20. SAMPLING A customer at Cavallaro's Fruit Stand picks a sample of 3 oranges at random from a crate containing 60 oranges, of which 4 are rotten. What is the probability that the sample contains 1 or more rotten oranges?

Answers

Answer 1

Answer:

19%

Step-by-step explanation:

First, let's notice that having 1 or more rotten oranges in the sample is the complement of having 0 rotten oranges in the sample. That means

proba (1 or more rotten oranges) + proba (0 rotten oranges) = 100%

We will focus in the case of 0 rotten oranges that's easier and then we go back to this last equation.

For 0 rotten oranges, we need that the customer picks 3 good oranges. As there are 4 rotten oranges in the crate of 60, we have [tex]60-4=56[/tex] good oranges.  

So, the customer has a 56/60 chance of getting a good orange. As he needs 3 good oranges at the same time, he has [tex]\frac{56}{60} *\frac{55}{59} *\frac{54}{60}= \frac{1386}{1711}[/tex] chance.

Therefore,  proba(0 rotten oranges) = [tex]\frac{1386}{1711}[/tex] = 81% (approximately)

Going back to the first paragraph, we have proba(1 or more rotten oranges) = 100% - proba(0 rotten oranges) = 100% - 81% = 19%


Related Questions

1. Tom thought of a natural number, multiplied all its digits and after that he multiplied the result by the initial number. Is it possible to get 1716 as a result?

2. What is the largest prime factor of the factorial 49! ?

3. The GCD(a, b) = 18, LCM(a, b) = 108. If a=36, findb.

Answers

Answer:

1. No

2. 7

3. b=54

Step-by-step explanation:

1. We can answer this by assuming a number.

Let our number be 23

Multiplying its digits = 6

Multiplying the result with initial number = 6 * 23 = 138

So it is not possible to get 1716 as a result by thinking of a natural number and applying the operation mentioned in the question.

2. What is the largest prime factor of the factorial 49! ?

First of all we have to define prime factors:

Prime factors are the prime numbers that can be multiplied together to equal the original number.

The factors of 49 are: 1, 7, 49

7 is the largest prime factor of 49

3. The GCD(a, b) = 18, LCM(a, b) = 108. If a=36, findb.

We will use the relationship:

[tex]GCD * LCM = a*b\\18*108=36b\\1944=36b\\b= \frac{1944}{36} \\b=54[/tex]

..

Suppose you have $1,950 in your savings account at the end of a certain period of time. You invested $1,700 at a 6.88% simple annual interest rate. How long, in years, did you invest your money? State your result to the nearest hundredth of a year.

Answers

Answer:

He invest for 2 years.

Step-by-step explanation:

Given : Suppose you have $1,950 in your savings account at the end of a certain period of time. You invested $1,700 at a 6.88% simple annual interest rate.

To find : How long, in years, did you invest your money?

Solution :

Applying simple interest formula,

[tex]A=P(1+r)^t[/tex]

Where, A is the amount A=$1950

P is the principal P=$1700

r is the interest rate r=6.88%=0.0688

t is the time

Substitute the values in the formula,

[tex]1950=1700(1+0.0688)^t[/tex]

[tex]\frac{1950}{1700}=(1.0688)^t[/tex]

[tex]1.147=(1.0688)^t[/tex]

Taking log both side,

[tex]\log(1.147)=\log ((1.0688)^t)[/tex]

Applying logarithmic formula, [tex]\log a^x=x\log a[/tex]

[tex]\log(1.147)=t\log (1.0688)[/tex]

[tex]t=\frac{\log(1.147)}{\log (1.0688)}[/tex]

[tex]t=2.06[/tex]

Approximately, He invest for 2 years.

Two solutions to y'' – 2y' – 35y = 0 are yı = e, Y2 = e -5t a) Find the Wronskian. W = 0 Preview b) Find the solution satisfying the initial conditions y(0) = – 7, y'(0) = 23 y = ( Preview

Answers

Answer:

a.[tex]w(t)=-12e^{2t}[/tex]

b.[tex] y(t)=-\frac{9}{2}e^{7t}-\frac{5}{2}e^{-5t}[/tex]

Step-by-step explanation:

We have a differential equation

y''-2 y'-35 y=0

Auxillary equation

[tex](D^2-2D-35)=0[/tex]

By factorization method we are  finding the solution

[tex]D^2-7D+5D-35=0[/tex]

[tex](D-7)(D+5)=0[/tex]

Substitute each factor equal to zero

D-7=0  and D+5=0

D=7  and D=-5

Therefore ,

General solution is

[tex]y(x)=C_1e^{7t}+C_2e^{-5t}[/tex]

Let [tex]y_1=e^{7t} \;and \;y_2=e^{-5t}[/tex]

We have to find Wronskian

[tex]w(t)=\begin{vmatrix}y_1&y_2\\y'_1&y'_2\end{vmatrix}[/tex]

Substitute values then we get

[tex]w(t)=\begin{vmatrix}e^{7t}&e^{-5t}\\7e^{7t}&-5e^{-5t}\end{vmatrix}[/tex]

[tex]w(t)=-5e^{7t}\cdot e^{-5t}-7e^{7t}\cdot e^{-5t}=-5e^{7t-5t}-7e^[7t-5t}[/tex]

[tex]w(t)=-5e^{2t}-7e^{2t}=-12e^{2t}[/tex]

a.[tex]w(t)=-12e^{2t}[/tex]

We are given that y(0)=-7 and y'(0)=23

Substitute the value in general solution the we get

[tex]y(0)=C_1+C_2[/tex]

[tex]C_1+C_2=-7[/tex]....(equation I)

[tex]y'(t)=7C_1e^{7t}-5C_2e^{-5t}[/tex]

[tex]y'(0)=7C_1-5C_2[/tex]

[tex]7C_1-5C_2=23[/tex]......(equation II)

Equation I is multiply by 5 then we subtract equation II from equation I

Using elimination method we eliminate[tex] C_1[/tex]

Then we get [tex]C_2=-\frac{5}{2}[/tex]

Substitute the value of [tex] C_2 [/tex] in  I equation then we get

[tex] C_1-\frac{5}{2}=-7[/tex]

[tex] C_1=-7+\frac{5}{2}=\frac{-14+5}{2}=-\frac{9}{2}[/tex]

Hence, the general solution is

b.[tex] y(t)=-\frac{9}{2}e^{7t}-\frac{5}{2}e^{-5t}[/tex]

An internal study by the Technology Services department at Lahey Electronics revealed company employees receive an average of "2.7" non-work-related e-mails per hour. Assume the arrival of these e-mails is approximated by the Poisson distribution. a. What is the probability Linda Lahey, company president, received exactly 3 non-work-related e-mails between 4 P.M. and 5 P.M. yesterday

Answers

Answer: 0.2205

Step-by-step explanation:

Given : Technology Services department at Lahey Electronics revealed company employees receive an average of "2.7" non-work-related e-mails per hour.

i.e. [tex]\lambda = 2.7[/tex]

If the arrival of these e-mails is approximated by the Poisson distribution.

Then , the required probability is given by :-

[tex]P(X=x)=\dfrac{\lambda^xe^{-\lambda}}{x!}\\\\P(X=3)=\dfrac{(2.7)^3e^{-2.7}}{3!}\\\\=0.22046768454\approx0.2205[/tex]

Hence, the probability Linda Lahey, company president, received exactly 3 non-work-related e-mails between 4 P.M. and 5 P.M. yesterday =0.2205

To determine the probability that Linda Lahey received exactly 3 non-work-related e-mails in one hour based on a Poisson distribution with an average rate of 2.7 e-mails per hour, we apply the Poisson formula. This calculation offers a precise way to understand the likelihood of such an event occurring within a set timeframe.

Given that, on average, company employees receive 2.7 non-work-related e-mails per hour, we can use the Poisson formula to calculate this probability.

To find the probability of receiving exactly k events in a fixed interval of time, we use the formula:
P(X = k) = (λ^k * e^-λ) / k!
where λ is the average rate (2.7 emails per hour in this case), k is the number of events (3 emails), and e is the base of the natural logarithm (approximately 2.71828).

Plugging in the values, we calculate the probability as follows:
P(X = 3) = (2.7^3 * e^-2.7) / 3!
This calculation gives us the specific probability that Linda Lahey received exactly 3 non-work-related e-mails in one hour.

A professor has noticed that even though attendance is not a component of the grade for his class, students who attend regularly obtain better grades. In fact, 35% of those who attend regularly receive A's in the class, while only 5% of those who do not attend regularly receive A's. About 65% of students attend class regularly. Given that a randomly chosen student receives an A grade, what is the probability that he or she attended class regularly? (Round the answer to four decimal places.)

Answers

Answer:  Probability that she attended class regularly given that she receives A grade is 0.9286.

Step-by-step explanation:

Since we have given that

Probability of those who attend regularly receive A's in the class = 35%

Probability of those who do not regularly receive A's in the class = 5%

Probability of students who attend class regularly = 65%

We need to find the probability that she attended class regularly given that she receives an A grade.

Let E be the event of students who attend regularly.

P(E) = 0.65

And P(E') = 1-0.65 = 0.35

Let A be the event who attend receive A in the class.

So, P(A|E) = 0.35

P(A|E') = 0.05

So, According to question, we have given that

[tex]P(E|A)=\dfrac{P(E)P(A|E)}{P(E)P(A|E)+P(E')P(A|E')}\\\\P(E|A)=\dfrac{0.65\times 0.35}{0.65\times 0.35+0.35\times 0.05}\\\\P(E|A)=\dfrac{0.2275}{0.2275+0.0175}=\dfrac{0.2275}{0.245}=0.9286[/tex]

Hence, Probability that she attended class regularly given that she receives A grade is 0.9286.

Final answer:

The probability that a student attended class regularly given they received an A is approximately 0.9286, or 92.86% when rounded to four decimal places, calculated using Bayes' theorem.

Explanation:

To solve the problem, we need to calculate the conditional probability that a student attended class regularly given they received an A grade. To do this, we'll use Bayes' theorem, which allows us to reverse conditional probabilities.

Let's denote Attendance as the event that a student attends class regularly and A as the event of a student receiving an A grade. According to the question:

P(Attendance) = 0.65 (65% of students attend class regularly)P(A|Attendance) = 0.35 (35% of regular attendants receive A's)P(A|Not Attendance) = 0.05 (5% of irregular attendants receive A's)

The overall probability of receiving an A, P(A), is computed as follows:

P(A) = P(A|Attendance) × P(Attendance) + P(A|Not Attendance) × P(Not Attendance)
    = 0.35 × 0.65 + 0.05 × (1 - 0.65)
    = 0.2275 + 0.0175
    = 0.2450

Now we use Bayes' theorem to find P(Attendance|A), the probability of attendance given an A:

P(Attendance|A) = (P(A|Attendance) × P(Attendance)) / P(A)
       = (0.35 × 0.65) / 0.245
       = 0.2275 / 0.245
       ≈ 0.9286

Therefore, the probability that a student attended class regularly given that they received an A grade is approximately 0.9286, or 92.86% when rounded to four decimal places.

A diver starts out at 480 feet below the surface (or −480 feet). She then swims upward 248 feet. Use a signed number to represent the diver's current depth.

Answers

Final answer:

The diver's current depth can be represented using signed numbers by subtracting the upward distance swum from the initial depth.

Explanation:

To represent the diver's current depth, we need to subtract the distance the diver has swum upward from the initial depth. The diver starts at -480 feet below the surface and swims upward 248 feet. Using signed numbers, we can represent the diver's current depth as -480 + 248 = -232 feet below the surface.

Learn more about Representing diver's current depth here:

https://brainly.com/question/29151160

#SPJ3

​ Assume the trait for brown eyes is completely dominant to blue eyes and this trait is controlled by a single gene. If 400 people in a population of 10,000 have blue eyes, how many people would be expected to be heterozygous for this trait? (Hint: Use the Hardy-Weinberg formula.)

Answers

Answer:

3200 people

Step-by-step explanation:

p = The frequency of the dominant gene

q = The frequency of the recessive gene

[tex]q^2=\frac{400}{10000}\\\Rightarrow q^2=0.04\\\Rightarrow q=0.2[/tex]

p+q = 1

⇒p = 1-q

⇒p = 1-0.2

⇒p = 0.8

Hardy-Weinberg formula

p² + 2pq + q² = 1

Now for heterozygous trait

2pq = 2×0.8×0.2 = 0.32

Multiplying with the population

0.32×10000 = 3200

∴ 3200 people would be expected to be heterozygous for this trait.

Final answer:

According to the Hardy-Weinberg formula, the expected number of people heterozygous for the eye color trait can be calculated as 768 in a population of 10,000. This calculation takes into account the dominance of the brown eye color trait and the frequency of blue-eyed individuals.

Explanation:

In this scenario, we are considering a single gene controlling the trait for eye color, with brown eyes being completely dominant to blue eyes.

Using the Hardy-Weinberg formula, we can calculate the expected frequency of each genotype in the population. The formula is: p^2 + 2pq + q^2 = 1.

We are given that 400 people have blue eyes in a population of 10,000. Therefore, the frequency of the recessive allele (q) can be calculated as the square root of the frequency of the blue-eyed individuals, which is 400/10,000 = 0.04.

Since brown eyes are completely dominant, the frequency of the dominant allele (p) can be calculated as 1 - q, which is 1 - 0.04 = 0.96.

Now we can calculate the expected number of heterozygous individuals (2pq): 2 * 0.96 * 0.04 * 10,000 = 768.

Therefore, we would expect 768 people to be heterozygous for the eye color trait in this population.

Learn more about Hardy-Weinberg formula here:

https://brainly.com/question/34695712

#SPJ3

Write the sum of five consecutive even numbers if the middle one is 4n The sum is (Simplify your answer)

Answers

Answer: The sum of five consecutive even numbers for this sequence is 20n.

Step-by-step explanation:

Since we have given that

Number of consecutive even numbers = 5

Middle value = 4n

Since there are 5 consecutive even numbers:

4n-4,4n-2,4n,4n+2,4n+4

So, Sum of five consecutive even numbers would be

[tex]4n-4+4n-2+4n+4n+2+4n+4\\\\=20n[/tex]

Hence, the sum of five consecutive even numbers for this sequence is 20n.

If you enter the formula =A2*(1+$A$1) in cell B2 and then copy cell B2 to C2, the numerical result in cell
C2 is:

xid-10711901_1

a.200

b. 121

c. 109

d. 110

Answers

It’s is b 121 . Gang gang

In BPMN diagram the actors are represented by ____________.

Circles

Swimlanes

Rounded rectangles

Dashed arrows

Answers

Answer: Dashed Arrows

Step-by-step explanation:

Connector lines speak to arrangement streams when they interface two items in the equivalent BPMN pool. Items in various BPMN pools can't be associated by grouping stream, however they can synchronize through message stream. A connector line between two items in various pools that speaks to a message stream shows with a dashed line. Moving an article starting with one pool then onto the next likewise breaks the arrangement stream and changes over the association with a message-style line.

Final answer:

In a BPMN diagram, actors are represented by swimlanes, which denote responsibilities within a process and can be assigned to individuals, systems, or organizational units.

Explanation:

In a Business Process Model and Notation (BPMN) diagram, the actors are represented by swimlanes. These swimlanes are horizontal or vertical rectangles and they denote the different responsibilities within a process. Each swimlane is often dedicated to one actor, which can be a person, a system, or an organization unit involved in the process. For example, in a loan application process, there can be swimlanes representing the applicant, the loan officer, and the credit check system.

Learn more about BPMN Diagram here:

https://brainly.com/question/32580440

#SPJ12

The chickens at Colonel​ Thompson's Ranch have a mean weight of 1700 ​g, with a standard deviation of 200 g. The weights of the chickens are closely approximated by a normal curve. Find the percent of all chickens having weights more than 1560 g.

Answers

Answer:

75.8%

Step-by-step explanation:

Mean weight of chickens = u = 1700 g

Standard deviation = [tex]\sigma[/tex] = 200g

We need to calculate the percentage of chickens having weight more than 1560 g

So,

x = 1560 g

Since the weights can be approximated by normal distribution, we can use concept of z-score to solve this problem.

First we need to convert the given weight to z score. The formula for z score is:

[tex]z=\frac{x-u}{\sigma}[/tex]

Using the values, we get:

[tex]z=\frac{1560-1700}{200} \\\\ z = -0.7[/tex]

So now we have to calculate what percentage of values lie above the z score of -0.7. Using the z-table or z-calculator we get:

P(z > -0.7) = 0.758

This means 0.758 or 75.8% of the values are above z score of -0.7. In context of our question we can write:

75.8% of the chickens will have weight more than 1560 g

Final answer:

To find the percent of chickens having weights more than 1560 g, calculate the z-score for 1560 g and find the area to the right of this z-score in the standard normal distribution curve.

Explanation:

To find the percent of all chickens having weights more than 1560 g, we need to calculate the z-score for 1560 g and then find the area to the right of this z-score in the standard normal distribution curve.

First, calculate the z-score using the formula: z = (x - μ) / σ, where x is the weight of the chicken, μ is the mean weight, and σ is the standard deviation.

For the weight 1560 g, the z-score is calculated as: z = (1560 - 1700) / 200 = -0.7

Using a standard normal distribution table or calculator, find the area to the right of -0.7. This area represents the percent of chickens having weights more than 1560 g.

Learn more about Normal distribution here:

https://brainly.com/question/34741155

#SPJ11

The area of a rectangle is 1 square inches. Express the perimeter P(w) as a function of the width w.

Answers

Answer:

[tex]P(w)=2w+\frac{2}{w}[/tex]

Step-by-step explanation:

We are given the area of a rectangle is 1 inch square.

You can find the area of a rectangle if you know the dimensions. Let's pretend the dimensions are w and l.

So we given w*l=1.

Now the perimeter of a rectangle with dimensions l and w is 2w+2l.

We want to express P=2w+2l in terms of w only.

We are given that w*l=1 so l=1/w (just divided both sides of w*l=1 by w).

So let's plug it in for l (the 1/w thing).

[tex]P=2w+2(\frac{1}{w})[/tex]

So [tex]P(w)=2w+\frac{2}{w}[/tex].

Answer:

P (w) = [tex]\frac{2}{w} +2w[/tex]

Step-by-step explanation:

We are given that the area of a rectangle is 1 square inches and we are to express the perimeter [tex]P(w)[/tex] as a function of the width [tex]w[/tex].

We know that:

Area of a rectangle = [tex]l \times w[/tex]

Substituting the given value of area in the above formula:

[tex]1=l \times w[/tex]

[tex]l=\frac{1}{w}[/tex]

Perimeter of a rectangle = [tex]2(l +w)[/tex]

Substituting the values in the formula to get:

Perimeter = [tex]2(\frac{1}{w}+w) =  \frac{2}{w} +2w[/tex]

Problem Page
A supply company manufactures copy machines. The unit cost C (the cost in dollars to make each copy machine) depends on the number of machines made. If x machines are made, then the unit cost is given by the function C (x) = 0.5x^2-150 + 21,035. How many machines must be made to minimize the unit cost?
Do not round your answer.

Answers

Answer:

1 machine must be made to minimise the unit cost.

Step-by-step explanation:

Step 1: Identify the function

x is the number of machines

C(x) is the function for unit cost

C (x) = 0.5x^2-150 + 21,035

Step 2: Substitute values in x to find the unit cost

C (x) = 0.5x^2-150 + 21,035

The lowest value of x could be 1

To check the lowest cost, substitute x=1 and x=2 in the equation.

When x=1

C (x) = 0.5x^2-150 + 21,035

C (x) = 0.5(1)^2-150 + 21,035

C (x) = 20885.5

When x=2

C (x) = 0.5x^2-150 + 21,035

C (x) = 0.5(2)^2-150 + 21,035

C (x) = 20887

We can see that when the value of x i.e. the number of machines increases, per unit cost increases.

Therefore, 1 machine must be made to minimise the unit cost.

!!

The unit cost is minimized when 150 machines are made.

To find the number of machines that must be made to minimize the unit cost, we need to find the minimum value of the function [tex]\( C(x) = 0.5x^2 - 150x + 21,035 \).[/tex] This can be done by finding the vertex of the quadratic function, as the vertex corresponds to the minimum (or maximum) value of the function.

The vertex of a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] is given by the formula:

[tex]\[ x = \frac{-b}{2a} \][/tex]

Given the function [tex]\( C(x) = 0.5x^2 - 150x + 21,035 \)[/tex], we can see that [tex]\( a = 0.5 \) and \( b = -150 \).[/tex]

[tex]\[ x = \frac{-(-150)}{2 \cdot 0.5} \]\[ x = \frac{150}{1} \]\[ x = 150 \][/tex]

So, the number of machines that must be made to minimize the unit cost is 150.

the letters in the word ARIZONA are arranged randomly. write your answers in decimal form. round to the nearest thousandth as needed

what is the probability that the first letter is A

what is the probability that the first letter is z

what is the probability that the first letter is a vowel

what is the probability that the first letter is H

Answers

Final answer:

The probability of the first letter being 'A' or 'Z' in the word ARIZONA is 0.143, the probability of it being a vowel is 0.429, and for the letter 'H', which is not present in the word, the probability is 0.

Explanation:

The probability that the first letter is 'A' in a random arrangement of the letters in the word ARIZONA is simply the number of 'A's divided by the total number of letters. Since there is one 'A' out of seven letters, the probability is 1/7, which in decimal form is approximately 0.143, rounded to the nearest thousandth.

Similarly, for the letter 'Z', since there's one 'Z' in the word ARIZONA, the probability is also 1/7, which is about 0.143 when rounded to the nearest thousandth.

The probability that the first letter is a vowel (A, I, or O in ARIZONA) involves adding the probabilities of each individual vowel being the first letter. There are three vowels out of seven letters, so the probability is 3/7, which is approximately 0.429, rounded to the nearest thousandth.

Since the letter 'H' is not in the word ARIZONA, the probability that the first letter is 'H' is 0.

Let S u, v be a linearly independent set. Prove that the {u + v,u - v} is linearly independent

Answers

Answer with explanation:It is given that {u,v} be a linearly independent set of a set S.

This means that there exist constant a,b such that if:

                                au+bv=0

                             then a=b=0

Now we are asked to prove that:

{u+v,u-v} is a linearly independent set.

Let us consider there exists constant c,d such that:

                            c(u+v)+d(u-v)=0

To show:   c=d=0

The expression could also be written as:

 cu+cv+du-dv=0

( Since, using the distributive property)

Now on combining the like terms that is the terms with same vectors.

cu+du+cv-dv=0

i.e.

(c+d)u+(c-d)v=0

Since, we are given that u and v are linearly independent vectors this means that:

c+d=0------------(1)

and c-d=0 i.e c=d-----------(2)

and from equation (1) using equation (2) we have:

2c=0

i.e. c=0

and similarly by equation (2) we have:

         d=0

Hence, we are proved with the result.

We get that the vectors {u+v,u-v} is linearly independent.

The population of a town grows at a rate proportional to the population present at time t. The initial population of 500 increases by 25% in 10 years. What will be the population in 20 years? (Round your answer to the nearest person.) persons How fast is the population growing at t20 (Round your answer to two decimal places.) persons/yr

Answers

Answer:

The population would be 781.

The population is growing with the rate of 12.50 persons/yr.

Step-by-step explanation:

Since, the formula for calculating the population, increasing with a rate per period,

[tex]A=P(1+r)^{n}[/tex]

Where, P is the initial population,

r is the rate per period,

n is the number of period,

t is the total years,

Here, P = 500, r = 25 % = 0.25, n = 2 ( the number of '10 year period' of in 20 years is 2 )

Hence, the population in 20 years would be,

[tex]A=500(1+0.25)^2=500(1.25)^2=781.25\approx 781[/tex]

Now, the rate of increasing per 10 year is 25 %,

⇒ The rate of increasing per year is 2.5 %,

Thus, the growing people per year = 2.5 % of 500 = 0.025 × 500 = 12.50

Hence, the population is growing at 12.50 person per year.

In The Godfather which brother is sent to Las Vegas? Sony b. Tom a C. Fredo d. Paulie

Answers

Answer:

The correct option is C. Fredo

Step-by-step explanation:

In a Mario Puzo's fictional novel named The Godfather, Frederico Corleone or Fredo is a fictional character. In the novel, Fredo's father is killed by the assasins. Witnissing his father being shot, Fredo goes into a shock.

To protect and aid Fredo's recovery, his elder brother Sonny, sends him to Las Vegas.

Therefore, Fredo is sent to Las Vegas

Find all solutions to the equation.

cos^2x + 2 cos x + 1 = 0

Answers

[tex]\bf cos^2(x)+2cos(x)+1=0\implies \stackrel{\textit{let's notice, this is simply }ax^2+bx+c=0}{[cos(x)]^2+2cos(x)+1=0} \\[2em] [cos(x)+1][cos(x)+1]=0 \\\\[-0.35em] ~\dotfill\\\\ cos(x)+1=0\implies cos(x)=-1\implies x=cos^{-1}(-1)\implies \stackrel{\textit{for the range }[0,2\pi ]}{x=\pi } \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{all solutions}}{x=\pi +2\pi n~~,~~ n \in \mathbb{Z}}~\hfill[/tex]

Find an equation for the line in the form ax + by c. where a. b. and c are integers with no factor common to all three and a 20. Through (1. -6), perpendicular to x + y = 2 The equation of the line is (Type an equation)

Answers

Answer:

The standard form of required line is x-y=7.

Step-by-step explanation:

The standard form of a line is

[tex]ax+by=c[/tex]

Where, a,b,c are integers with no factor common to all three and a≥0.

The give equation of line is

[tex]x+y=2[/tex]

Here a=1 and b=1.

The slope of a standard line is

[tex]m=\frac{-a}{b}[/tex]

[tex]m_1=\frac{-1}{1}=-1[/tex]

The product of slops of two perpendicular lines is -1.

[tex]m_1\cdot m_2=-1[/tex]

[tex](-1)\cdot m_2=-1[/tex]

[tex]m_2=1[/tex]

The slope of required line is 1.

The point slope form of a line is

[tex]y-y_1=m(x-x_1)[/tex]

Where, m is slope.

The slope of required line is 1 and it passes through the point (1,-6). So, the equation of required line is

[tex]y-(-6)=1(x-1)[/tex]

[tex]y+6=x-1[/tex]

Add 1 on each side.

[tex]y+7=x[/tex]

Subtract y from both the sides.

[tex]7=x-y[/tex]

Therefore the standard form of required line is x-y=7.

What is the probability of obtaining seven tails in a row when flipping a coin?
The probability of obtaining seven trails in a row when flipping a coin is?

Answers

Step-by-step explanation:

The probability of getting tails each time is 1/2.  Seven times in a row, the probability is:

P = (1/2)^7

P = 0.0078125

the probability of obtaining seven tails in a row when flipping a coin is approximately 0.78%.

The probability of obtaining seven tails in a row when flipping a coin can be calculated using the principle of independent events in probability. Each flip of the coin is an independent event with two possible outcomes: heads or tails.

Probability can be calculated by using the formula:

[tex]P = \frac{number\ of\ desired\ outcomes}{total\ outcomes}[/tex]

here the desired outcome is 1 as we only need tails so we can say that:

[tex]P(tails) = \frac{1}{2} = 0.5[/tex]

To find the probability of obtaining seven tails in a row, you need to multiply the probability of getting tails on each individual flip:

[tex]Probability (7\ tails\ in\ a\ row) = 0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5\\\\Probability (7\ tails\ in\ a\ row) = (0.5)^7 \approx 0.0078125[/tex]

Therefore, the probability of obtaining seven tails in a row when flipping a coin is approximately 0.78%.

Suppose that administrators of a large school district wish to estimate the proportion of children in the district enrolling in kindergarten who attended preschool. They took a simple random sample of children in the district who are enrolling in kindergarten. Out of 75 children sampled, 51 had attended preschool. Construct a large-sample 99% z ‑confidence interval for p, the proportion of all children enrolled in kindergarten who attended preschool. Give the limits of the confidence interval as decimals, precise to at least three decimal places.

Answers

Answer: (0.541, 0.819)

Step-by-step explanation:

The confidence interval for proportion is given by :-

[tex]p\pm z_{\alpha/2}\sqrt{\dfrac{p(1-p)}{n}}[/tex]

Given : The proportion of children attended the school = [tex]p=\dfrac{51}{75}=0.68[/tex]

Significance level : [tex]\alpha=1-0.99=0.01[/tex]

Critical value : [tex]z_{\alpha/2}=z_{0.005}=\pm2.576[/tex]

Now, the 99% z ‑confidence interval for proportion will be :-

[tex]0.68\pm (2.576)\sqrt{\dfrac{0.68(1-0.68)}{75}}\approx0.68\pm 0.139\\\\=(0.68-0.139,0.68+0.139)=(0.541,\ 0.819)[/tex]

Hence, the 99% z ‑confidence interval for p, the proportion of all children enrolled in kindergarten who attended preschool = (0.541, 0.819)

You can afford monthly deposits of $270 into an account that pays 4.8% compounded monthly. How long will it be until you have $8,200 to buy a​ boat?

Answers

Answer:

  29 months

Step-by-step explanation:

My TVM solver says that balance will be reached after about 29 monthly payments.

Final answer:

This question pertains to compound interest. You are depositing $270 monthly into an account with a monthly compound interest rate of 4.8%. By using the compound interest formula with logarithmic adjustments for monthly deposits, you can determine how long it will take you to save $8200.

Explanation:

The subject of the question is how long it would take to save up $8,200 for a boat by making $270 monthly deposits into an account that has a monthly compound interest rate of 4.8%. This is a question of compound interest. The formula for compound interest is A = P (1 + r/n)^(nt), where A is the total amount of money accumulated after n years, including interest, P is the principal amount (the initial amount of money), r is the annual interest rate (in decimal form), n is the number of times that interest is compounded per year, and t is the time the money is invested for, in years.

In this case, we require to find 't' when we have A = $8200 , P = $270 (deposited every month), r = 4.8% (in decimal form, it becomes 0.048) and n = 12 (compounded monthly). However, as $270 is getting compounded every month, a slightly adjusted formula to calculate the number of months, t is required which is t = [log(A/P)] /[n * log(1 + r/n)]. By substituting A = $8200 and P = $270 and other values to this formula, we can find the time needed. This would require logarithmic math which is done usually in high school math courses or higher.

Learn more about Compound interest here:

https://brainly.com/question/14295570

#SPJ3

Sqrt x-3+5=x ?? Help

Answers

7 is a solution
4 is extraneous
The work is attached below

(a) Find parametric equations for the line through (3, 1, 8) that is perpendicular to the plane x − y + 4z = 7. (Use the parameter t.) (x(t), y(t), z(t)) = (b) In what points does this line intersect the coordinate planes?
xy-plane (x, y, z) =
yz-plane (x, y, z) =
xz-plane (x, y, z) =

Answers

Answer:

• (x, y, z) = (3+t, 1-t, 8+4t) . . . equation of the line

• xy-intercept (1, 3, 0)

• yz-intercept (0, 4, -4)

• xz-intercept (4, 0, 12)

Step-by-step explanation:

The line's direction vector is given by the coordinates of the plane: (1, -1, 4). So, the parametric equations can be ...

(x, y, z) = (3, 1, 8) + t(1, -1, 4) . . . . . parametric equation for the line

or

(x, y, z) = (3+t, 1-t, 8+4t)

__

The various intercepts can be found by setting the respective variables to zero:

xy-plane: z=0, so t=-2. (x, y, z) = (1, 3, 0)

yz-plane: x=0, so t=-3. (x, y, z) = (0, 4, -4)

xz-plane: y=0, so t=1. (x, y, z) = (4, 0, 12)

The probability that a randomly chosen citizen-entity of Cygnus is of pension age† is approximately 0.7. What is the probability that, in a randomly selected sample of four citizen-entities, all of them are of pension age?

Answers

Answer: 0.2401

Step-by-step explanation:

The binomial distribution formula is given by :-

[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex]

where P(x) is the probability of x successes out of n trials, p is the probability of success on a particular trial.

Given : The probability that a randomly chosen citizen-entity of Cygnus is of pension age† is approximately: p =0.7.

Number of trials  : n= 4

Now, the required probability will be :

[tex]P(x=4)=^4C_4(0.7)^4(1-0.7)^{4-4}\\\\=(1)(0.7)^4(1)=0.2401[/tex]

Thus, the probability that, in a randomly selected sample of four citizen-entities, all of them are of pension age =0.2401

if x^2-y^2 = 56 and x-y= 4 then what is the average of x and y
a) 3 b) 7 c) 2 d) 6 e) 4

Answers

Answer:

7

Step-by-step explanation:

[tex]x^2-y^2[/tex] is a difference of squares.

When factoring a difference of squares, you can use this formula [tex]u^2-v^2=(u-v)(u+v)[/tex].

So [tex]x^2-y^2[/tex] can be factored as [tex](x-y)(x+y)[/tex].

So back to the problem:

[tex]x^2-y^2=56[/tex]

Rewriting with a factored left hand side:

[tex](x-y)(x+y)=56[/tex]

We are given x-y=4 so rewriting again with this substitution:

[tex]4(x+y)=56[/tex]

Dividing both sides by 4:

[tex](x+y)=14[/tex]

So we have x+y equals 14.

We are asked to find the average of x and y which is (x+y)/2.

So since x+y=14 , then (x+y)/2=14/2=7.

Which represents the inverse of the function f(x) = 4x?

Answers

For this case we must find the reversal of the following function:[tex]f (x) = 4x[/tex]

For it:

We change[tex]f (x)[/tex] by y:[tex]y = 4x[/tex]

We exchange the variables:

[tex]x = 4y[/tex]

We cleared "y":

[tex]y = \frac {x} {4}[/tex]

We change y for [tex]f^{-1}(x)[/tex]:

[tex]f ^ {- 1} (x) = \frac {x} {4}[/tex]

Answer:

The inverse of the given function is:[tex]f ^ {-1} (x) = \frac {x} {4}[/tex]

Four hundred eighty dollars are available to fence in a rectangular garden. The fencing for the north and south sides of the garden costs $10 per foot and the fencing for the east and west sides costs $20 per foot. Find the dimensions of the largest possible garden.

Answers

Answer:

[tex]6ft[/tex] length on the east and west sides

[tex]12ft[/tex] length on the north and south sides

Step-by-step explanation:

Using x for the length of the east side (and is equal to the length  of the west side) and y for the length of the north side (and is equal to the length  of the south side), the equation that gives the total price equalized to 480 is:

[tex]20x+20x+10y+10y=480[/tex]

[tex]40x+20y=480[/tex]

Solving for y

[tex]y=\frac{-40x+480}{20}[/tex]

[tex]y=-2x+24[/tex]

The area of the garden is [tex]A=xy[/tex], to find the largest, substitute y in the formula of the area

[tex]A=x(-2x+24)=-2x^2+24x[/tex]

For the optimization, find the largest area, is needed the critical point. To find this point, derive A and equalize the derivative to zero:

[tex]A'=-4x+24=0[/tex]

Solve for x:

[tex]-4x=-24[/tex]

[tex]x=\frac{-24}{-4}[/tex]

[tex]x=6[/tex]

To see if x=6 is a maximum or a minimum, derive A' and substitute with x=6

[tex]A''=-4[/tex]

In this case, the second derivative of A doesn't depend on x, and it has a negative value, meaning the value found is a maximum. Using x=6 to find y

[tex]y=-2x+24[/tex]

[tex]y=-2(6)+24[/tex]

[tex]y=12[/tex]

The area is:

[tex]A=xy=6*12=72 ft^2[/tex]

1. A six person committee composed of Alice, Ben, Connie, Dolph, Egbert, and Francisco is to select a chairperson, secretary, and treasurer. How many different officer selections are there if both Dolph and Francisco must hold office?

Answers

Answer:

The number of combinations are made when one person taken at a time out of four person=4.

Step-by-step explanation:

We are given that a six person committee composed of Alice,Ben,Connie, Dolph,Egbert, and Francisco.

We have to select three persons out of six persons one is chairperson,secretary and treasurer.

We have to find the number of combinations of different officer are made when two persons Dolph and Francisco must hold office.

Now, if two persons Dolph and Francisco must hold the office then we have to select only one member out of 4 persons.

Therefore ,using combination formula

[tex]\binom{n}{r}[/tex]=[tex]\frac{n!}{r!(n-r)!}[/tex]

We have n=4 and r=1 then

The number of combination of different officer are made =[tex]\binom{4}{1}[/tex]

The number of combination of different officer are made=[tex]\frac{4!}{1!(4-1)!}[/tex]

The number of combination of different officer are made=[tex]\frac{4\times 3!}{3!}[/tex]

The number of combination of different officer are made=4

Hence, the number of combinations are made when one person taken at a time out of four person=4.

Answer: 4

If 50 is 80% , then how many percent is 38 ?

Answers

Answer: 1.64

Step-by-step explanation:

80% = 50

20% = 12.5

100% = 62.5

38% = 1.64

Other Questions
The health care provider prescribes daily fasting blood glucose levels for a client with diabetes mellitus. The goal of treatment is that the client will have glucose levels within which range? What an organism looks like as a result of its genes is called Wernicke-korsakoff syndrome is associated with a deficiency of All pronouns, proper nouns, and adjectives are capitalized. The primary characteristic of auctions is that prices are determined dynamically by competitive bidding ( true or false) Which of the following is a characteristic of the suns radiation how do auxins promote the growth of a tendril around a support On the ph scale which value is considered neutral A-7B-5C-11D-2 Yuto and Riko went for a bike ride on the same path. When Riko left their house, Yuto was 5.25 miles along the path. If Yutos average speed was 0.25 miles per minute and Rikos average speed was 0.35 miles per minute, then Riko will be behind Yuto when 0 t < 52.5, where t is time in minutes. Explain what this solution means and why t cannot be less than zero. Match the term or phrase with its best descriptor.Maximum sustainable yieldA. available biomass of a target speciesB. incidental catchC. maximum catch without reducing the population of target speciesD. dolphins and other mammal protectionE. farming of commercial fish and shellfish Which of the following statements is correct in describing the terms monohybrid cross and dihybrid cross?A) A monohybrid cross is performed for one generation, whereas a dihybrid cross is performed for two generations.B) A monohybrid cross results in a 9:3:3:1 ratio, whereas a dihybrid cross gives a 3:1 ratio.C) A monohybrid cross involves a single parent, whereas a dihybrid cross involves two parents.D) A dihybrid cross involves organisms that are heterozygous for two characters that are being studied, and a monohybrid cross involves organisms that are heterozygous for only one character being studied. A tunnel is in the shape of a parabola. The maximum height is 50 m and it is 10 m wide at the base, as shown below. A parabola opening down with vertex at the origin is graphed on the coordinate plane. The height of the parabola from top to bottom is 50 meters and its width from left to right is 10 meters. What is the vertical clearance 2 m from the edge of the tunnel? Employee empowerment can be found in _______ departments. A. legacy B. agile C. silo D. semi-silo Decreased levels of the neurotransmitters norepinephrine and serotonin may causea. anxiety.b. phobic behavior.c. euphoria and excitement.d. depression. Which of the following is a trait of public goods A triangular portion of a baseball field is marked as shown below. To thenearest tenth, what is the length of the side labeled c? For Carolina's birthday, her mom took her and 4 friends to a water park. Carolina's mom paid $40 for 5 student tickets. What was the price for one student ticket? 1. Bueno, ya conociste a mis padres. Ellos te hablaron de ____? Hablamos de muchas cosas, pero de ____ no me dijeron nada. yo; t m; ti mi; t me; te 2. Pienso ir al centro comercial. Vienes t? No, no puedo ir ____. Tengo que estudiar. mi para ti m contigo 3. No puedo vivir sin ____. Ay! Y yo quiero vivir mi vida dedicada a ____. ti; ti yo; m te; m t; t 4. Entre ____ y ____, creo que mis padres se van a divorciar. Verdad? Quizs el matrimonio no es para ____. te; me; ellos ti; m; nosotros l; ella; ti t; yo; ellos Pendulum A has a bob of mass m hung from the string of length L; pendulum B is identical to A except its bob has the length 2L. Compare the frequencies of small oscillations of the two pendulums. Help me on number 12 13 14 and 15