NO(g) +CI (8) - 2NOCI (8) Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule

Answers

Answer:

The reactions free energy [tex]\Delta G = -49.36 kJ[/tex]

Explanation:

From the question we are told that

      The pressure of (NO) is [tex]P_{NO} = 9.20 \ atm[/tex]

      The  pressure of  (Cl) gas is  [tex]P_{Cl} = 9.15 \ atm[/tex]

       The  pressure of nitrosly chloride (NOCl) is [tex]P_{(NOCl)} = 7.70 \ atm[/tex]

The reaction is

              [tex]2NO_{(g)} + Cl_2 (g)[/tex]    ⇆   [tex]2 NOCl_{(g)}[/tex]

 From the reaction we can  mathematically evaluate the [tex]\Delta G^o[/tex] (Standard state  free energy ) as

                    [tex]\Delta G^o = 2 \Delta G^o _{NOCl} - \Delta G^o _{Cl_2} - 2 \Delta G^o _{NO}[/tex]

The Standard state  free energy for NO is  constant with a value  

                 [tex]\Delta G^o _{NO} = 86.55 kJ/mol[/tex]

 The Standard state  free energy for [tex]Cl_2[/tex] is  constant with a value                  

             [tex]\Delta G^o _{Cl_2} = 0kJ/mol[/tex]

 The Standard state  free energy for [tex]NOCl[/tex] is  constant with a value

         [tex]\Delta G^o _{NOCl} =66.1kJ/mol[/tex]

Now substituting this into the equation

        [tex]\Delta G^o = 2 * 66.1 - 0 - 2 * 87.6[/tex]

                [tex]= -43 kJ/mol[/tex]

The pressure constant is evaluated as

         [tex]Q = \frac{Pressure \ of \ product }{ Pressure \ of \ reactant }[/tex]

Substituting  values  

        [tex]Q = \frac{(7.7)^2 }{(9.2)^2 (9.15) } = \frac{59.29}{774.456}[/tex]

           [tex]= 0.0765[/tex]

The free energy for this reaction is evaluated as

           [tex]\Delta G = \Delta G^o + RT ln Q[/tex]

Where R is gas constant with a value  of  [tex]R = 8.314 J / K \cdot mol[/tex]

          T is temperature in K  with a given value of  [tex]T = 25+273 = 298 K[/tex]

   Substituting value

                [tex]\Delta G = -43 *10^{3} + 8.314 *298 * ln [0.0765][/tex]

                       [tex]= -43-6.36[/tex]

                      [tex]\Delta G = -49.36 kJ[/tex]

A beaker holds 962 g of a brine solution that is 6.20 percent salt. If 123g of water are evaporated from the beaker, how much salt must be added to have an 8.60 percent brine solution? How many grams of the 8.6% brine solution will be produced?

Answers

Final answer:

To increase the salt concentration to 8.6%, you need to add 8794g of salt to the solution. The final mass of the 8.6% brine solution will be 961g.

Explanation:

To have an 8.60 percent brine solution, you would need to add salt to compensate for the loss of water due to evaporation. First, calculate the mass of water after evaporation by subtracting 123g from the initial mass of the brine solution (962g - 123g = 839g).

Then, find the mass of the salt needed by multiplying the final mass of the solution by the desired percent of salt (839g / 0.0860 = 9756g). Subtract the initial mass of the brine solution to determine the amount of salt that must be added (9756g - 962g = 8794g).

To find the mass of the 8.6% brine solution that will be produced, subtract the mass of the added salt from the final mass of the solution (9756g - 8794g = 961g).

Learn more about Salt concentration in brine solution here:

https://brainly.com/question/28668523

#SPJ3

Pure platinum is too soft to be used in jewelry because it scratches easily. To increase the hardness so that it can be used in jewelry, platinum is combined with other metals to form an alloy. To determine the amount of platinum in an alloy, a 8.528 g sample of an alloy containing platinum and cobalt is reacted with excess nitric acid to form 2.49 g of cobalt(II) nitrate. Calculate the mass percent of platinum in the alloy.

Answers

Answer:

percentage mass of platinum in the alloy ≈ 90.60 %

Explanation:

The alloy is 8.528 g sample of an alloy containing platinum and cobalt . The alloy react with excess nitric acid to form cobalt(ii) nitrate . Platinum is resistant to acid so it will definitely not react with the acid only the cobalt metal in the alloy will react with the acid.

The chemical reaction can be represented as follows:

Co (s) + HNO₃ (aq) → Co(NO₃)₂ (aq) +  NO₂ (l) + H₂O (l)

The balanced equation

Co (s) + 4HNO₃ (aq) → Co(NO₃)₂(aq) + 2NO₂ (l) + 2H₂O (l)

Cobalt is the limiting reactant

atomic mass of cobalt = 58.933 g/mol

Molar mass of Co(NO₃)₂ = 58.933 + 14 × 2 + 16 × 6 = 58.933 + 28 + 96 = 182.933  g

58.933 g of cobalt produce 182.933  g of  Co(NO₃)₂

? gram of cobalt will produce 2.49 g of Co(NO₃)₂

cross multiply

grams of cobalt that will react = (58.933 × 2.49)/182.933

grams of cobalt that will react = 146.74317000/182.933

grams of cobalt that will react= 0.8021689362 g

grams of cobalt that will react = 0.802 g

mass of platinum in the alloy  = 8.528 g - 0.802 g = 7.726 g

percentage  mass of platinum in the alloy = 7.726/8.528 × 100 = 772.600/8.528 = 90 .595 %

percentage mass of platinum in the alloy ≈ 90.60 %

You are given 25.00 mL of an acetic acid solution of unknown concentration. You find it requires 35.75 mL of a 0.1950 M NaOH solution to exactly neutralize this sample (phenolphthalein was used as an indicator). What is the molarity of the acetic acid solution? What is the percentage of acetic acid in the solution?

Answers

Answer:

0.2788 M

1.674 %(m/V)

Explanation:

Step 1: Write the balanced equation

NaOH + CH₃COOH → CH₃COONa + H₂O

Step 2: Calculate the reacting moles of NaOH

[tex]0.03575 L \times \frac{0.1950mol}{L} = 6.971 \times 10^{-3} mol[/tex]

Step 3: Calculate the reacting moles of CH₃COOH

The molar ratio of NaOH to CH₃COOH is 1:1.

[tex]6.971 \times 10^{-3} molNaOH \times \frac{1molCH_3COOH}{1molNaOH} = 6.971 \times 10^{-3} molCH_3COOH[/tex]

Step 4: Calculate the molarity of the acetic acid solution

[tex]M = \frac{6.971 \times 10^{-3} mol}{0.02500L} =0.2788 M[/tex]

Step 5: Calculate the mass of acetic acid

The molar mass of acetic acid is 60.05 g/mol.

[tex]6.971 \times 10^{-3} mol \times \frac{60.05g}{mol} =0.4186 g[/tex]

Step 6: Calculate the percentage of acetic acid in the solution

[tex]\frac{0.4186g}{25.00mL} \times 100\% = 1.674 \%(m/V)[/tex]

Answer:

Concentration  acetic acid = ‬0.27885 M

% acetic acid = 0.69%

Explanation:

You are given 25.00 mL of an acetic acid solution of unknown concentration. You find it requires 35.75 mL of a 0.1950 M NaOH solution to exactly neutralize this sample (phenolphthalein was used as an indicator). What is the molarity of the acetic acid solution?

what is the percentage of acetic acid in the solution? Assume the density of the solution is 1 g/ml.

Step 1: Data given

Volume of acetic acid = 25.00 mL = 0.025 L

Volume of NaOH = 35.75 mL = 0.03575 L

Molarity of NaOH = 0.1950 M

Step 2: The balanced equation

CH3COOH + NaOH → CH3COONa + H2O

Step 3: Calculate moles

Moles = molarity * volume

Moles NaOH = 0.1950 M * 0.03575 L

Moles NaOH = 0.00697125‬ moles

Step 4: Calculate concentration of acetic acid

We need 0.00697125‬ moles of acetic acid to neutralize NaOH

Concentration = moles / volume

Concentration = 0.00697125 moles / 0.025 L

Concentration = ‬0.27885 M

Step 5: Calculate mass of acetic acid

Mass acetic acid = moles * molar mass

Mass acetic acid = 0.00697125 moles * 60.05g/mol

Mass acetic acid = 0.4186 grams

Step 6: Calculate mass of sample

Total volume = 60.75 mL = 0.06075 L

Mass of sample 60.75 mL * 1g/mL = 60.75 grams

Step 7: Calculate the percentage of acetic acid in the solution

% acetic acid = (0.4186 grams / 60.75 grams ) * 100 %

% acetic acid = 0.69%

At a certain temperature, 0.660 mol SO 3 is placed in a 4.00 L container. 2 SO 3 ( g ) − ⇀ ↽ − 2 SO 2 ( g ) + O 2 ( g ) At equilibrium, 0.110 mol O 2 is present. Calculate K c .

Answers

Answer:

[tex]Kc=6.875x10^{-3}[/tex]

Explanation:

Hello,

In this case, for the given chemical reaction at equilibrium:

[tex]2 SO_3 ( g ) \rightleftharpoons 2 SO_ 2 ( g ) + O_ 2 ( g )[/tex]

The initial concentration of sulfur trioxide is:

[tex][SO_3]_0=\frac{0.660mol}{4.00L}=0.165M[/tex]

Hence, the law of mass action to compute Kc results:

[tex]Kc=\frac{[SO_2]^2[O_2]}{[SO_3]^2}[/tex]

In such a way, in terms of the change [tex]x[/tex] due to the reaction extent, by using the ICE method, it is modified as:

[tex]Kc=\frac{(2x)^2*x}{(0.165-2x)^2}[/tex]

In that case, as at equilibrium 0.11 moles of oxygen are present, [tex]x[/tex] equals:

[tex]x=[O_2]=\frac{0.110mol}{4.00L}=0.0275M[/tex]

Therefore, the equilibrium constant finally turns out:

[tex]Kc=\frac{(2*0.0275)^2*0.0275}{(0.165-2*0.0275)^2} \\\\Kc=6.875x10^{-3}[/tex]

Best regards.

You have two beakers. One beaker contains 100 mL of NaOH (a strong base); the other contains 100 mL of aqueous Na3PO4 (a weak base). You test the pH of each solution. Which of the following statements is true ?

Answers

Answer:

D. If the pH of NaOH is 12, then that of Na₃PO₄ solution has to be lesser than 12.

Explanation:

In this problem, we are comparing the pH of a strong base to a weak base. A strong base is one that ionizes completely in aqueous solutions where as a weak base ionizes slightly.

The pH scale is good tool for measuring the acidity and alkalinity of various substances. It ranges from 1 - 14;

   

      1                                      7                                               14

                         ←                                       →

      increasing acidity                          increasing alkalinity

                                        neutrality

Strong bases have their pH value close to 14 and weak bases are close to 7.

Since Na₃PO₄ is a weak base, it will have lesser pH value compared to a strong base such as NaOH

The question lack options, that are as follows"

a. The Na3PO4 has a higher pH because it has more sodium ions than NaOH. NaOH(aq- Na3PO4(aq)b. It is possible for the solutions in each beaker to have the same pHC. If the pH of the NaOH solution is 12.00, the pH of the Na3PO4 solution has to be greater than 12.00.d. If the pH of the NaOH solution is 12.00, the pH of the Na3PO4 solution has to be less than 12.00.

The following statements are true in the given question:

d. If the pH of the NaOH solution is 12.00, the pH of the Na3PO4 solution has to be less than 12.00.

We know that:

NaOH is a strong base and Na3PO4 is a weak base.  As the strength of OH- in 100ml NaOH and that of OH- in 100ml  Na3PO4 is different. They have different pH values.  As we know that pH is inversely proportional to H+ ion concentration.  This means the higher the pH value lower is H+ ion concentration.  

Again,

PH +POH =14

From the above equation,

the higher the PH value of a solution less will be its value of POH vice versa. Hence greater is the OH- ion concentration.  

So,

the pH of a solution is directly proportional to OH-ion concentration.  

Thus, If pH NaOH = 12.00, NaOH is a strong base and Na3PO4 is a weak base. For the solution, the weak base OH-ion concentration is less. Clearly, the pH of Na3PO4 is less than 12.00.

Learn more:

https://brainly.com/question/1503669

How many moles of helium gas are contained in 4.0: flask at STP

Answers

To calculate the number of moles of helium in a 4.0-liter flask at STP, divide the volume of the gas by the molar volume of a gas at STP (22.4 L/mol). This yields approximately 0.17857 moles of helium gas.

First, we need to know the volume of the flask, but since the student has not specified the volume correctly, let's assume it is '4.0 liters'. At STP, one mole of any gas occupies 22.4 liters. To find the number of moles in the flask, we use the molar volume of a gas at STP.

Here's the calculation:

Divide the volume of the gas in the flask by the molar volume of a gas at STP.[tex]\frac{4.0\ L}{ 22.4\ L/mol} = number\ of\ moles\ of\ helium.[/tex]Calculate: [tex]\frac{4.0\ L}{22.4\ L/mol} = 0.17857\ mol.[/tex]

Therefore, the flask contains approximately 0.17857 moles of helium gas.

A 40.0-mL sample of 0.100 M HNO2 (Ka = 4.6 x 10-4 .) is titrated with 0.200 M KOH. Calculate: a. the pH when no base is added b. the volume of KOH required to reach the equivalence point. c. the pH after adding 5.00 mL of KOH d .the pH at one-half the equivalence point e. the pH at the equivalence point f. the pH after 30 mL of the base is added

Answers

The initial pH of 0.100 M HNO2 is approximately 2.17. It takes 20.0 mL of 0.200 M KOH to reach the equivalence point. The subsequent pH values at various points in the titration reflect the changing concentrations of HNO2 and OH-.

A 40.0-mL sample of 0.100 M HNO2 (Ka = 4.6 x 10-4) is titrated with 0.200 M KOH.

a. The pH when no base is added

To find the initial pH, we first need to calculate the concentration of H3O+ using the equilibrium expression for the weak acid:

HNO2 ⇌ H+ + NO2-

Using Ka, we get:

Ka = [H+][NO2-] / [HNO2]

4.6 x 10-4 = x2 / 0.100

Solving for x, we get:

x = √(4.6 x 10-4 * 0.100) = 0.00678 M

pH = -log(0.00678) ≈ 2.17

b. The volume of KOH required to reach the equivalence point

The moles of HNO2 are:

0.040 L * 0.100 M = 0.004 mol

Since KOH and HNO2 react in a 1:1 molar ratio, the volume of 0.200 M KOH required is:

0.004 mol / 0.200 M = 0.020 L = 20.0 mL

c. The pH after adding 5.00 mL of KOH

Moles of KOH added:

0.005 L * 0.200 M = 0.001 mol

Moles of HNO2 remaining:

0.004 mol - 0.001 mol = 0.003 mol

Concentration of HNO2 remaining = 0.003 mol/0.045 L = 0.0667 M

Concentration of NO2- formed = 0.001 mol/0.045 L = 0.0222 M

Using the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

pH = -log(4.6 x 10-4) + log(0.0222/0.0667) ≈ 3.35

d. The pH at one-half the equivalence point

At one-half the equivalence point, the concentration of [A-] = [HA], so:

pH = pKa = -log(4.6 x 10-4) ≈ 3.34

e. The pH at the equivalence point

At the equivalence point, all HNO2 has been converted to NO2-:

NO2- will hydrolyze to produce OH-:

NO2- + H2O ⇌ HNO2 + OH-

Using Kb for NO2-:

Kb = Kw/Ka = 1.0 x 10-14 / 4.6 x 10-4 = 2.17 x 10-11

Setting up the equation:

Kb = [OH-][HNO2] / [NO2-]

2.17 x 10-11 = x2 / 0.100

Solving for x:

x = √(2.17 x 10-11 * 0.100) = 1.47 x 10-6

pOH = -log(1.47 x 10-6) ≈ 5.83

pH = 14 - 5.83 = 8.17

f. The pH after 30 mL of the base is added

Moles of KOH added:

0.030 L * 0.200 M = 0.006 mol

Excess moles of OH-:

0.006 mol - 0.004 mol = 0.002 mol

Concentration of OH- in the total volume:

0.002 mol / 0.070 L = 0.02857 M

pOH = -log(0.02857) ≈ 1.54

pH = 14 - 1.54 = 12.46

The correct answers are: (a). [H⁺] = 2.17; (b). [tex]\text{Volume} = 20.0\ mL[/tex]; (c). [tex][NO_2^-] = \text{0.0222 M}[/tex]; (d). pH = 3.34; (e). [tex]\text{pH} = 8.02[/tex]; (f). pH = 12.46.

Let's solve the different parts of the titration problem step-by-step:

a. pH when no base is added:

First, we need to find the pH of a 0.100 M HNO₂ solution. HNO₂ is a weak acid and it partially ionizes in water:

HNO₂ ⇌ H⁺ + NO₂⁻

The expression for the acid dissociation constant Ka is:

[tex]K_a = 4.6 \times 10^{-4} = \frac{[H^+][NO_2^-]}{[HNO_2]}[/tex]

Assuming that the initial concentration of HNO₂ is C0 = 0.100 M and the change in concentration is x:

[tex]4.6 \times 10^{-4} = \frac{(x \times x)}{(0.100 - x)}[/tex]

Assuming x is small relative to 0.100 M:

[tex]4.6 \times 10^{-4} \approx \frac{x^2} {0.100}[/tex]x² = 4.6 x 10⁻⁵x = 6.78 x 10⁻³ M[H⁺] = 6.78 x 10⁻³ M, pH = -log[H⁺] = -log(6.78 x 10⁻³) = 2.17

b. Volume of KOH required to reach the equivalence point:

At the equivalence point, moles of HNO₂ = moles of KOH.Moles of HNO₂ = 0.100 M × 0.040 L = 0.00400 molFor KOH: 0.00400 mol = volume × 0.200 M[tex]\text{Volume} = \frac{\text{0.00400 mol}} {\text{0.200 M}} = 0.0200\ L = 20.0\ mL[/tex]

c. pH after adding 5.00 mL of KOH:

Moles of KOH added = 0.200 M × 0.00500 L = 0.00100 molRemaining moles of HNO₂ = 0.00400 mol - 0.00100 mol = 0.00300 molTotal volume = 40.0 mL + 5.0 mL = 45.0 mL = 0.0450 L[tex][HNO_2] = \frac{\text{0.00300 mol}} {\text{0.0450 L}} = \text{0.0667 M}[/tex][tex][NO_2^-] = \frac{\text{0.00100 mol}} {\text{0.0450 L}} = \text{0.0222 M}[/tex]

Using the Henderson-Hasselbalch equation:

[tex]pH = pKa + \log(\frac{[\text{NO}_2^-]}{[\text{HNO}_2]}) \\[/tex][tex]pK_a = -\log(4.6 \times 10^{-4}) = 3.34 \\[/tex][tex]pH = 3.34 + \log(\frac{0.0222}{0.0667}) = 3.34 - 0.477 = 2.86[/tex]

d. pH at one-half the equivalence point:

At one-half the equivalence point, [HNO₂] = [NO₂⁻], so pH = pKa.

pH = pKa = 3.34

e. pH at the equivalence point:

At the equivalence point, all HNO₂ has reacted to form NO₂⁻. The solution contains NO₂⁻ ions, which hydrolyze:

NO₂⁻ + H₂O ⇌ HNO₂ + OH⁻[tex]Kb = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{4.6 \times 10^{-4}} = 2.17 \times 10^{-11}[/tex]

Let x be the concentration of OH⁻:

[tex]K_b = \frac{x^2}{0.0500\text{ M}} \\[/tex][tex]2.17 \times 10^{-11} = \frac{x^2}{0.0500} \\[/tex][tex]x^2 = 1.085 \times 10^{-12} \quad \Rightarrow \quad x = \sqrt{1.085 \times 10^{-12}} = 1.04 \times 10^{-6}\text{ M} \\[/tex][tex][\text{OH}^-] = 1.04 \times 10^{-6}\text{ M} \\[/tex][tex]\text{pOH} = -\log[\text{OH}^-] = -\log(1.04 \times 10^{-6}) = 5.98 \\[/tex][tex]\text{pH} = 14 - \text{pOH} = 14 - 5.98 = 8.02[/tex]

f. pH after 30 mL of the base is added:

Moles of KOH added = 0.200 M × 0.030 L = 0.00600 molExcess moles of KOH = 0.00600 mol - 0.00400 mol = 0.00200 molTotal volume = 40 mL + 30 mL = 70 mL = 0.070 L[tex][OH^-] = \frac{\text{0.00200 mol}}{\text{0.070 L}} = \text{0.0286 M}[/tex]pOH = -log(0.0286) = 1.54pH = 14 - pOH = 14 - 1.54 = 12.46
Other Questions
Use the following information to answer the question. Nudibranchs, a type of predatory sea slug, can have various protuberances (that is, extensions) on their dorsal surfaces. Rhinophores are paired structures, located close to the head, which bear many chemoreceptors. Dorsal plumules, usually located posteriorly, perform respiratory gas exchange. Cerata usually cover much of the dorsal surface and contain nematocysts at their tips. The stingers of honeybees have a function most similar to that of ________. a rhinophores b dorsal plumules c cerata d chemoreceptors Developing a marketing mix may involve all of the following activities except _____. Group of answer choices informing potential buyers about a product setting a price for a product developing a product aimed at the needs of the target market developing an operational budget Exposure to environmental hazards such as coal dust, silica dust, and asbestos may lead to pulmonary fibrosis or scarring of the lung tissue. With this condition the lungs become stiff and have less elasticity. What would happen to the total lung capacity and vital capacity under these conditions? Explain your reasoning for your response.Due to the harmful stuff in the atmosphere your body might be telling your brain to not take very deep breaths so you don't inhale harmful chemicals and stuff. So therefore your total lung volume will start to decrease because your body will get used to only taking in a certain amount of air and your lungs will shrink. An express warranty is created when a seller: makes an affirmation of fact or promise concerning the goods that becomes part of the basis of the bargain. uses descriptive terms as a part of the bargaining process, but the buyer does not take it into consideration when making the purchase. sells goods meant for use for ordinary purposes. avoids using a sample or model as the basis for the contract. The box plots show the average speeds, in miles per hour, for the race cars in two different races.Average Speeds of Cars in Race A120125 130135140 145150155160165170Average Speeds of Cars in Race BOne-half of cars travel at which speeds?between 120 and 143 mph in race A between 125 and 140 mph in race Bbetween 120 and 170 mph in race A; between 125 and 165 mph in race BO between 120 and 153 mph in race A between 125 and 145 mph in race BO between 165 and 170 mph in race A between 150 and 165 mph in race B What is 4/24 x 2/3 = Simplied Determine whether 9x3y2=6 represents a function of x. QUESTION 17 Which of these has an elliptical orbit around the sun? Earth Jupiter Mars Earth, Jupiter, and Mars On July 1, 2012, you purchase a $10,000 par T-note that matures in five years. The coupon rate is 8 percent and the price quoted is 98.1875. The last coupon payment was May 1, 2012, and the next payment is November 1, 2012 (184 days total). The accrued interest is ______. Bradford Company derived the following cost relationship from a regression analysis of its monthly manufacturing overhead cost: C = $83,000 + $12M where: C = monthly manufacturing overhead cost, and M = machine hours The standard error of estimate of the regression is $7,500. The standard time required to manufacture one six-unit case of Bradford's single product is two machine hours. Bradford applies manufacturing overhead to production on the basis of machine hours, and its normal annual production is 53,000 cases. Bradford's estimated variable manufacturing overhead cost for a month in which scheduled production is 5,300 cases would be: To kick off the summer, Ted is planning a "School's Out!" party for all his friends. He and hismom pick up a giant sub and a vat of root beer from Subs & Suds. When they get to thepark, they cut the sub into 12 equal sections. Each section is 7 of a foot long. which answer is correct 31.24 to 1 decimal place What is the end behavior of f(x) = 5x 3 - 2x + 5?A)It rises to the left and rises tothe right.C) It falls to the left and rises to the right.B)It rises to the left and falls tothe right.D) It falls to the left and falls to the right. Please answer ASAP Which of the following best defines metabolism?Choose 1 answer:A.) Any process that requires energyB.) A reaction that breaks down large substances into smaller onesC.) The process of building complex molecules from simple moleculesD.) The complete set of reactions carried out by a cell Teknikal Inc. decides to implement a new performance management system. It consists of a list of five traits used to evaluate all the employees. The manager considers one employee at a time and, on a continuum with different points, circles the number that signifies how much of a particular trait the individual has. Which type of performance management system is Teknikal Inc. using? What can be described as a measure of the amount of matter or material an object contains as well as taking gravitational pull into account?densityvolumeweightmass Cement was poured to make two rectangular prism the prism were stacked as shown 4 feet 3 feet 4 feet 3 feet 2 feet what are lengths , width, height in feet of the smaller rectangular prism six-sided die is rolled. Find the probability of rolling an odd number or a number less than 6. Each lap Jeffery runs is 1 tenth of a mile. He wants to run 3 fifths of a mileHow many laps does Jeffery need to run?