Answer:b
Step-by-step explanation: because if you subtract 44,640 minus 43,200 which equal 1440
44,640-43,200=1,440
Answer: B) 1440
Step-by-step explanation:
March: 44,640 Minutes
April: 43,200 Minutes
Subtract 44,640-43,200=1440
Simplify this expression and write the result using positive exponents only
Answer:
[tex]\displaystyle 5b^{-4}[/tex]
Step-by-step explanation:
[tex]\displaystyle 5b^{-4} = (-5a^4b^{-7})(-a^{-4}b^3) \\ \\ \frac{5}{b^4} = 5b^{-4}[/tex]
According to the Negative Exponential Rule [part II], you bring the denominator to the numerator WHILE ALTERING THE INTEGER SYMBOL FROM POSITIVE TO NEGATIVE:
[tex]\displaystyle b^{-n} = \frac{1}{b^n}[/tex]
I am joyous to assist you anytime.
Through a given point not on a line, there exists exactly one _____ to the given line
There exists exactly one parallel line that can be drawn through a given point not on the original line. This line will have the same slope but a different y-intercept as the original line.
Explanation:The answer to your question, 'Through a given point not on a line, there exists exactly one ___ to the given line' is Parallel Line.
In geometry, a line is said to be parallel to another if they are at the same plane and they never intersect, no matter how far they are extended. This principle also applies to lines on the graph of a linear equation such as y = a + bx which represents a straight line.
For example, assume we have a line graph that uses x and y as its axes where y = 3x + 9. Now let's say there's a point on the graph that is not on this line. You can draw exactly one line through this point that would be parallel to the original line of y = 3x + 9. This line would have the same slope as the first line, but a different y-intercept, and thus, would never intersect the original line.
Learn more about Parallel Lines here:https://brainly.com/question/32035102
#SPJ3
Suppose that F(x) = x2 and G(X) = 2/3 x^2. Which statement best compares the graph of G(x) with the graph of F(x)?
Step-by-step explanation:
Given that [tex]F(x)=x^{2}[/tex] and [tex]G(x)=\frac{2}{3}x^{2}[/tex]
[tex]F(x)[/tex] is always positive because [tex]x^{2}[/tex] is always positive.
[tex]G(x)[/tex] is always positive because [tex]\frac{2}{3}x^{2}[/tex] is always positive.
So,both are always positive.
So,there is no flipping over x-axis.
In [tex]F(x)[/tex],the height of a point at [tex]x_{0}[/tex] is [tex]x_{0}^{2}[/tex]
In [tex]G(x)[/tex],the height of a point at [tex]x_{0}[/tex] is [tex]\frac{2}{3}x_{0}^{2}[/tex]
So,height of any point has less height in [tex]G(x)[/tex] than [tex]F(x)[/tex]
So,the graph of [tex]G(x)[/tex] is the graph of [tex]F(x)[/tex] compressed vertically.
Answer:
C.
Step-by-step explanation:
(2.3 x 10^3) + (6.9 x 10^3)
The solution of (2.3 x 10^3) + (6.9 x 10^3) is [tex]9.2 \times 10^3[/tex] that is 9200
Solution:Need to solve the following expression:
[tex]\left(2.3 \times 10^{3}\right)+\left(6.9 \times 10^{3}\right)[/tex]
There are two terms in given expression
Let’s find GCF for this two terms
The greatest number that is a factor of two (or more) other numbers. When we find all the factors of two or more numbers, and some factors are the same ("common"), then the largest of those common factors is the Greatest Common Factor.
[tex]\begin{array}{l}{2.3 \times 10^{3}=2.3 \times 10^{3}} \\\\ {6.9 \times 10^{3}=3 \times 2.3 \times 10^{3}}\end{array}[/tex]
[tex]\text {So GCF between two terms is } 2.3 \times 10^{3}[/tex]
Let’s bring GCF out of the bracket in expression for sake of simplicity.
[tex]\begin{array}{l}{=>2.3 \times 10^{3}(1+3)} \\\\ {=>2.3 \times 10^{3} \times 4} \\\\ {=>9.2 \times 10^{3}} \\\\ {=>9200}\end{array}[/tex]
Hence on solving the expression (2.3 x 10^3) + (6.9 x 10^3) the result we get is [tex]9.2 \times 10^3[/tex] that is 9200
Brian buys 2 books for 15.99 each, a DVD for 19.95, and a magazine for 2.50 he also returns a jacket that cost 42.59.what is the net change in the amount of money he has after his shopping trip please help!!!
Answer:
Amount of money Brain has is 11.84 after his shopping trip.
Step-by-step explanation:
Given:
cost of books = 15.99 each
Cost of 2 books = [tex]15.99\times 2 = 31.98[/tex]
Cost for DVD = 19.95
Cost of Magazine = 2.50
Money he gets return back for jacket = 42.59
Solution:
We will first find the total amount used for shopping.
Total Shopping done = Cost of 2 books + Cost for DVD + Cost of Magazine = [tex]31.98+19.95+2.50= 54.43[/tex]
Now we will find the amount left after shopping which will be equal to the total amount used for shopping minus money he got in return for jacket.
Now net amount Left after shopping = Total Shopping done - Money he gets return back for jacket = [tex]54..43-42.59 =11.84[/tex]
Hence amount of money Brain has is 11.84 after his shopping trip.
A triangle has sides with lengths of 12 miles, 12 miles, and 15 miles. Is it a right triangle?
Answer: not a right triangle
Step-by-step explanation:
if it is a right triangle the pyth. theorem must stand
12^2+12^2 does not equal 15^2
so it is not a right triangle
The perimeter of a square room is 80 feet. The area of the room is how many square feet?
Answer:
400
Step-by-step explanation:
. The diameter of a circle is 5.7 cm. What is the circumference? (Express your answer in pi form)
Step-by-step explanation:
radius =diameter÷2
r=5.7÷2=2.85
let pi=x (since there is no symbol for pi on the phone )
Circumference =2xr
Circumference =2x×2.85=5.7x (5.7pi)
The circumference of the circle whose diameter is 5.7 cm is 5.7π cm.
The circumference is the distance around the boundary of a closed curve or geometric figure.
In the context of a circle, the circumference is the length of the boundary that encloses the circular shape.
It is calculated using the formula:
Circumference = 2 π r = 2d
Given: diameter of the circle is 5.7 cm
Substitute d= 5.7 cm into the formula:
C = π * 5.7 cm
Thus, the circumference is 5.7π cm.
Learn more about circumference of circle here:
https://brainly.com/question/17130827
#SPJ4
Petra borrows $200 for 1 year with a simple interest rate
of 4.5%. Complete the equation that represents the total
amount that Petra has to pay after 1 year.
Amount Borrowed + Amount of Interest = Total to Pay Back
+
L
x
) =
The total amount petra has to pay after 1 year is $ 209
The equation used is: Total amount to pay back = Amount Borrowed + Amount of Interest
Solution:Given that,
Petra borrowed $ 200 for 1 year with simple interest rate 4.5 %
We are asked to find the amount that petra has to pay back after 1 year
Total to Pay Back = Amount Borrowed + Amount of Interest
Let us first calculate the amount of interest Petra has to pay for 1 year
Given that simple interest rate = 4.5%
The simple interest is given as:
[tex]\text { simple interest }=\frac{\text { principal } \times \text {rate} \text { of interest } \times \text { number of years }}{100}[/tex]
[tex]\text { simple interest }=\frac{200 \times 4.5 \times 1}{100}=2 \times 4.5=9[/tex]
Thus the amount of interest = $ 9
Total to Pay Back = Amount Borrowed + Amount of Interest
Total to Pay Back = 200 + 9 = 209
Thus the total amount petra has to pay after 1 year is $ 209
PLEASE HELP I WON'T PASS THIS CLASS
What is the slope of a line that contains
the point (-0.5, 4) and has a y-intercept
of -5?
Answer:
The slope of line that contain the points ( - 0.5 , 4 ) and has y- intercept of - 5 is -18
Step-by-step explanation:
Given as :
The points that satisfy the line is ( - 0.5 , 4 )
The y - intercept = - 5
The equation of line is
y = m x + c
Where m is the slope of line
∵ For y- intercept , c = - 5
Now, points on the line is ( - 0.5 , 4 ) and y intercept c = - 5 is
y = m x + c
or, 4 = m × ( - 0. 5 ) + ( - 5 )
Or, 4 = - 0. 5 m - 5
or, 4 + 5 = - 0.5 m
Or, 9 = - 0. 5 m
∴ m = [tex]\frac{-9}{0.5}[/tex]
So, Slope = m = - 18
Hence the slope of line that contain the points ( - 0.5 , 4 ) and has y- intercept of - 5 is -18 Answer
Final answer:
The slope of a line that contains the point (-0.5, 4) and has a y-intercept of -5 is -18. This is calculated using the slope formula, resulting in a negative slope.
Explanation:
To find the slope of a line with a given point and a y-intercept, we can use the slope formula slope = (y2 - y1) / (x2 - x1), where (x1, y1) is the given point and (x2, y2) is the y-intercept point. Since the y-intercept is at a point where x = 0, the second point is (0, -5).
The given point is (-0.5, 4), so after substituting into the slope formula we get: slope = (-5 - 4) / (0 - (-0.5)) = (-9) / (0.5) = -18. The slope of the line is -18, indicating a negative slope meaning the line will move downwards on the graph as the x-value increases.
The length of a rectangle is 6 units less than the width. The area of the rectangle is 27 units. What is the width, in units, of the rectangle?
The width of rectangle is 9 units.
Step-by-step explanation:
Given,
Width of rectangle = w
Length of rectangle = l = w - 6
Area of rectangle = A = 27 units
[tex]Area\ of\ rectangle=\l*w\\27=(w-6)(w)\\27=w^2-6w\\0=w^2-6w-27\\w^2-6w-27=0\\w^2+3w-9w-27=0\\w(w+3)-9(w+3)=0\\(w+3)(w-9)=0\\[/tex]
Either,
w+3=0 =>w= -3
Or,
w-9=0 =>w=9
As width cannot be negative, therefore,
Width = 9 units
The width of rectangle is 9 units.
Keywords: rectangle, area
Learn more about rectangles at:
brainly.com/question/3309261brainly.com/question/3333996#LearnwithBrainly
Rewrite the equation correctly.
Answer:
y = 2x - 5Step-by-step explanation:
2x - y = 5 subtract 2x from both sides
2x - 2x - y = -2x + 5
-y = -2x + 5 change the signs
y = 2x - 5
Jim’s soccer team is making fruit baskets for a fundraiser. They have 88 peaches, 60 bananas, and 54 kiwis to use. If each baskets have the same numbers of each type, what is the greatest number of fruit baskets they can make?
Answer:
2 baskets
Step-by-step explanation:
so basically find LCM(least common multiple) of 88, 60 and 54. prime factor 88 to get 2^3, and 11, 60 for 2^2, 3, 5 and 54 for 3^3, 2. we then find the numbers that are in all of them which is only two, once
What is the equation of the line that is parallel to the line 2x+3y=-8 and passes through the point (2,-2)?
Equation of line passing through (2, -2) and parallel to 2x+3y = -8 is [tex]y=\frac{-2 x}{3}+\frac{-2}{3}[/tex]
Solution:Need to write equation of line parallel to 2x+3y=-8 and passes through the point (2, -2)
Generic slope intercept form of a line is given by y = mx + c
where "m" = slope of the line and "c" is the y - intercept
Let’s first find slope intercept form of 2x+3y=-8 to get slope of line
[tex]\begin{array}{l}{2 x+3 y=-8} \\\\ {=>y=\frac{-2 x-8}{3}} \\\\ {\Rightarrow y=-\frac{2}{3} x-\frac{8}{3}}\end{array}[/tex]
On comparing above slope intercept form of given equation with generic slope intercept form y = mx + c,
[tex]\text {for line } 2 x+3 y=-8, \text { slope } m=-\frac{2}{3}[/tex]
We know that slopes of parallel lines are always equal
So the slope of line passing through (2, -2) is also [tex]m=-\frac{2}{3}[/tex]
Equation of line passing through [tex](x_1 , y_1)[/tex] and having slope of m is given by
[tex]\left(y-y_{1}\right)=\mathrm{m}\left(x-x_{1}\right)[/tex]
[tex]\text { In our case } x_{1}=2 \text { and } y_{1}=-2[/tex]
Substituting the values in equation of line we get
[tex](y-(-2))=-\frac{2}{3}(x-2)[/tex]
[tex]\begin{array}{l}{\Rightarrow y+2=\frac{-2 x+4}{3}} \\\\ {=>3(y+2)=-2 x+4} \\\\ {=>3 y+6=-2 x+4} \\\\ {3 y=-2 x-2}\end{array}[/tex]
[tex]y=\frac{-2 x}{3}+\frac{-2}{3}[/tex]
Hence equation of line passing through (2 , -2) and parallel to 2x + 3y = -8 is given as [tex]y=\frac{-2 x}{3}+\frac{-2}{3}[/tex]
n is a positive integer.Explain why n(n-1) must be an even number.
Please can someone explain this algebraically.
Answer:
n and (n - 1) are consecutive integers.
Step-by-step explanation:
We are given 'n', a positive integer.
This 'n' can either be odd or even.
Case I:
When 'n' is odd
The n - 1 is even.
Note that the product of odd and even is always even. That is the product of n and (n - 1) is even.
Case II:
when 'n' is even
Then n - 1 is odd.
Again, using the similar logic we can say that the product of n and n - 1 should be even because here, 'n - 1' is even and 'n' is odd.
In this figure, AB || CD and mZ6 = 75"
What is mZ3?
Enter your answer in the box.
Answer:
105
Step-by-step explanation:
Theorem:
If parallel lines are cut by a transversal, then same-side interior angles are supplementary.
Lines AB and CD are parallel, and angles 3 and 6 are same-side interior angles, so by the theorem above, angles 3 and 6 are supplementary. That means that the sum of their measures is 180 deg.
m<3 + m<6 = 180
m<3 + 75 = 180
Subtract 75 from both sides.
m<3 = 105
Answer: 105 degrees
2. A line has a slope of which of the
following points could this line pass through?
A. (15, 13) and (0,4)
B. (3,9) and (6, 14)
C. (0,4) and (1999)
D. (5,7) and (10,10)
Answer:
B.
Step-by-step explanation:
Simplify 5(x + 9) ................
Answer:
5(x + 9) = 5x + 45Step-by-step explanation:
Use the distributive property:
a(b + c) = ab + ac
5(x + 9) = (5)(x) + (5)(9) = 5x + 45
0.8 hectometers = what millimeters
Answer:
Which is equal to 0.0865 hectometers?
86.5 millimeters
865 millimeters
8,650 millimeters
86,500 millimeters
Step-by-step explanation:
What is 8% of 525 answer
Answer: 8% of 525 is 42
Step-by-step explanation:
Answer:
Step-by-step explanation:
a good way to find 8% is find 1% and multiply it by 8 (5.25 * 8 = 42)
another way would be to simply multiply 525 by 0.08 (525 * 0.08 = 42)
either way, the answer is 42
How many solutions does this system of equations have?
exactly two
none
infinitely many
exactly one
Graph of a system of linear equations. Equation 1 is 3x plus 2y equals 6. Equation 2 is negative 4x plus 5y equals 15. The graphs intersect at a point.
Answer:
exactly oneStep-by-step explanation:
The system of linear equations have:
one solution, infinitely many solutions or no solution.
One solution if the lines intersect.
Infinitely many solutions if the lines are the same (overlap)
There is no solution if the lines are parallel (they do not have a common point).
In the graph, two lines intersect. Therefore, the system of equations has one solution (0, 3).
What criteria can be used to prove these two triangles congruent?
A.AAS
B.ASA
C.HL
D.SSA
Answer:
AAS
Step-by-step explanation:
Substitution Problem:
x+5y=4
3x+15y=-1
There are no solution of System of equations
We have to given that,
System of equations are,
x+5y=4
3x+15y=-1
Now, We can use substitution method as,
x+5y=4 .(i)
3x+15y=-1 .. (ii)
From (i);
x = 4 - 5y
Put above value in (ii);
3 (4 - 5y) + 15y = - 1
12 - 15y + 15y = - 1
12 = - 1
Which is not possible.
Hence, There are no solution of System of equations
Learn more about systems of equations at:
brainly.com/question/14323743
#SPJ6
Need help with this math problem
In the figure, Blueline is Line AB and Redline is target line.
You can see that the target line does not pass through (18,-8)
Step-by-step explanation:
In the figure, Blueline is Line AB and Redline is target line.
You can see that the target line does not pass through (18,-8)
Taking a bottom-left corner of the graph as (0,0)
Given Line AB,
Point A is located as (4,9)
Point B is located as (16,1)
The slope of AB is
[tex]=\frac{Y1-Y2}{X1-X2}[/tex]
[tex]=\frac{9-1}{4-16}[/tex]
[tex]=\frac{8}{-12}[/tex]
[tex]=\frac{-2}{3}[/tex]
The question says " Draw a line passes through C(13,12) and parallel to Line AB "
Now, Let the equation of the target line is y=mx + c
Where m=slope and c is the y-intercept
The target line is parallel to the line AB
The slope of the Target line = The slope of the Line AB [tex]=\frac{-2}{3}[/tex]
m=[tex]=\frac{-2}{3}[/tex]
We can write, the equation of the target line is
[tex]y=\frac{-2}{3}x + c[/tex]
Also, the Target line is passing through C(13,12)
Point C satisfies the equation
[tex]y=\frac{-2}{3}x + c[/tex]
[tex]12=\frac{-2}{3}13 + c[/tex]
[tex]12=\frac{-26}{3} + c[/tex]
[tex]12+\frac{26}{3}=c[/tex]
[tex]c= 12+\frac{26}{3}[/tex]
[tex]c= \frac{62}{3}[/tex]
Replacing the value
the equation of the target line is
[tex]y=\frac{-2}{3}x + c[/tex]
[tex]y=\frac{-2}{3}x + \frac{62}{3} [/tex]
[tex]3y= -2x + 62 [/tex]
It is also asked that if a line is extended , would it passes through the (18,-8)?
If a line passes through the point (18-,8) then, that point must satisfy the equation of a line
the equation of the target line is [tex]3y= -2x + 62 [/tex]
[tex]3(-8)= -2(18) + 62 [/tex]
[tex](-24)= (-36) + 62 [/tex]
[tex](-24)= (-36) + 62 [/tex]
[tex](-24)= 26 [/tex]
Left land side is not equal to right hand side.
Therefore. a line does not pass through the point (18,-8)
12. You have $150 to spend on video games. The inequality 7x + 32y = 150 represents the number x
of used video games and the number y of new video games that you can purchase. Can you
purchase 10 used video games and 3 new video games? Explain.
Answer:
NO
To purchase 10 used video games and 3 new video games you need $166.With $150 is not enough
Step-by-step explanation:
7(10) + 32(3) =
70+96= 166
You can purchase 12 used and 2 new And you will have $2 left
7(12) +2(32) = 148
84+62=148
You cannot purchase 10 used video games and 3 new video games because their total cost of $166 exceeds your budget of $150.
Given inequality: 7x + 32y = 150
Substitute x = 10 and y = 3 into the inequality:
=7(10) + 32(3)
=70 + 96 = 166
Compare with the budget:
166 > 150
Hence, 7(10) + 32(3) = 166
Thus, 66 > 150
HELP!!! WILL MARK BRAINLIEST!!! ASAP.
What was the original number if after an increase of 40%, it became 420.
Answer:
300
Step-by-step explanation:
Let x be the initial number. Initially, this number was 100%.
After an increase of 40%, it became 420 and 100% + 40% = 140% in percent.
So,
x - 100%
420 - 140%
Write a proportion:
[tex]\dfrac{x}{420}=\dfrac{100\%}{140\%}[/tex]
Cross multiply:
[tex]140\cdot x=420\cdot 100\\ \\140x=42,000\\ \\14x=4,200\\ \\x=\dfrac{4,200}{14}=\dfrac{600}{2}=300[/tex]
Answer:
Just going to create this answer so the other person can get brainliest.
Step-by-step explanation:
:) :D <3
When Maggie hooks her dog up to a rope that is staked in the yard, the dog can walk a distance of about 76 feet along the circumference. To the nearest tenth, what is the length of the rope?
C = 76 ft
Choices
12.1 ft
24.2 ft
12.7 ft
8.1 ft
Answer:
12.1
Step-by-step explanation:
76/2π
= 38/π
= 12
Answer: 12.1 ft
Step-by-step explanation:
Hi, to answer this we have to apply the circumference formula:
C= 2πr
Where:
C = circumference ( in this case is 76, since the dog can walk a distance of about 76 feet along the circumference.)
r = radius. (In this case the radius is the length of the rope, because the stake is in the center of the circumference)
Replacing with the values given and solving for "r":
76 = 2πr
76 /( 2π)= 12.0957= 12.1 ft
If 60% of the students prefer waffles to pancakes. If there are 5 students in the class how many students prefer waffles
Please please answer this correctly
Answer:
63 Inches.
Step-by-step explanation:
2 yards - 9 inches is equal to 1.75 yards and when converted to inches, equals 63 inches.
Answer:
63 inches
Step-by-step explanation:
2 yards - 9 inches = 1.75 yards and when converted is 63 inches
4*f(6) - 6*g(5) = can u help me
Answer:
45
Step-by-step explanation:
Answer:
6
Step-by-step explanation: