50 points
Kanna has 2 red pens, 4 black pens, 3 blue pens, 1 purple pen. What is the chance Kanna pulls one of her black pens. Write you answer in a fraction and percentage.

[Note:False answers will be reported]

50 PointsKanna Has 2 Red Pens, 4 Black Pens, 3 Blue Pens, 1 Purple Pen. What Is The Chance Kanna Pulls

Answers

Answer 1

Answer:

4 out of 10 or 4/10 is my answer

Answer 2

Answer:

The fraction will be 4/10, or 2/5.

The percentage will be 40%.

Step-by-step explanation:

The fraction and percentage will be the number of black pens divided by the total number of pens.

We can find the total number of pens by adding all the pens in each color together.

2 + 4 + 3 + 1 = 10

The total number of pens is 10. The number of black pens is 4.

The fraction will be 4/10, or 2/5.

The percentage will be 40%.

I hope this helps. Happy studying. :)


Related Questions

In a calculus​ class, Jack Hartig scored 4 on a quiz for which the class mean and standard deviation were 2.9 and 2.1​, respectively. Norm Alpina scored 8 on another quiz for which the class mean and standard deviation were 6.5 and 1.9​, respectively. Relatively​ speaking, which student did​ better? Make use of​ z-scores.

Answers

Answer: Norm Alpina did better with z-score 0.79

Step-by-step explanation:

Z score formula = (raw score - mean) / standard deviation

For Jack Hartig,

score = 4; mean = 2.9; standard deviation = 2.1

Hence, Z score = (4 - 2.9) /2.1

= 1.1/2.1

= 0.52

For Norm Alpina,

score = 8; mean = 6.5; standard deviation = 1.9

Hence, Z score = (8 - 6.5) /1.9

= 1.5/1.9

= 0.79

Relatively, Norm Alpina did better for having Z score 0.79

By calculating z-scores for both students, which represent the number of standard deviations their scores are from the mean, Norm Alpina has a higher z-score and hence performed relatively better compared to Jack Hartig on their respective quizzes.

In order to determine which student did relatively better on their quizzes, we need to calculate the z-scores for each student. A z-score indicates how many standard deviations an observation is above or below the mean. The formula for a z-score is Z = (X - μ) / σ, where X is the score, μ(mu) is the mean, and σ(sigma) is the standard deviation.

For Jack Hartig:

Z = (4 - 2.9) / 2.1
 = 1.1 / 2.1
 = 0.524

For Norm Alpina:

Z = (8 - 6.5) / 1.9
 = 1.5 / 1.9
 = 0.789

Norm Alpina's z-score is higher, indicating that, relatively speaking, he performed better than Jack Hartig on the quiz based on how their scores relate to their respective class means and standard deviations.

A girl flies a kite at a height 34 m above her hand. If the kite flies horizontally away from the girl at the rate of 3 m/s, at what rate is the string being let out when the length of the string released is 60 m? Assume that the string remains taut.

Answers

Answer:

2.47 m/s

Step-by-step explanation:

A girl flies a kite at a height 34 m above her hand.

It is vertical height of kite, 34 m

The horizontal rate of kite, [tex]\dfrac{dx}{dt}=3/ m/s[/tex]

Let the length of string released be s m

In right triangle using pythagoreous theorem

[tex]s^2=34^2+x^2[/tex]

For s = 60 m ,

[tex]60^2=34^2+x^2[/tex]

[tex]x=49.44[/tex] m

Differentiate the equation  [tex]s^2=34^2+x^2[/tex]  w.r.t  t

[tex]2s\dfrac{ds}{dt}=0+2x\dfrac{dx}{dt}[/tex]

[tex]2\cdot 60\cdot \dfrac{ds}{dt}=2\cdot 49.44\cdot 3[/tex]

[tex]\dfrac{ds}{dt}=\dfrac{296.62}{120}[/tex]

[tex]\dfrac{ds}{dt}=2.47[/tex] m/s

Hence, the rate of string letting out 2.47 m/s

During one month, a rental agency rented a total of 155 cars, trucks, and vans. Nine times as many cars were rented as vans, and three times as many vans were rented as trucks. Let x represent cars, let y represent vans and let z represent trucks. Write a system of three equations that represent the number of each vehicle rented

Answers

Final answer:

The system of equations that represents the number of each vehicle rented is: x + y + z = 155, x = 9y, and y = 3z.

Explanation:

The question represents a system of linear equations. With the agreed notations: Let x represent cars, let y represent vans and let z represent trucks. We are given that:

The total number of all vehicles rented was 155. Therefore, the first equation is: x + y + z = 155. It was also given that nine times as many cars were rented as vans. Thus, the second equation is: x = 9y. Finally, three times as many vans were rented as trucks, giving us the third equation: y = 3z.

Learn more about Linear Equations here:

https://brainly.com/question/32634451

#SPJ3

Solve the inequality and graph the solution
|2x - 7| > 1

Answers

Answer:

Open circle to the right of 4

x > 4

Step-by-step explanation:

Add 7 to both sides

2x > 8

x > 4

Open circle to the right of 4

Suppose that the functions r and a are defined for all real numbers x as follows. r(x)=2x-1 S(x)=5x write the expressions for (r-s)(x)and(r•s)(x)and evaluate(r+s)(-2).

Answers

[tex]\boxed{(r-s)(x)=-3x-1} \\ \\ \boxed{(r\cdot s)(x)=10x^2-5x} \\ \\ \boxed{(r+s)(-2)=-15}[/tex]

Explanation:

In this exercise, we have the following functions:

[tex]r(x)=2x-1 \\ \\ s(x)=5x[/tex]

And they are defined for all real numbers x. So we have to write the following expressions:

First expression:

[tex](r-s)(x)[/tex]

That is, we subtract s(x) from r(x):

[tex](r-s)(x)=2x-1-5x \\ \\ Combine \ like \ terms: \\ \\ (r-s)(x)=(2x-5x)-1 \\ \\ \boxed{(r-s)(x)=-3x-1}[/tex]

Second expression:

[tex](r\cdot s)(x)[/tex]

That is, we get the product of s(x) and r(x):

[tex](r\cdot s)(x)=(2x-1)(5x) \\ \\ By \ distributive \ property: \\ \\ (r\cdot s)(x)=(2x)(5x)-(1)(5x) \\ \\ \boxed{(r\cdot s)(x)=10x^2-5x}[/tex]

Third expression:

Here we need to evaluate:

[tex](r+s)(-2)[/tex]

First of all, we find the sum of functions r(x) and s(x):

[tex](r+s)(x)=2x-1+5x \\ \\ Combine \ like \ terms: \\ \\ (r+s)(x)=(2x+5x)-1 \\ \\ (r+s)(x)=7x-1[/tex]

Finally, substituting x = -2:

[tex](r+s)(-2)=7(-2)-1 \\ \\ (r+s)(-2)=-14-1 \\ \\ \boxed{(r+s)(-2)=-15}[/tex]

Learn more:

Parabola: https://brainly.com/question/12178203

#LearnWithBrainly

Find the circumference. Leave your answer in terms of pi.

Answers

The circumference of circle with radius 18 inches in terms of pi is 36π inches

Solution:

From the given figure, radius "r" = 18 inches

We have to find circumference of circle

circumference would be the length of the circle if it were opened up and straightened out to a line segment.

The circumference of circle is given as:

[tex]\text {circumference of circle }=2 \pi r[/tex]

Where "r" is the radius of circle

Substituting the value r = 18 inches in above formula,

[tex]\text {circumference of circle }=2 \times \pi \times 18=36 \pi[/tex]

Thus circumference of circle in terms of pi is 36π inches

The function f(x) = 2x + 26 represents the distance a flock of birds travels in in miles. The function g(x) = x − 1 represents the time the flock traveled in hours.

Solve f divided by g of 5, and interpret the answer.

Answers

Final answer:

The average speed of the flock of birds over 5 hours is 9 miles per hour, calculated by dividing the distance function f(x) by the time function g(x) at x equal to 5.

Explanation:

The student asked to solve f divided by g of 5 for the given functions f(x) = 2x + 26 and g(x) = x − 1. This will give us the average speed of the flock of birds over the time interval when x equals 5.

First, we substitute x with 5 in both functions:

f(5) = 2(5) + 26 = 10 + 26 = 36 miles

g(5) = 5 − 1 = 4 hours

Next, we divide the outcome of function f by the outcome of function g:

\(\frac{f(5)}{g(5)} = \frac{36}{4} = 9 \) miles per hour

This result represents the average speed of the flock of birds over the time interval when x equals 5 hours.

Find the length of the base of a triangle when one side is 2cm shorter than the base and the other side is 3cm longer than the base. The perimeter is greater than 19cm

Answers

Answer:

  > 6 cm

Step-by-step explanation:

Let b represent the length of the base in cm. Then the perimeter is ...

  b + (b -2) + (b +3) > 19

  3b +1 > 19 . . . . . . collect terms

  3b > 18 . . . . . . . . subtract 1

  b > 6  . . . . . . . . . divide by 3

The length of the base is greater than 6 cm.

Final answer:

The length of the base of the triangle is greater than 6 cm.

Explanation:

To find the length of the base of the triangle, let's assume that the base is x cm. According to the question, one side is 2 cm shorter than the base, so its length would be (x - 2) cm. The other side is 3 cm longer than the base, so its length would be (x + 3) cm. The perimeter of a triangle is the sum of all its sides, so we can set up an equation: x + (x - 2) + (x + 3) > 19. Solving this inequality will give us the value of x, which is the length of the base.

Start by simplifying the equation: 3x + 1 > 19.Subtract 1 from both sides: 3x > 18.Divide both sides by 3: x > 6.

Therefore, the length of the base of the triangle is greater than 6 cm.

Learn more about Length of base of a triangle here:

https://brainly.com/question/35544614

#SPJ2

Betty measured the diagonal length of a playing card to be 6 inches. The short side of the card is 4 inches. What is the length of the side of the playing card?

Answers

Answer:

The length of the longer side is 4.48 inches.

Step-by-step explanation:

Given,

Length of diagonal = 6 in

Length of Short side = 4 in

Solution,

Let the length of long side be x.

Since the card is in the shape of rectangle. On drawing the diagonal the rectangle divides into two equal triangle.

So for find out the length of other side we use the Pythagoras theorem, which states that;

"In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides."

[tex]Hypotenuse^2=(Short\ side)^2+(Long\ side)^2[/tex]

[tex]\therefore 6^2=4^2+x^2\\36=16+x^2\\x^2=36-16=20\\x=\sqrt{20} =2\sqrt{5}[/tex]

[tex]x=2\times2.24=4.48\ in[/tex]

Thus the length of the longer side is 4.48 inches.

What is the height of the pyramid?

Answers

Answer:

Step-by-step explanation:

280 cubit

Answer:

Step-by-step explanation:

The formula for the volume,V of the square base pyramid is

V = 1/3(lwh)

Where

l = length of one side of the base of the pyramid.

w = length of the other side of the base of the pyramid.

h = the perpendicular height of the pyramid. Since the base of the pyramid is a square, l = w

The Volume, V is given as 18069333.3333 cubits^3

l = 440 cubits

w = 440 cubits

18069333.3333 = 1/3 × 440 × 440 × h

18069333.3333 = 64533.33h

h = 18069333.3333/64533.33

h = 280 cubits

The angle of inclination from the base of skyscraper A to the top of skyscraper B is approximately 10.4degrees. If skyscraper B is 1472 feet​ tall, how far apart are the two​ skyscrapers? Assume the bases of the two buildings are at the same elevation.

Answers

Answer:

  8020 feet

Step-by-step explanation:

The tangent relation can be used to answer this question, since it relates the sides of a right triangle to the acute angle.

 tan(elevation angle) = (1472 ft)/(distance between)

Then ...

  distance between = (1472 ft)/tan(10.4°) ≈ 8020 ft

The skyscrapers are 8020 feet apart.

Final answer:

Using the tangent of the given angle of inclination and the height of skyscraper B, the horizontal distance between the bases of the two skyscrapers is calculated to be approximately 8077 feet.

Explanation:

The question is looking for the horizontal distance between the bases of two skyscrapers, given the height of one skyscraper and the angle of inclination from its base to the top of the other. This scenario forms a right triangle, where the height of skyscraper B is the opposite side, the distance between the skyscrapers is the adjacent side, and the angle of inclination is the given angle. We can use the tangent trigonometric function, which is the ratio of the opposite side to the adjacent side, to solve for the distance.

To calculate the distance (adjacent side) we can rearrange the equation: Tan(angle) = opposite/adjacent, to: Adjacent = opposite/tan(angle). Plugging in our given values we find: Distance = 1472 feet / tan(10.4 degrees) = approximately 8077 feet. Thus, the two skyscrapers are about 8077 feet apart.

Learn more about Trigonometry here:

https://brainly.com/question/11016599

#SPJ3

What is the solution of the linear-quadratic system of equations?

y=x^2+5 −3

y − x = 2

Answers

The answer is (1,-5).

Final answer:

The solution to the linear-quadratic system of equations is found by substituting y from the linear equation into the quadratic equation and solving for x, then back-solving for y. The system has two solutions: (-5, -3) and (1, 3).

Explanation:

To solve the linear-quadratic system of equations:


 y = x2 + 5x - 3
 y - x = 2

First, let's use substitution. The second equation can be rearranged to y = x + 2. Substituting this into the first equation gives us:

x + 2 = x2 + 5x - 3

Let's move all terms to one side to make it a quadratic equation:

x2 + 5x - x - 3 - 2 = 0

x2 + 4x - 5 = 0

This is a quadratic equation that can be factored into:

(x + 5)(x - 1) = 0

Setting each factor equal to zero gives us the solutions for x:


 x + 5 = 0 → x = -5
 x - 1 = 0 → x = 1

Now we'll substitute these x-values back into y = x + 2 to find the corresponding y-values:


 For x = -5, y = -5 + 2 = -3
 For x = 1, y = 1 + 2 = 3

Therefore, the system has two solutions: (-5, -3) and (1, 3).

If we needed to use the quadratic formula, it would be in the context of an equation that is not easily factorable.

Learn more about Linear-Quadratic System here:

https://brainly.com/question/29966230

#SPJ2

The price of the 8 ounce box is $2.48, and the price of the 14 ounce box is $3.36. How much greater is the cost per ounce of cereal in the 8 ounce box than in the 14 ounce box

Answers

Answer:

Step-by-step explanation:

The price of the 8 ounce box is $2.48, we will determine the price per ounce for the 8 ounce box

If 8 ounce = $2.48

1 ounce will be 2.48/8 = $0.31

The price of the 14 ounce box is $3.36

we will also determine the price per ounce for the 14 ounce box

If 14 ounce = $3.36

1 ounce will be 3.36/14 = $0.24

To determine how much greater is the cost per ounce of cereal in the 8 ounce box than in the 14 ounce box, we will subtract the unit cost of the 14 ounce box from the 8 ounce box. It becomes

$0.31 - $0.24= $0.07

Jill planted two flowers in her garden. The first flower is 2 inches tall, and it is growing 2.25 inches each week. The second plant is 5.75 inches tall, and it is growing 1.5 inches each week. How many weeks will it be until the two plants are the same height?

Answers

Answer:it will take the two plants 6 weeks before the heights are the same

Step-by-step explanation:

Jill planted two flowers in her garden.

The first flower is 2 inches tall, and it is growing 2.25 inches each week. Since the growth rate is in an arithmetic progression, we will apply the formula for finding the nth term of the series

Tn = a + (n - 1)d

Tn = the nth height of the first flower

a = the initial height of the first flower

d = the common difference in height of the first flower weekly

n = number of weeks

From the information given,

For the first flower,

a = 2

d = 2.25

Tn ?

n ?

Tn = 2 + (n - 1)2.25

For the second flower,

a = 5.75

d = 1.5

Tn ?

n ?

Tn = 5.75 + (n - 1)1.5

To determine the number of weeks that it will take until the two plants are the same height, we would equate Tn for both flowers. It becomes

2 + (n - 1)2.25 = 5.75 + (n - 1)1.5

2 + 2.25n - 2.25 = 5.75 + 1.5n - 1.5

Collecting like terms

2.25n - 1.5n = 5.75 - 1.5 - 2 + 2.25

0.75n = 4.5

n = 4.5/0.75

n = 6 weeks

Final answer:

To find out how many weeks it will be until the two plants are the same height, set up an equation and solve for x. The plants will be the same height after 5 weeks.

Explanation:

To find out how many weeks it will be until the two plants are the same height, we need to set up an equation. Let the number of weeks be represented by x. The height of the first plant can be represented as 2 + 2.25x, and the height of the second plant can be represented as 5.75 + 1.5x. Set these two expressions equal to each other: 2 + 2.25x = 5.75 + 1.5x.



To solve for x, subtract 1.5x from both sides: 2 + 0.75x = 5.75.



Then, subtract 2 from both sides: 0.75x = 3.75.



Finally, divide both sides by 0.75 to solve for x: x = 5.

9. If AXYZ ~ ARST, find the value of x.

Answers

Answer:

12

Step-by-step explanation:

5x-3/3x+2 = 60/40

=> x = 12

Hope it's helpful ;)

Please help me with this!!!

Answers

Answer:

  {A, H, M, O, P, R, S, T} = {1, 7, 5, 0, 8, 6, 4, 9}

or

  {O, A, S, M, R, H, P, T} = {0, 1, 4, 5, 6, 7, 8, 9}

Step-by-step explanation:

Starting in the thousands column, we see the sum P+M+A mod 10 = M, so P + A = 10 or 11. That is, there is a carry to the next column of 1, meaning T + 1 = O, and that sum must also create a carry of 1, so S + 1 = M.

In order for T + 1 to generate a carry, we must have T = 9 and O = 0.

Now, consider the 10s column. This has 36 +A +(carry in) mod 10 = 9. So, A+(carry in) = 3.

Considering the 1s column, we have 9+0+2H+S = H+10 or H+20. We know H+S+9 cannot be 10, so it must be 20. That means H+S = 11, and (carry in) to the 10s column must be 2. Since A = 3 - (carry in), we must have A=1.

At this point, we have ... A=1, T=9, O=0, S+H=11, S+1=M.

Now, consider the 100s column. We know the carry in from the 10s column is 3, so we have 3+2A+R=A+10. Since we know A=1, this means 5+R=11, or R=6.

The carry in to the 1000s column is 1, so we have P+A+1 = 10, or P=8.

__

Our assignments so far are ...

  0 = O, 1 = A, 6 = R, 8 = P, 9 = T.

and we need to find S, M, and H such that M=S+1 and S+H=11. We know S and H cannot be 2, 3, or 5, because the 11's complement of those digits is already assigned. That leaves 4 and 7 for S and H, but we also need an unassigned value that is 1 more than S. These considerations make it necessary that S=4, M=5, H=7.

Then the addition problem is ...

  8197 + 90 + 5197 +491694 +19 = 505197

_____

Final assignments are ...

  O = 0, A = 1, S = 4, M = 5, R = 6, H = 7, P = 8, T = 9

What is the value of x in the figure below? Show your work.

Answers

Answer:

2√26

Step-by-step explanation:

First, let's label side AB as y and side BP as h.

Then, using the Pythagorean Theorem, we can determine that for ΔABP,

5²+h²=y², which is equal to h² = y²- 25.

For ΔBPC, 8²+ h² = x², which is equal to h² = x²- 64.

Because both equations are equal to h², you can determine that y²- 25 = x²- 64. You can rewrite this equation as x²- y² = 39.

Then, for ΔABC, x²+ y² = (5+8)², which is equal to x²+ y² = 169.

Now, you can see that we have a system of equations. Using elimination, we can add the equations, getting:

2x² = 208

x² = 104

x = ±√104 which simplifies into ±2√26, but since x is a distance, and distance is always positive, the answer has to be 2√26.

The cake walk fundraiser sold 44 tickets during the first day of sales. This was 22% of total sales. How many tickets were sold to the cake walk fundraiser?

Answers

Total sales are 200 tickets

Step-by-step explanation:

the formula for percentage will be used for this situation

Given

Sold tickets on first day = 44

Percentage = 22%

Let x be the total sales

Then

[tex]Tckets\ sold\ on\ first\ day = 22\%\ of\ x\\44=0.22*x\\x=\frac{44}{0.22}\\x=200[/tex]

Total sales are 200 tickets

Keywords: Percentage

Learn more about percentage at:

brainly.com/question/1859222brainly.com/question/1993757

#LearnwithBrainly

Answer:

200 (tickets)

Use Euler's formula to derive the identity. (Note that if a, b, c, d are real numbers, a + bi = c + di means that a = c and b = d. Simplify your answer completely.) sin(2θ) = 2 sin(θ) cos(θ) Using Euler's formula, we have ei(2θ) = + i sin(2θ). On the other hand, ei(2θ) = (eiθ)2 = + i sin(θ) 2 = (cos2(θ) − sin2(θ)) + i sin(θ) . Equating Correct: Your answer is correct. parts, we find sin(2θ) = 2 sin(θ) cos(θ).

Answers

Answer with Step-by-step explanation:

We have to prove that

[tex]sin 2\theta=2sin\theta cos\theta[/tex] by using Euler's formula

Euler's formula :[tex]e^{i\theta}=cos\theta+isin\theta[/tex]

[tex]e^{i(2\theta)}=(e^{i\theta})^2[/tex]

By using Euler's identity, we get

[tex]cos2\theta+isin2\theta=(cos\theta+isin\theta)^2[/tex]

[tex]cos2\theta+isin2\theta=(cos^2\theta-sin^2\theta+2isin\theta cos\theta)[/tex]

[tex](a+b)^2=a^2+b^2+2ab, i^2=-1[/tex]

[tex]cos2\theta+isin2\theta=cos2\theta+i(2sin\theta cos\theta)[/tex]

[tex]cos2\theta=cos^2\theta-sin^2\theta[/tex]

Comparing imaginary part on both sides

Then, we get

[tex]sin2\theta=2sin\theta cos\theta[/tex]

Hence, proved.

A soccer ball is kicked in the air off a 22.0 meter high hill. The equation h(t)=-5t^2+10t+22 gives the approximated height h, in meters, of the ball t seconds after it is kicked. What equation can be used to tell if the ball reaches a height of 35 meters? Does the ball reach a height of 35 meters? How can you tell?

Equation:____
Answer:____​

Answers

Answer:

Equation: 5t² − 10t + 13 = 0

Answer: No

Step-by-step explanation:

h(t) = -5t² + 10t + 22

When h(t) = 35:

35 = -5t² + 10t + 22

5t² − 10t + 13 = 0

This equation must have at least one real solution if the ball is to reach a height of 35 meters.  Which means the discriminant can't be negative.

b² − 4ac

(-10)² − 4(5)(13)

100 − 260

-160

The ball does not reach a height of 35 meters.

Answer:

Equation: 5t² − 10t + 13 = 0

Answer: No

Mae king earns a weekly salary of $305 plus a 7.5% commission on sales at a gift shop.How much would she make in a work week if she sold 4,300 worth of merchandise

Answers

Answer:

Step-by-step explanation:

Mae king earns a weekly salary of $305 plus a 7.5% commission on sales at a gift shop. This means that the total amount that she can earn in a week is not fixed. If in a week, she sold 4,300 worth of merchandise, her commission on this amount of sales will be 7.5 % of 4,300

Commission on sales = 7.5/100× 4300 = 0.075×4300= $332.25

Amount of money made for the week will be the sum of her weekly salary and the commission earned on sales. It becomes

305 + 332.25 = $627.5

Mrs.Gonzalez has 36 students in her class and only 9 of them are boys . What percent of the students in Mrs.Gonzalez class are boys? Write a proportion and show your work please

A new pair of wireless earbuds cost $125. You found earbuds online and the website is offering a 20% discount if you buy them this week. But you remember seeing the same earbuds at your local store on sale for $90. Where will you purchases earbuds? Show work to support your answer please

Answers

Question #1:

To find the percentage of boy's in the class, divide.

9 / 36 = 0.25

0.25 * 100% = 25% (boys in the class)

We can write this proportion as 9/36 since this is the same as 25%.

_________

Question #2:

We know that the ear buds in both options cost $125.

The earbuds online are on a 20% discount.

The earbuds in store are on a 90$ sale

Lets find the discount for the online pair.

20% = 0.2

125 * 0.2 = 25

125 - 25 = $100 (price after discount)

After solving we can see that the earbuds in store are a better price. So, you will purchase the ear buds in store.

_________

Best Regards,

Wolfyy :)

The sum of an infinite geometric series is 450, while the common ratio of the series is 4/ 5 . What is the first term of the series? A) 22 1 2 B) 45 C) 90 D) 180

Answers

Answer:

answer is 90 for first term

Step-by-step explanation:

Let the terms be  

First term x

We will use the formula s∞=x/1−r to find the sum of an infinite geometric series, where −1<r<1.  

We know the sum and the common ratio, so we'll be solving for x where r =4/5

s∞=x/1−r

450=x/1−4/5

450=x/1/5

450=5x

x=90

this is the first term x1 = 90

we know that common ratio is 4/5, so multiplying the first term by factor 4/5 to get the second term  

90 x 4/5=   72 second term  

Answer:

C) 90

Step-by-step explanation:

The sum of an infinite geometric series is:

S = a₁ / (1 − r)

where a₁ is the first term and r is the common ratio.

450 = a₁ / (1 − 4/5)

450 = a₁ / (1/5)

450 = 5a₁

a₁ = 90

Machines A and B always operate independently and at their respective constant rates. When working alone, Machine A can fill a production lot in 5 hours, and Machine B can fill the same lot in x hours. When the two machines operate simultaneously to fill the production lot, it takes them 2 hours to complete the job. What is the value of x ?

Answers

Answer:

The value of x is [tex]\frac{10}{3}[/tex] hours.

Step-by-step explanation:

Machine A = 5 hours

Machine B = x hours

Machine A and B = 2 hours

Using the formula: [tex]\frac{T}{A}  + \frac{T}{B} = 1[/tex]

where:

T is the time spend by both machine

A is the time spend by machine A

B is the time spend by machine B

[tex]\frac{2}{5}  + \frac{2}{x}  = 1[/tex]

Let multiply the entire problem by the common denominator (5B)

[tex]5x(\frac{2}{5}  + \frac{2}{x} = 1)[/tex]

2x + 10 = 5x

Collect the like terms

10 = 5x - 2x

10 = 3x

3x = 10

Divide both side by the coefficient of x (3)

[tex]\frac{3x}{3}  = \frac{10}{3}[/tex]

[tex]x = \frac{10}{3}[/tex] hours.

Therefore, Machine B will fill the same lot in [tex]\frac{10}{3}[/tex] hours.

Robert's father is 4 times as old as robert. After 5 years, father will be three times as old as robert.What is their present ages of robert and his father respectively

Answers

Answer: Robert's present age is 10 years

Robert father's present age is 40 years

Step-by-step explanation:

Let r = Robert's current age

Let y = Robert father's current age

Robert's father is 4 times as old as robert. This means that

y = 4x

After 5 years, Robert's father will be three times as old as Robert. This means that

y + 5 = 3(x+5)

y + 5 = 3x + 15 - - - - - - - ;1

We will substitute y = 4x into equation 1. It becomes

4x + 5 = 3x + 15

Collecting like terms,

4x - 3x = 15 - 5

x = 10

y = 4x

Substituting x = 10,

y = 4× 10 = 40 years

The article modeling sediment and water column interactions for hydrophobic pollutants suggests the uniform distribution on the interval (7.5,20) as a model for depth (cm) of the bioturbation layer in sediment in a certain region stats.

1. what is the mean and variance of depth?
2. what is the cdf of depth?
3. what is the probability that observed depth is at most 10? between 10 and 15?
4.what is the probability that the observed depth is within one standard deviation of the mean value? within 2 standard deviations?

Answers

Answer:

1)[tex]\mu=\frac{1}{2}(7.5+20) =13.75[/tex]

[tex]\sigma^2 = \frac{1}{12}(20-7.5)^2 =13.02[/tex]

2) [tex]F(x)=\big\{0, x<a[/tex]

[tex]F(x) =\big\{ \frac{x-a}{b-a}=\frac{x-7.5}{20-7.5}, a\leq x<b[/tex]

[tex]F(x)=\big\{1, x\geq b[/tex]

3) [tex]P(X<10)=F(10)=\frac{10-7.5}{20-7.5}=0.2[/tex]

[tex]P(10\leq X \leq 15)=F(15)-F(10)=\frac{15-7.5}{20-7.5} -\frac{10-7.5}{20-7.5}=0.6-0.2=0.4[/tex]

4) [tex]P(10.142\leq X \leq 17.358)=F(17.358)-F(10.142)=\frac{17.358-7.5}{20-7.5} -\frac{10.142-7.5}{20-7.5}=0.789-0.211=0.578[/tex]

[tex]P(6.534\leqX\leq 20.966)=P(6.534\leq X<7.5)+P(7.5\leq X \leq 20)+P(20<X\leq 20.966)=0+1+0=1[/tex]

Step-by-step explanation:

A uniform distribution, sometimes also known as a rectangular distribution, is a distribution that has constant probability.

Part 1

If X is a random variable that follows an uniform distribution [tex]x\sim U(a,b)[/tex]. The mean for an uniform distribution is given by : [tex]\mu=\frac{1}{2}(a+b)[/tex]

On this case a=7.5 and b=20 so if we replace we got:

[tex]\mu=\frac{1}{2}(7.5+20) =13.75[/tex]

The variance for the uniform distribution is given by this formula:

[tex]\sigma^2 = \frac{1}{12}(b-a)^2 [/tex]

And replacing we have:

[tex]\sigma^2 = \frac{1}{12}(20-7.5)^2 =13.02[/tex]

Part 2

The cumulative distribution function is given by:

[tex]F(x)=\big\{0, x<a[/tex]

[tex]F(x) =\big\{ \frac{x-a}{b-a}=\frac{x-7.5}{20-7.5}, a\leq x<b[/tex]

[tex]F(x)=\big\{1, x\geq b[/tex]

Part 3

What is the probability that observed depth is at most 10?

We are interested on this probability:

[tex]P(X<10)=F(10)=\frac{10-7.5}{20-7.5}=0.2[/tex]

What is the probability that observed depth is between 10 and 15?

On this case we want this probability:

[tex]P(10\leq X \leq 15)=F(15)-F(10)=\frac{15-7.5}{20-7.5} -\frac{10-7.5}{20-7.5}=0.6-0.2=0.4[/tex]

Part 4

What is the probability that the observed depth is within one standard deviation of the mean value? within 2 standard deviations?

First we find the limits within one deviation from the mean:

[tex]\mu-\sigma= 13.75-3.608=10.142[/tex]

[tex]\mu-\sigma= 13.75+3.608=17.358[/tex]

And we want this probability:

[tex]P(10.142\leq X \leq 17.358)=F(17.358)-F(10.142)=\frac{17.358-7.5}{20-7.5} -\frac{10.142-7.5}{20-7.5}=0.789-0.211=0.578[/tex]

Now we find the limits within two deviation's from the mean:

[tex]\mu-2*\sigma= 13.75-2*3.608=6.534[/tex]

[tex]\mu-2*\sigma= 13.75+2*3.608=20.966[/tex]

But since the random variable is defined just between (7.5 and 20) so we can find just the probability on these limits.

[tex]P(6.534\leqX\leq 20.966)=P(6.534\leq X<7.5)+P(7.5\leq X \leq 20)+P(20<X\leq 20.966)=0+1+0=1[/tex]

Final answer:

The probability of the observed depth being at most 10 is 0.295 and between 10 and 15 is 0.295. The probability that the observed depth is within one standard deviation of the mean is 0.525.

Explanation:

To find the mean and variance of the depth, we use the formula:

Mean = (a + b) / 2 = (7.5 + 20) / 2 = 13.75 cm

To find the variance, we use the formula:

Variance = (b - a)^2 / 12 = (20 - 7.5)^2 / 12 ≈ 12.1875 cm^2

The cumulative distribution function (CDF) of depth can be calculated by finding the probability that the observed depth is less than or equal to a certain value. In this case, since the depth follows a uniform distribution, the CDF is:

CDF(x) = (x - a) / (b - a)

To find the probability that the observed depth is at most 10, we substitute x=10 into the CDF formula:

CDF(10) = (10 - 7.5) / (20 - 7.5) = 0.295

To find the probability that the observed depth is between 10 and 15, we subtract the CDF of 10 from the CDF of 15:

Probability = CDF(15) - CDF(10) = (15 - 7.5) / (20 - 7.5) - (10 - 7.5) / (20 - 7.5) = 0.59 - 0.295 = 0.295

To find the probability that the observed depth is within one standard deviation of the mean value, we need to find the range between Mean - Standard Deviation to Mean + Standard Deviation. Since the variance is the square of the standard deviation, we take the square root of the variance to find the standard deviation:

Standard Deviation = √Variance = √12.1875 ≈ 3.49 cm

Hence, the range is (Mean - Standard Deviation, Mean + Standard Deviation):

Range = (13.75 - 3.49, 13.75 + 3.49) = (10.26, 17.24) cm

To find the probability within this range, we calculate the difference between the CDF of 17.24 and the CDF of 10.26:

Probability = CDF(17.24) - CDF(10.26) = (17.24 - 7.5) / (20 - 7.5) - (10.26 - 7.5) / (20 - 7.5) ≈ 0.82 - 0.295 ≈ 0.525

Learn more about Statistics here:

https://brainly.com/question/31538429

#SPJ3

write a proportion and solve for the question.

121.32 croatian kuna is worth US$18. How much in US dollars would you get for 375 croatian kuna?

Answers

Answer:

The worth of 375 Croatian Kuna  = $ 55.54

Step-by-step explanation:

Here, given:

The worth of  121.32 Croatian Kuna   = $18

Now, let us assume the worth of 375 Croatian Kuna  = $ m

As, both have same units in conversion at the same rate,

So, by the RATIO OF PROPORTION:

[tex]\frac{18}{121.32 }   = \frac{m}{375}[/tex]

Solving for the value of m, we get:

[tex]m = \frac{18}{121.32}  \times 375  = 55.64[/tex]

or, m = $55.64

Hence, the worth of 375 Croatian Kuna  = $ 55.54

The perpendicular bisector of side AB of triangle ABC intersects the extension of side AC at D. Find the measure of angle ABC if measurement of angle CBD=16 degrees and measurement of angle ACB=118 degrees

Answers

Answer:

  23°

Step-by-step explanation:

Let the interior angles of ΔABC be referenced by A, B, and C. The definition of point D means that ΔDAB is an isosceles triangle, so we have the relations ...

  A + B + 118 = 180 . . . . interior angles of ΔABC

  A = B +16 . . . . . . . . . . base angles of ΔDAB

Using the expression for A in the second equation to substitute into the first equation, we get ...

  (B+16) +B +118 = 180

  2B + 134 = 180 . . . . . collect terms

  2B = 46 . . . . . . . . . . . subtract 134

  B = 23 . . . . . . . . . . . . divide by 2

m∠ABC = 23°

Nancy is the proud owner of a new car. She paid $1,500 up front and took out a loan for the rest of the amount. The interest rate on the loan is 5%. If the total cost of buying the car (including the interest Nancy owes) is more than $16,213.02, how much money did Nancy borrow?

Answers

Answer:

Step-by-step explanation:

In order to buy the new car, Nancy

paid $1,500 up front and took out a loan for the rest of the amount.

Let x = The amount of loan that she took.

The interest rate on the loan is 5%.

This means that she paid interest of 5/100 × x = 0.05 × x

= 0.05x

If the total cost of buying the car (including the interest Nancy owes) is more than $16,213.02,

It means that

1,500 + x + 0.05x is greater than 16,213.02

1500 + 1.05x = 16213.02

1.05x = 16,213.02 - 1500

1.05x = 114713.02

x = 114713.02/1.05

x = $109250 .49524

The amount that Nancy borrowed is greater than $109250 .49524

Answer:

amount borrowed + interest = x+5% of x

                                               = x + 5/100x

                                               = x + 0.05x

                                               = 1.05x

The expression 1.05x represents the sum of the amount Nancy borrowed and the interest she owes on that amount.

Step-by-step explanation:

Dale graphed the absolute value parent function. Then, he reflected the graph over the x-axis, shifted it four units to the right and three units up. Give the new equation

Answers

Answer:

i(x) = - |x - 4| + 3

Step-by-step explanation:

Refer to attached graph

Parent function:

f(x) = |x|, solid black on the graph

Transformations

1. Reflection over x-axis: f(x) →  -f(x)

g(x) = -|x|, dotted blue on the graph

2. Horizontal shift 4 units to the right: g(x) → g(x - 4)

h(x) = -|x - 4|, dotted green on the graph

3. Vertical shift 3 units up: h(x)  → h(x) + 3

i(x) = - |x - 4| + 3, solid red on the graph

This is the final function

Other Questions
Eric is swimming along the surface of the sea. He usespositive numbers to represent elevations above thesurface of the sea and negative numbers to representsdepths under the surface of the sea.Mark is sitting on the deck of a ship above Eric, and Arielis diving beneath Eric.Who could be at an elevation of -3 m?Choose 1 answer:ArielEricMark A fear-potentiated startle is... a. the difference between a startle response in a neutral condition and in a high arousal condition. b. found in animals but not in humans. c. the startle response that one has to an unexpected burst of noise. d. an expression of fear. What can you conclude about the relationship between the time spent watching tv and the grades received on the quiz? Explain how two compounds can have the same percentage composition but different molecular masses? Whats is the difference 58-9 what seasons is in the northern and southern hemisphere? Rewrite the formula for area of a circle to find the radius of a circle.The area of a circle (A) is given by the formula A=r^2 where r is the circle's radius. The formula to find r is (1)_____. If A=54 centimeters^2 and =22/7, r is (2)_____ centimeters.1. (A/pi)^1/2; A^2/pi; pi/A2. 4.15; 2.33; 17.2 The figure shown is a rectangle. The green shape in the figure is a square. The blue and white shapes are rectangles, and the area of the blue rectangle is 24 square inches.A. Write an expression for the area of the entire figure that includes an exponent. Then find the area. B. Find the dimensions of the entire figure. What is an equation that represents the line that passes through the point (-2, 2) and is parallel toY=1/2X+ 8? Jack's mother gave him 50 chocolates to give to his friends at his birthday party. He gave 3 chocolates to each of his friends and still had 2 chocolates left.Write an equation to determine the number of friends (x) at Jack's party.Find the number of friends at Jack's party. friends The government of Preon (a small island nation) was voted in at the last election with 68% of the votes. That was 2 years ago, and ever since then the government has assumed that their approval rating has been the same. Some recent events have affected public opinion and the government suspects that their approval rating might have changed. They decide to run a hypothesis test for the proportion of people who would still vote for them.The null and alternative hypotheses are:H0: Pi symbol = 0.68HA: Pi symbol 0.68The level of significance used in the test is = 0.1. A random sample of 102 people are asked whether or not they would still vote for the government. The proportion of people that would is equal to 0.745. You may find this standard normal table useful throughout this question.Calculate the test statistic (z) for this hypothesis test. Glucose-6-phosphate dehydrogenase deficiency (G6PD) is inherited as an X-linked recessive allele in humans. A woman whose father suffered from G6PD marries a man who has the disease. What proportion of their sons would have the disease? A ______ perspective would be most likely to focus on how the desire to accumulate capital and wealth leads to an attempt to reduce both human and environmental labor costs while expanding production and increasing inequality and environmental degradation. On a tropical island there are 100 potential boat builders, numbered 1 through 100. Each can build up to 16 boats a year, but anyone who goes into the boatbuilding business has to pay a fixed cost of $15. Marginal costs differ from person to person. Where y denotes the number of boats built per year, boat builder 1 has a total cost function c(y) = 15 + y. Boat builder 2 has a total cost function c(y) = 15 + 2y, and more generally, for each i, from 1 to 100, boat builder i has a cost function c(y) = 15 +iy. If the price of boats is 40, how many boats will be built per year? a. 624 b. 200 c. 936 d. 400 e. Any number between 640 and 656 is possible. Graphic organizers help readers ___ that way the information is connected An unknown element is found to have three naturally occurring isotopes with atomic masses of 35.9675 (0.337%), 37.9627 (0.063%) and 39.9624 (99.600%). Which of the following is the unknown element? A) Ar B) K C) CI D) Ca E) None of the above could be the unknown element. A publisher of photography books finds that it is cost-effective to print 10,000 or more at a time. But abookstore orders only a few copies of each book since its customers want to select from a wide variety.This example shows:a. why discrepancies of quality occurb. why both discrepancies of quantity and assortment occurc. neither discrepancies of assortment or quantityd. why discrepancies of assortment occure. multichannel distribution Which of the following are true? a. Ideally, we should use book values in the WACC. b. Book values are often similar to market values for equity. c. Ideally, we should use market values in the WACC. d. The market value of debt and equity are not reliable in case of privately owned company. Find the value for .sin=cos(18.5)Question 6 options:35.7571.554.25161.5 Osmosis, or the movement of water into and out of a cell, is directly related to the concentration gradient on both sides of the cell membrane and indirectly to the fact thatA)water has a high heat of vaporization.B)water has hydrogen bonds that promote cohesion.C)the adhesive properties of water promote its capillarity.D)the polarity of water molecules make it the universal solvent