6. Air at 300°C and 130kPa ows through a horizontal 7-cm ID pipe at a velocity of 42.0m/s. (a) Calculate _ Ek W, assuming ideal-gas behavior. (b) If the air is heated to 400°C at constant pressure, what is Δ _ Ek _ Ek 400°C _ Ek 300°C? (c) Why would it be incorrect to say that the rate of transfer of heat to the gas in Part (b) must equal the rate of change of kinetic energy?

Answers

Answer 1

Answer:

Check the explanation

Explanation:

kindly check the attached image below to see the answer to question A and B

(c) The energy balance equation if the pressure is constant (ΔE=0) is,

ΔE= ΔU + Δ[tex]E_{k}[/tex]

From the above relation, it is clear that some heat energy used to raises the temperature of the air.

Hence, the internal energy is not equal to zero. Therefore, the rate of transfer of heat to air is not equal to the rate of thane in kinetic energy of the air.

That is ΔE ≠ Δ[tex]E_{k}[/tex]

6. Air At 300C And 130kPa Ows Through A Horizontal 7-cm ID Pipe At A Velocity Of 42.0m/s. (a) Calculate
Answer 2

Answer:

a) [tex]\delta E_k[/tex] = 112.164 W

b) [tex]\delta E_k[/tex]  = 42.567 W

c) From what we've explained in part b;  increase in temperature of the system is caused by rate of heat transfer . Therefore, not all heat is used to  increase kinetic energy. Hence, since not all the heat is used to increase the kinetic energy . It is not valid and it is incorrect to say that rate of heat transfer is equal to the change in kinetic energy.

Explanation:

The given data include:

Inlet diameter [tex](d_1)[/tex] = 7 cm = 0.7 m

Inlet velocity [tex](v_1)[/tex] = 42 m/s

Inlet pressure [tex](P_1)[/tex] = 130 KPa

Inlet temoerature [tex](T_1)[/tex] = 300°C = (300 + 273.15) = 573.15 K

a)  Assuming Ideal gas behaviour

Inlet Volumetric flowrate [tex](V_1)[/tex] = Inlet velocity [tex](v_1)[/tex] × area of the tube

[tex]= v_1*(\frac{\pi}{4})0.07^2\\\\= 0.161635 \ m^3/s[/tex]

Using Ideal gas law at Inlet 1

[tex]P_1V_1 =nRT_1[/tex]

where ; n = molar flow rate of steam

making n the subject of the formula; we have:

[tex]n = \frac{P_1V_1}{RT_1}[/tex]

[tex]n = \frac{130*42}{8.314*573.15}[/tex]

[tex]n= 4.4096*10^{-3} \ Kmol/s[/tex]

Moleular weight of air = 28.84 g/mol

The mass flow rate = molar flowrate × molecular weight of air

[tex]= 4.4096*10^{-3} \ * 28.84\\= 0.12717 \ kg/s[/tex]

Finally: the kinetic  energy at Inlet [tex](\delta E_k) = \frac{1}{2}*mass \ flowrate *v_1^2[/tex]

= [tex]0.5*0.12717*42^2[/tex]

= 112.164 W

b) If the air is heated to 400°C;

Then temperature at 400°C = (400 + 273.15)K = 673.15 K

Thee pressure is also said to be constant ;

i.e [tex]P_1= P_2[/tex] = 130 KPa

Therefore; the mass flow rate is also the same ; so as the molar flow rate:

Thus; [tex]n= 4.4096*10^{-3} \ Kmol/s[/tex]

Using Ideal gas law at Inlet 2

[tex]P_2V_2 = nRT_2[/tex]

making [tex]V_2[/tex] the subject of the formula; we have:

[tex]V_2 = \frac{nRT_2}{P_2}[/tex]

[tex]V_2 = \frac{4.4906*10^{-3}*8.314*673.15}{130}[/tex]

[tex]V_2 = 0.189836 \ m^3/s[/tex]

Assuming that the diameter is constant

[tex]d_1 = d_2 = 0.07 \ cm[/tex]

Now; the velocity at outlet = [tex]\frac{V_2}{\frac{\pi}{4}d_2^2}[/tex]

= [tex]\frac{0.0189836}{\frac{\pi}{4}(0.07)^2}[/tex]

= 49.33 m/s

Change in kinetic energy [tex]\delta E_k[/tex]  = [tex]\frac{1}{2}*mass \ flowrate * \delta V[/tex]

= [tex]0.5*0.12717 *(49.33^2 -42^2)[/tex]

= 42.567 W

c).

From what we've explained in part b; increase in temperature of the system is caused by rate of heat transfer . Therefore, not all heat is used to  increase kinetic energy. Hence, since not all the heat is used to increase the kinetic energy . It is not valid and it is incorrect to say that rate of heat transfer is equal to the change in kinetic energy.


Related Questions

Provide a preliminary design o fa n air stripping column t o remove toluene from ground­ water. Levels of toluene range from 0.1 to 2.1 mglL and this must be reduced to 50 f.LglL. A hydrogeologic study of the area indicates that a flow rate of 1 1 0 gal/min is required to ensure that contamination not spread. Laboratory investigations have determined the overall transfer constant, KLa = 0.020 s-' . Use a column diameter of 2.0 feet and an air-to-water ratio of 15. Specifically determine: liquid loading rate, stripping factor, and height of the tower. Provide a sketch of the unit indicating all required appurtenances.

Answers

Answer:

Explanation:

Find attach the solution

Draw the structure(s) of the organic product(s) predicted when this compound reacts with NaBH4, ethanol then H3O . Use the wedge and dash tools to indicate stereochemistry as appropriate.

Answers

Answer:

what subject is this and how can u draw the structure :)

Final answer:

The reaction involves reduction of the given compound using NaBH4, followed by solvolysis with ethanol and protonation with H3O. Organic molecules structures are often simplified using the skeletal structure method. The stereochemistry of compounds can be represented using wedge and dash notation.

Explanation:

The given reaction involves the reduction of an organic compound using NaBH4, followed by the treatment with ethanol and then H3O. When a carbonyl compound reacts with NaBH4, the borohydride group of NaBH4 (it is a weak reducing agent with H-) adds to the carbonyl carbon. This process, known as reduction, transforms the carbonyl group to an alcohol. Following reduction, the compound is undergoing solvolysis in ethanol and then protonated with H3O. Due to the restriction of the platform, displaying the structural representation of the organic product is limited.

The wedge and dash notation can be used to represent the stereochemistry of the compounds. Solid wedges represent bonds coming up out of the plane whereas dashed lines represent bonds going into the plane. These techniques assist chemists to define molecular structures in three dimensions. Skeletal structure, a common way of simplifying complex organic structures in chemistry, represents carbons as each end of a line or bend in a line.

Learn more about Organic Chemistry here:

https://brainly.com/question/14623424

#SPJ12

For most solids at room temperature, the specific heat is determined by oscillations of the atom cores in the lattice (each oscillating lattice site contributes 3kT of energy, by equipartition), as well as a contribution from the mobile electrons (if it's a metal). At room temperature the latter contribution is typically much smaller than the former, so we will ignore it here. In other words, you can reasonably estimate the specific heat simply by counting the number of atoms! Use this fact to estimate the specific heat of copper (atomic mass = 63.6), given that the specific heat of aluminum (atomic mass = 27.0) is 900 J/kg-K.

Answers

Answer:

The specific heat of copper is  [tex]C= 392 J/kg\cdot ^o K[/tex]

Explanation:

From the question we are told that

The amount of energy contributed by each oscillating lattice site  is  [tex]E =3 kT[/tex]

       The atomic mass of copper  is  [tex]M = 63.6 g/mol[/tex]

        The atomic mass of aluminum is  [tex]m_a = 27.0g/mol[/tex]

        The specific heat of aluminum is  [tex]c_a = 900 J/kg-K[/tex]

 The objective of this solution is to obtain the specific heat of copper

       Now specific heat can be  defined as the heat required to raise the temperature of  1 kg of a substance by  [tex]1 ^o K[/tex]

  The general equation for specific heat is  

                    [tex]C = \frac{dU}{dT}[/tex]

Where [tex]dT[/tex] is the change in temperature

             [tex]dU[/tex] is the change in internal energy

The internal energy is mathematically evaluated as

                       [tex]U = 3nk_BT[/tex]

      Where  [tex]k_B[/tex] is the Boltzmann constant with a value of [tex]1.38*10^{-23} kg \cdot m^2 /s^2 \cdot ^o K[/tex]

                    T is the room temperature

                      n is the number of atoms in a substance

Generally number of  atoms in mass of an element can be obtained using the mathematical operation

                      [tex]n = \frac{m}{M} * N_A[/tex]

Where [tex]N_A[/tex] is the Avogadro's number with a constant value of  [tex]6.022*10^{23} / mol[/tex]

          M is the atomic mass of the element

           m actual mass of the element

  So the number of atoms in 1 kg of copper is evaluated as  

             [tex]m = 1 kg = 1 kg * \frac{10000 g}{1kg } = 1000g[/tex]

The number of atom is  

                       [tex]n = \frac{1000}{63.6} * (6.0*0^{23})[/tex]

                          [tex]= 9.46*10^{24} \ atoms[/tex]

Now substituting the equation for internal energy into the equation for specific heat

          [tex]C = \frac{d}{dT} (3 n k_B T)[/tex]

              [tex]=3nk_B[/tex]

Substituting values

         [tex]C = 3 (9.46*10^{24} )(1.38 *10^{-23})[/tex]

            [tex]C= 392 J/kg\cdot ^o K[/tex]

How many moles of gas are present in 1.13 L of gas at 2.09 atm and 291 K?

Answers

Answer:

n = 0.0989 moles

Explanation:

n = PV / RT

P = 2.09atm

V = 1.13L

R = 0.08206

T = 291K

Plug the numbers in the equation.

n = (2.09atm)(1.13L) / (0.08206)(291K)

n = 0.0989 moles

Final answer:

Using the ideal gas law PV = nRT, and rearranging for n (moles), we plug in the given values of pressure, volume, and temperature alongside the ideal gas constant to calculate the number of moles of gas present. There are approximately 0.0988 moles of gas present in 1.13 L of gas at [tex]\(2.09 \, \text{atm}\) and \(291 \, \text{K}\).[/tex]

Explanation:

To calculate the number of moles of gas present, we can use the ideal gas law equation:

[tex]\[ PV = nRT \][/tex]

First, we need to convert the given pressure to atm and the volume to liters if they are not already in those units.

Given:

- [tex]\( P = 2.09 \, \text{atm} \)[/tex]

-[tex]\( V = 1.13 \, \text{L} \[/tex]

- [tex]\( T = 291 \, \text{K} \)[/tex]

Now, we can rearrange the ideal gas law equation to solve for \( n \):

[tex]\[ n = \frac{PV}{RT} \][/tex]

[tex]\[ n = \frac{(2.09 \, \text{atm})(1.13 \, \text{L})}{(0.0821 \, \text{atm} \cdot \text{L} / \text{mol} \cdot \text{K})(291 \, \text{K})} \][/tex]

[tex]\[ n = \frac{2.3617}{23.9211} \][/tex]

[tex]\[ n \approx 0.0988 \, \text{mol} \][/tex]

Therefore, There are approximately 0.0988 moles of gas present in 1.13 L of gas at [tex]\(2.09 \, \text{atm}\) and \(291 \, \text{K}\).[/tex]

The phosphorylation of glucose to glucose 6-phosphate Group of answer choices is so strongly exergonic that it does not require a catalyst. is an exergonic reaction not coupled to any other reaction. is an endergonic reaction that takes place because it is coupled to the exergonic hydrolysis of ATP. is an exergonic reaction that is coupled to the endergonic hydrolysis of ATP.

Answers

Answer:

The phosphorylation of glucose to glucose-6-phosphate is endergonic reaction that is coupled to the exergonic hydrolysis of ATP.

Explanation:

In glycosis, the first reaction that takes place is the phosphorylation of glucose to glucose-6-phosphate by the enzyme hexokinase. This is an exergenic reaction. This is a coupled reaction in which phosphorylation of glucose is coupled to ATP hydrolysis. The free energy of ATP hydrolysis fuels glucose phosphorylation.

After treating cyclohexanone with LDA, he then added tert-butyl bromide to the same reaction vessel, which one would normally do for a one-pot two-step reaction sequence. However, none of the desired compound formed. Instead, he isolated three organic compounds in a 1:1:1 ratio. What is the structure of each of these organic compounds?

Answers

Answer:

2-Tert-butyl-cyclohexanone, 2,6-Di-Tert-Butylcyclohexanone and Di-isopropyl-amine.  

Explanation:

Mole ratios for a solving a stoichiometry problem are obtained from the

1. Molar Mass
2. Periodic Table
3. Balanced Equation
4. Total Mass of the Products

Answers

Mole ratios are obtained from the periodic table

Find the pHpH of a solution prepared from 1.0 LL of a 0.15 MM solution of Ba(OH)2Ba(OH)2 and excess Zn(OH)2(s)Zn(OH)2(s). The KspKsp of Zn(OH)2Zn(OH)2 is 3×10−153×10−15 and the KfKf of Zn(OH)2−4Zn(OH)42− is 2×10152×1015.

Answers

Answer:

pH  = 13.09

Explanation:

Zn(OH)2 --> Zn+2 + 2OH-   Ksp = 3X10^-15

Zn+2 + 4OH-   --> Zn(OH)4-2   Kf = 2X10^15

K = Ksp X Kf

  = 3*2*10^-15 * 10^15

  = 6

Concentration of OH⁻ = 2[Ba(OH)₂] = 2 * 0.15 = 3 M

                Zn(OH)₂ + 2OH⁻(aq)  --> Zn(OH)₄²⁻(aq)

Initial:           0             0.3                      0

Change:                      -2x                     +x

Equilibrium:               0.3 - 2x                 x

K = Zn(OH)₄²⁻/[OH⁻]²

6 = x/(0.3 - 2x)²  

6 = x/(0.3 -2x)(0.3 -2x)

6(0.09 -1.2x + 4x²) = x

0.54 - 7.2x + 24x² = x

24x² - 8.2x + 0.54 = 0

Upon solving as quadratic equation, we obtain;

x = 0.089

Therefore,

Concentration of (OH⁻) = 0.3 - 2x

                                    = 0.3 -(2*0.089)

                                  = 0.122

pOH = -log[OH⁻]

         = -log 0.122

          = 0.91

pH = 14-0.91

     = 13.09

A sealed copper container with a mass of 0.3 kg is filled with 1.5 mole of helium gas. Initially, the helium gas is at a temperature of 124 oC and the copper container is at 20 oC. The helium-copper system is thermally isolated. Note that the specific heat of copper is 386 J/(kgK) and the molar specific heat of helium is 12.5 J/(molK). Find the equilibrium temperature of the system.

Answers

Answer:

[tex]T = 34.493\,^{\textdegree}C[/tex]

Explanation:

The equilibrium temperature of the gas-container system is:

[tex]Q_{Cu} = -Q_{g}[/tex]

[tex](0.3\,kg)\cdot\left(386\,\frac{J}{kg\cdot ^{\textdegree}C} \right)\cdot (T-20\,^{\textdegree}C) = (1.5\,mol)\cdot \left(12.5\,\frac{J}{mol\cdot ^{\textdegree}C} \right)\cdot (124\,^{\textdegree}C-T)[/tex]

[tex]\left(115.8\,\frac{J}{^{\textdegree}C} \right)\cdot (T-20\,^{\textdegree}C) = \left(18.75\,\frac{J}{^{\textdegree}C} \right)\cdot (124\,^{\textdegree}C-T)[/tex]

[tex]134.55\cdot T = 4641[/tex]

[tex]T = 34.493\,^{\textdegree}C[/tex]

g Identify which of the following statements about human glycogen debranching enzyme are true based on the HPLC results. The (α‑1→6) glucosidase catalytic center is in the C‑terminal half. The transferase catalytic center can hydrolyze α‑1,6 glycosidic bonds. The oligo‑(α1→4)‑(α1→4) glucanotransferase catalytic center is in the C‑terminal half. Oligo‑(α1→4)‑(α1→4) glucanotransferase activity creates a substrate for (α‑1→6) glucosidase. Based on the peaks in the HPLC charts, what do you think is the most likely substrate for the oligo‑(α1→4)‑(α1→4) glucanotransferase catalytic center of glycogen debranching enzyme? maltotetraosyl and glucosyl residues 6‑O‑α‑glucosyl cyclomaltoheptaose maltosyl and maltotriosyl residues maltoheptaosyl and maltooctaosyl residues cyclomaltoheptaose (β‑cyclodextrin)

Answers

Final answer:

The most likely substrates for the oligo-(α1→4)-(α1→4) glucanotransferase catalytic center of glycogen debranching enzyme are maltosyl and maltotriosyl residues.

Explanation:

The glycogen debranching enzyme has two activities; it acts as a glucosidase and a glucanotransferase. The (α‑6) glucosidase activity hydrolyzes α-1,6 glycosidic bonds, whereas the oligo-(α1→4)-(α1→4) glucanotransferase activity shifts α-1,4-linked glucose chains from one branch to another, often creating a substrate that the glucosidase can act upon. Based on the mechanism of glycogenolysis, the enzyme glycogen phosphorylase releases glucose units from the linear chain until a few are left near the branching point, and it is here that the glucan transferase action is relevant. The glucan transferase shifts the remaining α-1,4 linked glucose units, leaving a single α-1,6 linked glucose that the glucosidase can then release. Hence, the most likely substrates for the oligo-(α1→4)-(α1→4) glucanotransferase catalytic center are maltosyl and maltotriosyl residues, as these are the short α-1,4 linked glucose chains that are left after phosphorylase action.

Learn more about glycogen debranching enzyme here:

https://brainly.com/question/34217917

#SPJ3

Suppose the formation of nitryl fluoride proceeds by the following mechanism:
Step. Elementary reaction. Rate constant
1. NO2(g)+F2(g)=NO2F(g)+F(g). K1
2. F(g)+NO2(g)=NO2F(g). K2
Suppose also k1<
Write the balanced chemical equation for the overall chemical reaction:

Write the experimentally observable rate law for the overall chemical reaction:
Note your answer should not contain concentrations or any intermediates.

Express the rate constant k for the overall chemical reaction in terms of k1, k2, and If necessary the rate constants k-1 and k-2 for the reverse of two elementary reactions in the mechanism.

Answers

Final answer:

The balanced chemical equation for the overall chemical reaction is 2NO2(g) + F2(g) → 2NO2F(g). The experimentally observable rate law for the overall chemical reaction is Rate = k [NO2]^2 [F2]. The rate constant k for the overall chemical reaction can be expressed in terms of k1, k2, k-1, and k-2 as k = k1 (k2/k-1).

Explanation:

The balanced chemical equation for the overall chemical reaction is:

2NO2(g) + F2(g) → 2NO2F(g)

The experimentally observable rate law for the overall chemical reaction is:

Rate = k [NO2]2 [F2]

The rate constant k for the overall chemical reaction can be expressed in terms of k1, k2, k-1, and k-2 as:

k = k1 (k2/k-1)

Determine the ground-state electron configuration and bond order for each of the Period 2 diatomic molecules. Specify which MO is the HOMO and which is the LUMO. List the molecules in order of increasing dissociation and list them in order of bond length. You may need to THINK a bit to get this correct

Answers

Answer:

Explanation:

check the attachment below for correct explanations.

A particular reaction has an activation energy, Ea, of 117 kJ/mol. If the rate constant for the reaction is 0.00289 s −1 at 590 °C, at what temperature(in°C) would the rate constant be 0.492 s −1?

Answers

Answer:

986.9 °C

Explanation:

To find the temperature we can use the Arrhenius equation:

[tex] k = Ae^{(-E_{a}/RT)} [/tex]   (1)

Where:

k: is the reaction rate coefficient

A: is the pre-exponential factor

Ea: is the activation energy

R: is the gas constant

T: is the absolute temperature

With the values given:

T = 590 °C = 863 K; Ea = 117 kJ/mol; k = 0.00289 s⁻¹,

we can find the pre-exponential factor, A:

[tex]A = \frac{k}{e^{(-E_{a}/RT)}} = \frac{0.00289 s^{-1}}{e^{(-117 \cdot 10^{3} J*mol^{-1}/(8.314 J*K^{-1}*mol^{-1}*863 K))}} = 3.49 \cdot 10^{4} s^{-1}[/tex]

Now, we can find the temperature by solving equation (1) for T:

[tex] ln(\frac{k}{A}) = -\frac{E_{a}}{RT} [/tex]

[tex] T = -\frac{E_{a}}{R*ln(\frac{k}{A})} = -\frac{117 \cdot 10^{3} J*mol^{-1}}{8.314 J*K^{-1}*mol^{-1}*ln(\frac{0.492 s^{-1}}{3.49 \cdot 10^{4} s^{-1}})} = 1259.9 K = 986.9 ^{\circ} C [/tex]

Therefore, at 986.9 °C, the rate constant will be 0.492 s⁻¹.

I hope it helps you!  

Answer:

The temperature is 1259.4 K (986.4°C)

Explanation:

Step 1: Data given

The activation energy Ea, = 117 kJ/mol

the rate constant for the reaction is 0.00289 s −1 at 590 °C

The new rate constant = 0.492 s −1

Step 2: Calculate the temperature

ln(kX / k 590°C)  =  Ea/R * (1/T1 - 1/T2)

⇒with kX is the rate constant at the new temperature = 0.492 /s

⇒with k 590 °C = the rate constant at 590 °C = 0.00289 /s

⇒with Ea = the activation energy = 117000 J/mol

⇒with R = the gas constant = 8.314 J/mol*K

⇒with T1 = 590 °C = 863 K

⇒ with T2 = the new temperature

ln (0.492 / 0.00289) = 117000/8.314 *(1/863 - 1/T2)

5.137 =14072.6 * (1/863 - 1/T2)

3.65*10^-4 = (1/863 - 1/T2)

3.65*10^-4 = 0.001159 - 1/T2

0,000794‬ = 1/T2

T2 = 1259.4 K

The temperature is 1259.4 K or 986.4 °C

At a certain temperature the rate of this reaction is first order in HI with a rate constant of :7.21/s2HI(g) = H2(g) + I2(g)Suppose a vessel contains HI at a concentration of 0.440M. Calculate the concentration of HI in the vessel 0.210 seconds later. You may assume no other reaction is important.

Answers

Answer:

C HI = 0.0968 M

Explanation:

2HI(g) → H2(g) + I2(g)- ra = K(Ca)∧α = - δCa/δt

∴ a: HI(g)

∴ order (α) = 1

∴ rate constant (K) = 7.21/s

∴ Initial concenttration HI(g) (Cao) = 0.440 M

∴ t = 0.210 s ⇒ Ca = ?

⇒ - δCa/δt = KCa

⇒ - ∫δCa/Ca = K*∫δt

⇒ Ln(Cao/Ca) = K*t

⇒ Cao/Ca = e∧(K*t)

⇒ Cao/e∧(K*t) = Ca

⇒ Ca = (0.440)/e∧((7.21*0,21))

⇒ Ca = 0.440/4.54533

⇒ Ca = 0.0968 M

Consider the following initial rate data (at 273 K) for the decomposition of a substrate (substrate 1) which decomposes to product 1 and product 2: [Substrate 1] (M) Initial Rate (M/s) 0.4 0.183 0.8 0.183 2 0.183 Determine the half-life for the decomposition of substrate 1 when the initial concentration of the substrate is 2.77 M.

Answers

Answer:

15.1 seconds is the half life of the reaction when concentration of the substrate is 2.77 M.

Explanation:

A → B + C

The rate law of the reaction will be :

[tex]R=k[A]^x[/tex]

Initial rate of the reaction when concentration of the substrate was 0.4 M:

[tex]0.183 M/s=k[0.4 M]^x[/tex]..[1]

Initial rate of the reaction when concentration of the substrate was 0.8 M:

[tex]0.183 M/s=k[0.8 M]^x[/tex]...[2]

[1] ÷ [2] :

[tex]\frac{0.183 M/s}{0.183 M/s}=\frac{k[0.4 M]^x}{k[0.8 M]^x}[/tex]

x = 0

The order of the reaction is zero.

For the value of rate constant ,k:

[tex]0.183 M/s=k[0.4 M]^x[/tex]..[1]

x = 0

[tex]0.183 M/s=k[0.4 M]^0[/tex]

k= 0.183 M/s

The half life of the zero order kinetics is given by :

[tex]t_{1/2}=\frac{[A_o]}{2k}[/tex]

Where:

[tex][A_o][/tex] = Initial concentration of A

k = Rate constant of the reaction

So, the half-life for the decomposition of substrate 1 when the initial concentration of the substrate is 2.77 M:

[tex]t_{1/2}=\frac{2.77 M}{0.183 M/s}=15.1 s[/tex]

15.1 seconds is the half life of the reaction when concentration of the substrate is 2.77 M.

Final answer:

The half-life for the decomposition of substrate 1 when the initial concentration is 2.77 M is approximately 18 minutes.

Explanation:

The half-life of a reaction is the time required for one-half of a given amount of reactant to be consumed. In this case, we have initial rate data for the decomposition of substrate 1 with varying concentrations. To determine the half-life of substrate 1, we need to find the time it takes for the concentration to decrease to half its initial value.

Based on the given data, we can see that the initial rate of the reaction is constant at 0.183 M/s for different initial concentrations of substrate 1 (0.4 M, 0.8 M, and 2 M). Since the initial concentration of substrate 1 is given as 2.77 M, it will take the same amount of time as the other initial concentrations to reach half its initial concentration.

Therefore, the half-life for the decomposition of substrate 1 when the initial concentration of the substrate is 2.77 M is the same as the half-life observed when the initial concentration is 0.4 M, 0.8 M, or 2 M, which is approximately 18 minutes.

Learn more about Half-life here:

https://brainly.com/question/24710827

#SPJ11

What type of particles will a hot object have if it has more kinetic energy?

Answers

Answer:

celulares por que tienen una fuente de energiq

What is the full ionic equation for CuCl2 and (NH4)2SO4?

Answers

Answer:

Explanation:

No reaction if there is no solid then the ions just stay there brah. All the ions remain in solution. We are all gonna make it!

A silver nitrate (AgNO3) solution is 0.150 M. 100.0 mL of a diluted silver nitrate solution is prepared using 10.0 mL of the more concentrated solution (which is then diluted with distilled water to 100.0 mL). Use the dilution equation to find the molarity of silver nitrate in the diluted solution.

Answers

Answer: The molarity of silver nitrate in the diluted solution is 0.015 M

Explanation:

Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

According to the dilution law,

[tex]M_1V_1=M_2V_2[/tex]

where,

[tex]M_1[/tex] = molarity of concentrated solution = 0.150 M

[tex]V_1[/tex] = volume of concentrated solution = 10.0 ml

[tex]M_2[/tex] = molarity of diluted solution = ?

[tex]V_2[/tex] = volume of diluted solution = 100.0 ml

[tex]0.150\times 10.0=M_2\times 100.0[/tex]

[tex]M_2=0.015M[/tex]

Thus the molarity of silver nitrate in the diluted solution is 0.015 M

Final answer:

The molarity of the diluted silver nitrate solution, prepared by diluting 10.0 mL of a 0.150 M solution to a final volume of 100.0 mL, is 0.015 M when calculated using the dilution equation.

Explanation:

The question is asking how to calculate the molarity of a diluted silver nitrate solution using the dilution equation. When 10.0 mL of a 0.150 M silver nitrate solution is diluted to 100.0 mL, the molarity of the diluted solution can be found using the equation M1V1 = M2V2, where M1 is the initial molarity, V1 is the initial volume, M2 is the final molarity, and V2 is the final volume.

Using the dilution equation:

To find M2 (the molarity of the diluted solution), rearrange the equation to M2 = (M1V1) / V2.

The molarity of the diluted silver nitrate solution would be 0.015 M (calculated as (0.150 M * 10.0 mL) / 100.0 mL).

Treatment of ethyl acetoacetate with NaOEt (2 equiv) and BrCH2CH2Br forms compound X. This reaction is the first step in the synthesis of illudin-S, an antitumor substance isolated from the jack-o'-lantern, a saffron-colored mushroom. What is the structure of X

Answers

Answer:

See explanation below

Explanation:

In this reaction we have the ethyl acetoacetate which is reacting with 2 eq of sodium etoxide. The sodium etoxide is a base and it usually behaves as a nucleophyle of many reactions. Therefore, it will atract all the acidics protons in a molecule.

In the case of the ethyl acetoacetate, the protons that are in the methylene group (CH3 - CO - CH2 - COOCH2CH3) are the more acidic protons, therefore the etoxide will substract these protons instead of the protons of the methyl groups. This is because those hydrogens (in the methylene group) are between two carbonile groups, which make them more available and acidic for any reaction. As we have 2 equivalents of etoxide, means that it will substract both of the hydrogen atoms there, and then, reacts with the Br - CH2CH2 - Br and form a product of an aldolic condensation.

The mechanism of this reaction to reach X is shown in the attached picture.

The pH at 25 °C of an aqueous solution of the sodium salt of p-monochlorophenol (NaC6H4ClO) is 11.05. Calculate the concentration of C6H4ClO- in this solution, in moles per liter. Ka for HC6H4ClO is equal to 6.6×10-10.

Answers

Answer:

Approximately [tex]8.3 \times 10^{-2}\; \rm mol \cdot L^{-1}[/tex].

Explanation:

The [tex]K_a[/tex] in this question refers the dissociation equilibrium of [tex]\rm HC_6H_4ClO[/tex] as an acid:

[tex]\rm HC_6H_4ClO\, (aq) \rightleftharpoons H^{+} \, (aq) + C_6H_4ClO^{-}\, (aq)[/tex].

[tex]\displaystyle K_a\left(\mathrm{HC_6H_4ClO}\right) = \frac{\left[\mathrm{H^{+}}\right] \cdot \left[\mathrm{C_6H_4ClO^{-}}\right]}{\left[\mathrm{HC_6H_4ClO}\right]}[/tex].

However, the question also states that the solution here has a [tex]\rm pH[/tex] of [tex]11.05[/tex], which means that this solution is basic. In basic solutions at [tex]\rm 25\;^\circ C[/tex], the concentration of [tex]\rm H^{+}[/tex] ions is considerably small (typically less than [tex]10^{-7}\;\rm mol \cdot L^{-1}[/tex].) Therefore, it is likely not very appropriate to use an equilibrium involving the concentration of [tex]\rm H^{+}[/tex] ions.

Here's the workaround: note that [tex]\rm C_6H_4ClO^{-}\, (aq)[/tex] is the conjugate base of the weak acid [tex]\rm HC_6H_4ClO\, (aq)[/tex]. Therefore, when [tex]\rm C_6H_4ClO^{-}\, (aq)[/tex] dissociates in water as a base, its [tex]K_b[/tex] would be equal to [tex]\displaystyle \frac{K_w}{K_a} \approx \frac{10^{-14}}{K_a}[/tex]. ([tex]K_w[/tex] is the self-ionization constant of water. [tex]K_w \approx 10^{-14}[/tex] at [tex]\rm 25\;^\circ C[/tex].)

In other words,

[tex]\begin{aligned} & K_b\left(\mathrm{C_6H_4ClO^{-}}\right) \\ &= \frac{K_w}{K_a\left(\mathrm{HC_6H_4ClO}\right)} \\ &\approx \frac{10^{-14}}{6.6 \times 10^{-10}} \\ & \approx 1.51515 \times 10^{-5}\end{aligned}[/tex].

And that [tex]K_b[/tex] value corresponds to the equilibrium:

[tex]\rm C_6H_4ClO^{-}\, (aq) + H_2O\, (l) \rightleftharpoons HC_6H_4ClO\, (aq) + OH^{-}\, (aq)[/tex].

[tex]\displaystyle K_b\left(\mathrm{C_6H_4ClO^{-}}\right) = \frac{\left[\mathrm{HC_6H_4ClO}\right]\cdot \left[\mathrm{OH^{-}}\right]}{\left[\mathrm{C_6H_4ClO^{-}}\right]}[/tex].

The value of [tex]K_b[/tex] has already been found.  

The [tex]\rm OH^{-}[/tex] concentration of this solution can be found from its [tex]\rm pH[/tex] value:

[tex]\begin{aligned}& \left[\mathrm{OH^{-}}\right] \\ &= \frac{K_w}{\left[\mathrm{H}^{+}\right]} \\ & = \frac{K_w}{10^{-\mathrm{pH}}} \\ &\approx \frac{10^{-14}}{10^{-11.05}} \\ &\approx 1.1220 \times 10^{-3}\; \rm mol\cdot L^{-1} \end{aligned}[/tex].

To determine the concentration of [tex]\left[\mathrm{HC_6H_4ClO}\right][/tex], consider the following table:

[tex]\begin{array}{cccccc}\textbf{R} &\rm C_6H_4ClO^{-}\, (aq) & \rm + H_2O\, (l) \rightleftharpoons & \rm HC_6H_4ClO\, (aq) & + & \rm OH^{-}\, (aq) \\ \textbf{I} & (?) & \\ \textbf{C} & -x & & + x& & +x \\ \textbf{E} & (?) - x & & x & & x\end{array}[/tex]

Before hydrolysis, the concentration of both [tex]\mathrm{HC_6H_4ClO}[/tex] and [tex]\rm OH^{-}[/tex] are approximately zero. Refer to the chemical equation. The coefficient of [tex]\mathrm{HC_6H_4ClO}[/tex] and [tex]\mathrm{HC_6H_4ClO}[/tex] are the same. As a result, this equilibrium will produce [tex]\rm OH^{-}[/tex] and [tex]\mathrm{HC_6H_4ClO}[/tex] at the exact same rate. Therefore, at equilibrium, [tex]\left[\mathrm{HC_6H_4ClO}\right] \approx \left[\mathrm{OH^{-}}\right] \approx 1.1220 \times 10^{-3}\; \rm mol\cdot L^{-1}[/tex].

Calculate the equilibrium concentration of [tex]\left[\mathrm{C_6H_4ClO^{-}}\right][/tex] from [tex]K_b\left(\mathrm{C_6H_4ClO^{-}}\right)[/tex]:

[tex]\begin{aligned} & \left[\mathrm{C_6H_4ClO^{-}}\right] \\ &= \frac{\left[\mathrm{HC_6H_4ClO}\right]\cdot \left[\mathrm{OH^{-}}\right]}{K_b}\\&\approx \frac{\left(1.1220 \times 10^{-3}\right) \times \left(1.1220 \times 10^{-3}\right)}{1.51515\times 10^{-5}}\; \rm mol \cdot L^{-1} \\ &\approx 8.3 \times 10^{-2}\; \rm mol \cdot L^{-1}\end{aligned}[/tex].

The volume of an automobile air bag was 66.8 L when inflated at 25 °C with 77.8 g of nitrogen gas. What was the pressure in the bag in kPa

Answers

Answer:

[tex]\large \boxed{\text{103 kPa}}[/tex]

Explanation:

We can use the Ideal Gas Law — pV = nRT

Data:

V = 66.8 L

m = 77.8 g

T = 25 °C

Calculations:

(a) Moles of N₂

[tex]\text{Moles of N}_{2} = \text{77.8 g N}_{2} \times \dfrac{\text{1 mol N}_{2}}{\text{28.01 g N}_{2}} = \text{2.778 mol N}_{2}[/tex]

(b) Convert the temperature to kelvins

T = (25 + 273.15) K = 298.15 K

(c) Calculate the pressure

[tex]\begin{array}{rcl}pV & =& nRT\\p \times \text{66.8 L} & = & \text{2.778 mol} \times \text{8.314 kPa$\cdot$ L$\cdot$K$^{-1}$mol$^{-1}\times$ 298.15 K}\\66.8p & = & \text{6886 kPa}\\p & = & \textbf{103 kPa}\end{array}\\\text{The pressure in the bag is $\large \boxed{\textbf{103 kPa}}$}[/tex]

Nitrate salts (NO3), when heated, can produce nitrites (NO2) plus oxygen (O2). A sample of potassium nitrate is heated, and the 02 gas produced is collected in a 700 mL flask. The pressure of the gas in the flask is 2.7 atm, and the temperature is recorded to be 329 K. The value of R= 0.0821 atm L/(mol K) How many moles of O2 gas were produced? moles After a few hours, the 700 mL flask cools to a temperature of 293K. What is the new pressure due to the O2 gas?

Answers

Answer: a) 0.070 moles of oxygen were produced.

b) New pressure due to the oxygen gas is 2.4 atm

Explanation:

According to ideal gas equation:

[tex]PV=nRT[/tex]

P = pressure of gas = 2.7 atm

V = Volume of gas = 700 ml = 0.7 L

n = number of moles = ?

R = gas constant =[tex]0.0821Latm/Kmol[/tex]

T =temperature = 329 K

[tex]n=\frac{PV}{RT}[/tex]

[tex]n=\frac{2.7atm\times 0.7L}{0.0821 L atm/K mol\times 329K}=0.070moles[/tex]

Thus 0.070 moles of oxygen were produced.

When the 700 mL flask cools to a temperature of 293K.

[tex]PV=nRT[/tex]

[tex]P=\frac{nRT}{V}[/tex]

[tex]P=\frac{0.070\times 0.0821\times 293}{0.7}[/tex]

[tex]P=2.4atm[/tex]

The new pressure due to the oxygen gas is 2.4 atm

Construct a simulated 1H NMR spectrum for 1-chloropropane by dragging and dropping the appropriate splitting patterns into the boxes on the chemical shift baseline, and by dragging integration values into the small box above each signal. Items may be used more than once. Peak heights do not represent integration.

Answers

Final answer:

To construct a simulated 1H NMR spectrum for 1-chloropropane, you need to consider the chemical shifts and splitting patterns of the hydrogen atoms. Follow these steps: identify the different types of hydrogen atoms, determine the chemical shifts, assign integration values, and drag and drop splitting patterns.

Explanation:

To construct a simulated 1H NMR spectrum for 1-chloropropane, you need to consider the chemical shifts and splitting patterns of the hydrogen atoms. Here's a step-by-step guide:

Identify the different types of hydrogen atoms in 1-chloropropane. In this molecule, there are three types: H on the methyl group, H on the second carbon, and H on the third carbon.Determine the chemical shifts of the hydrogen atoms. The chemical shift values for H on the methyl group, H on the second carbon, and H on the third carbon are typically around 0.9-1.2 ppm, 1.2-1.4 ppm, and 2.5-3.0 ppm, respectively.Assign integration values to the signals. The integration values represent the relative number of hydrogen atoms in each type. For example, the H on the methyl group typically has an integration value of 3, indicating that there are three hydrogen atoms in the methyl group.Drag and drop the appropriate splitting patterns into the boxes on the chemical shift baseline. The splitting pattern depends on the neighboring hydrogen atoms and follows the n+1 rule. For example, if a hydrogen atom has two neighboring hydrogen atoms, it will show a triplet splitting pattern.

Learn more about simulated 1H NMR spectrum for 1-chloropropane here:

https://brainly.com/question/9812005

#SPJ6

Dinitrogen monoxide gas is collected at 19.0 °C in an evacuated flask with a measured volume of 30.0 L. When all the gas has been collected, the pressure in the flask is measured to be 0.500 atm . Calculate the mass and number of moles of dinitrogen monoxide gas that were collected. Be sure your answer has the correct number of significant digits.

Answers

Answer:

0.625 mol

27.5 g

Explanation:

Given data

Gas: N₂OMolar mass (M): 44.01 g/molTemperature (T): 19.0°C + 273.15 = 292.2 KVolume (V): 30.0 LPressure (P): 0.500 atm

We can find the moles of dinitrogen monoxide gas using the ideal gas equation.

P × V = n × R × T

n = P × V/R × T

n = 0.500 atm × 30.0 L/0.0821 atm.L/mol.K × 292.2 K

n = 0.625 mol

Then, we can find the mass corresponding to 0.625 moles.

0.625 mol × 44.01 g/mol = 27.5 g

Answer:

0.626 moles of dinitrogen monoxide gas was collected, this is 27.6 grams

Explanation:

Step 1: Data given

Temperature of Dinitrogen monoxide gas = 19.0 °C = 292 K

Volume of the flask = 30.0 L

Pressure in the flask = 0.500 atm

Step 2: Calculate moles of Dinitrogen monoxide gas

p*V = n*R*T

⇒with p = the pressure of the gas = 0.500 atm

⇒with V = the volume of the flask = 30.0 L

⇒with n = the number of moles of N2O gas = TO BE DETERMINED

⇒with R = the gas constant = 0.08206 L*atm/mol*K

⇒with T = the temperature = 292 K

n = (p*V) / (R*T)

n = (0.500 * 30.0) / (0.08206 * 292)

n = 0.626 moles

Step 3: Calculate mass N2O gas

Mass N2O gas = moles N2O * molar mass N2O

Mass N2O = 0.626 moles * 44.013 g/mol

Mass N2O = 27.55 grams ≈ 27.6 grams

0.626 moles of dinitrogen monoxide gas was collected, this is 27.6 grams

Define the end point of a titration. Select one: a. It is a synonym for equivalence point. b. It is when a change that indicates equivalence is observed in the analyte solution. c. It is the point at which the pH no longer changes. Next

Answers

Answer:

b. It is when a change that indicates equivalence is observed in the analyte solution.

Explanation:

The end point of a titration is the point at which the indicator undergoes the change noticeable by our senses. Ideally, the equivalence point and end point coincide; but this does not usually happen in practice, because the indicator does not always change perceptibly at the same moment in which the equivalence point is reached and also for the change of the indicator, some of the reagent used in the evaluation is usually necessary .

The difference between the end point and the equivalence point of a valuation is called the valuation error or end point error.

At this point the pH changes the color of the indicator. nvhdurn

Final answer:

The end point of a titration is the moment observed (option b) when a change, due to an indicator or sensor, suggests that stoichiometric equivalence has been reached. It is an experimental determination and serves as the best estimate of the theoretical equivalence point.

Explanation:

The end point of a titration is not a synonym for the equivalence point. Rather, it represents the moment during a titration when a change indicating equivalence is observed in the analyte solution (option b). This point is typically detected through a change in color due to an indicator or through a change detected by a sensor. It is important to note that the end point is an experimental value, our best estimate of the equivalence point, and that any difference between the end point and the theoretical equivalence point is a source of determinate error.

In an acid-base titration, the end point is often observed when a pH indicator changes color, signifying that a stoichiometric amount of titrant has been added to the analyte. In redox and complexation titrations, it can be detected by changes in the solution conditions that are measurable by indicators and sensors.

Interpret the following Arterial Blood Gases 1. pH 7.33 PaCO2 60 HCO3 34 A. Normal ABG values B. Respiratory acidosis without compensation C. Respiratory acidosis with partial compensation D. Respiratory acidosis with full compensation 2. pH 7.48 PaCO2 42 HCO3 30 A. Metabolic acidosis without compensation B. Respiratory alkalosis with partial compensation C. Respiratory alkalosis with full compensation D. Metabolic alkalosis without compensation 3. pH 7.38 PaCO2 38 HCO3 24 A. Respiratory alkalosis B. Normal C. Metabolic Alkalosis D. None of the above 4. pH 7.21 PaCO2 60 HCO3 24 A. Normal B. Respiratory acidosis without compensation C. Metabolic acidosis with partial compensation D. Respiratory acidosis with complete compensation 5. pH 7.48 PaCO2 28 HCO3 20 A. Respiratory alkalosis with partial compensation B. Respiratory alkalosis with complete compensation C. Metabolic alkalosis without compensation D. Metabolic alkalosis with complete compensation

Answers

Answer: 1) C; 2)D; 3)B; 4)B; 5) A

Explanation:Interpreting the following Arterial Blood gases, we have

1. pH 7.33 PaCO2 60 HCO3  34----Respiratory acidosis with partial compensation----C

2. pH 7.48 PaCO2 42 HCO3 30------. Metabolic alkalosis without compensation----D

3. pH 7.38 PaCO2 38 HCO3 24 ----- Normal---B

4. pH 7.21 PaCO2 60 HCO3 24------ Respiratory acidosis without compensation-----B

5. pH 7.48 PaCO2 28 HCO3 20 ----Respiratory alkalosis with partial compensation

The Arterial blood gas interpretation  from analysis shows  the pH and the partial pressures of oxygen and carbon dioxide in the arterial blood of an individual which can detect how well the lungs are functioning thereby making a physician make a diagnosis, estimate  the severity of a condition and profer treatment.

Why does a higher concentration make a reaction faster?


There are more collisions per second and the collisions are of greater energy.


Collisions occur with greater energy.


There are more collisions per second.

Answers

Higher concentration make a reaction faster due to faster collisions. The correct answer is "There are more collisions per second."

When the concentration of reactants is increased, it leads to a higher number of particles or molecules in the reaction mixture. As a result, there are more frequent collisions between the reactant particles per unit time.

In a chemical reaction, the reactant particles must collide with sufficient energy and proper orientation for a successful reaction to occur. By increasing the concentration, the chances of successful collisions increase because there are more particles available to collide with each other.

However, it's important to note that while a higher concentration increases the frequency of collisions, it does not necessarily guarantee that all collisions will result in a reaction. The energy of the collisions and proper orientation are also essential factors for a successful reaction.

Learn more about collisions from the link given below.

https://brainly.com/question/30636941

#SPJ2

For many purposes we can treat ammonia (NH) as an ideal gas at temperatures above its boiling point of -33.C. Suppose the temperature of a sample of ammonia gas is raised from -21.0°C to 23.0°C, and at the same time the pressure is changed. If the initial pressure was 4.6 atm and the volume decreased by 50.0%, what is the final pressure? Round your answer to 2 significant digits. atm OP x 5 ?

Answers

The final pressure of the ammonia gas, given that the the volume decreased by 50.0%, is 11 atm

How to calculate the final pressure f the ammonia gas?

To solve this question in the most simplified way, we shall begin by listing out the given data from the question. This is shown below:

Initial temperature of ammonia gas (T₁) = -21 °C = -21 + 273 = 252 KFinal temperature of ammonia gas (T₂) = 23 °C = 23 + 273 = 296 KInitial volume of ammonia gas (V₁) = VInitial pressure of ammonia gas (P₁) = 4.6 atmFinal volume of ammonia gas (V₂) = 50% of V₁ = 0.5VFinal pressure of ammonia gas (P₂) = ?

The final pressure of the ammonia gas can be calculated as shown below:

[tex]\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}\\\\\frac{4.6\ \times\ V}{252} = \frac{P_2\ \times\ 0.5V}{296}\\\\252\ \times\ P_2\ \times\ 0.5V = 4.6\ \times\ V\ \times\ 296\\\\P_2 = \frac{4.6\ \times\ V\ \times\ 296}{252\ \times\ 0.5V} \\\\P_2 = 11\ atm[/tex]

Thus, the final pressure is 11 atm

COLLEGE CHEMISTRY 35 POINTS
Determine the percent yield when 12 g of CO2 are formed experimentally from the reaction of 0.5 moles of C8H18 reacting with excess oxygen according to the following balanced equation:

2 C8H18(l) + 25 O2(g)  16 CO2(g) + 18 H2O(l)

Please show your work.

Answers

6.81% is the percent yield when 12 g of CO2 are formed experimentally from the reaction of 0.5 moles of C8H18 reacting with excess oxygen.

Explanation:

Data given:

mass of carbon dioxide formed = 12 grams (actual yield)

atomic mass of CO2 = 44.01 grams/mole

moles of [tex]C_{8} H_{18}[/tex] = 0.5

Balanced chemical reaction:

2 [tex]C_{8} H_{18}[/tex] + 25 [tex]O_{2}[/tex] ⇒ 16 C[tex]O_{2}[/tex] + 18 [tex]H_{2} _O{}[/tex]

number of moles of carbon dioxide given is

number of moles = [tex]\frac{mass}{atomic mass of 1 mole}[/tex]

number of moles= [tex]\frac{12}{44}[/tex]

number of moles of carbon dioxide gas = 0.27 moles

from the reaction 2 moles of [tex]C_{8} H_{18}[/tex] reacts to produce 16 moles of C[tex]O_{2}[/tex]

So, when 0.5 moles reacted it produces x moles

[tex]\frac{16}{2}[/tex] = [tex]\frac{x}{0.5}[/tex]

x = 4

4 moles of carbon dioxide formed, mass from it will give theoretical yield.

mass  = number of moles x molar mass

mass = 4 x 44.01

        = 176.04 grams

percent yield =[tex]\frac{actual yield}{theoretical yield}[/tex] x 100

percent yield = [tex]\frac{12}{176.04}[/tex] x 100

     percent yield  = 6.81 %

A 1.000 kg sample of nitroglycerine, C3H5N3O9, explodes and releases gases with a temperature of 1985°C at 1.100 atm. What is the volume of gas produced? 4 C3H5N3O9(s) → 12 CO2(g) + 10 H2O(g) + 6 N2(g) + O2(g) A 1.000 kg sample of nitroglycerine, C3H5N3O9, explodes and releases gases with a temperature of 1985°C at 1.100 atm. What is the volume of gas produced? 4 C3H5N3O9(s) → 12 CO2(g) + 10 H2O(g) + 6 N2(g) + O2(g) 4730 L 5378 L 3525 L 742.2 L

Answers

Answer:

742.2 L

Explanation:

First we must find the number of moles of nitroglycerine reacted.

Molar mass of nitroglycerine= 227.0865 g/mol

Mass of nitroglycerine involved = 1×10^3 g

Number of moles of nitroglycerine= 1×10^3g/227.0865 g/mol

n= 4.40361 moles

T= 1985°C + 273= 2258K

P= 1.100atm

R= 0.082atmLmol-1K-1

Using the ideal gas equation:

PV= nRT

V= nRT/P

V= 4.40361× 0.082× 2258/1.1

V= 742 L

Considering the reaction stoichiometry and ideal gas law, the volume of gas produced is 5375.626 L.

The balanced reaction is:

4 C₃H₅N₃O₉(s) → 12 CO₂(g) + 10 H₂O(g) + 6 N₂(g) + O₂(g)

By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:

C₃H₅N₃O₉(s): 4 moles O₂(g): 1 moles CO₂(g): 12 moles H₂O(g): 10 molesN₂(g): 6 moles

Then 4 moles of nitroglycerine C₃H₅N₃O₉(s) produce in total 29 moles of gas [12 moles of CO₂(g) + 10 moles of H₂O(g) + 6 moles of N₂(g) + 1 mole O₂(g)]

Being the molar mass of nitroglycerine C₃H₅N₃O₉(s) 227 g/mole, then the amount of moles that 1 kg (1000 g) of the compound contains can be calculated as:

[tex]1000 gramsx\frac{1 mole}{227 grams}= 4.405 moles[/tex]

Then you can apply the following rule of three: if by stoichiometry 4 moles of nitroglycerine C₃H₅N₃O₉(s) produce in total 29 moles of gas, 4.405 moles of C₃H₅N₃O₉(s) will produce how many moles of gas?

[tex]amount of moles of gas=\frac{4.405 moles of nitroglycerinex29 moles of gas}{4 moles of nitroglycerine}[/tex]

amount of moles of gas= 31.93625 moles

On the other hand, an ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:

P× V = n× R× T

In this case, you know:

P= 1.1 atmV= ?n= 31.93625 molesR= 0.082[tex]\frac{atmL}{molK}[/tex]T= 1985 C= 2258 K (being 0 C=273 K)

Replacing:

1.1 atm× V= 31.93625 moles× 0.082 [tex]\frac{atmL}{molK}[/tex]× 2258 K

Solving:

V= (31.93625 moles× 0.082 [tex]\frac{atmL}{molK}[/tex]× 2258 K) ÷ 1.1 atm

V= 5375.625 L

Finally, the volume of gas produced is 5375.626 L.

Learn more:

https://brainly.com/question/4147359?referrer=searchResultsbrainly.com/question/16487206?referrer=searchResults brainly.com/question/14446695?referrer=searchResults brainly.com/question/11564309?referrer=searchResults brainly.com/question/4025026?referrer=searchResults brainly.com/question/18650135?referrer=searchResults
Other Questions
Dufner Co. issued 15-year bonds one year ago at a coupon rate of 6.6 percent. The bonds make semiannual payments. If the YTM on these bonds is 5.5 percent, what is the current dollar price assuming a par value of $1,000? Identify the percent amount and base in this problem 75% of what number is 30%? A cylinder of mass m and a block of wood of mass m are both released from rest at a height h on an inclined plane at the same time. The cylinder rolls down the plane without slipping due to friction. The block slides down the incline. If they both experience the same frictional force, which has more total kinetic energy when they reach the bottom? A. The cylinder B. The blockC. they have the same total kinetic energy when they reach the bottom D. there is not enough information to answer this question A solid right pyramid has a square base with an edge length of x cm and a height of y cm.A solid right pyramid has a square base with an edge length of x centimeters and a height of y centimeters.Which expression represents the volume of the pyramid?One-thirdxy cm3One-thirdx2y cm3One-halfxy2 cm3One-halfx2y cm3 In circle O, the radius is 4, and themeasure of minor arc AB is 120degrees. Find the length of minorarc AB to the nearest integer. HELP ILL GIVE MOST BRAINLY AND 50 POINTSHURRY PLEASE Completa el espacio en blanco con la forma correcta del verbo en el futuro progresivo.Maana a las siete de la maana t _________. (desayunar)estar desayunandoestars desayunendoestars desayuniendoestars desayunando Delia does not display all the full-blown schizophrenia symptoms any more. Occasionally, a shadow of a symptom appears. She is a bit withdrawn and not entirely clear all the time, but she can marginally function in the world. This is an example of ______ schizophrenia. Under certain conditions, wind blowing past a rectangular speed limit Sign can cause the sing to oscillate with a frequency omega. Assume that omega is a function of the Sign width, b, Sign height, h, wind velocity, V, air density p, and an elastic constant, K, for the supporting pole. Hint: The constant, k, has dimensions of [force x length]. (i) How many (non-dimensional) Pi-groups are there? (ii) Find these non-dimensional groups. (iii) Can one of the pi-groups be considered a Reynolds number? the loudness, L, measured i in decibels (Db), of a sound intencity, I, measured in watts per square meter, is defined as L=10logI/I0, where I0=10^-12 and is the least intense sound a human ear can hear. what is the approximate loudness of a rock concert with a sound intensity of 10^-1 True or false : A glacier can only form in an area where more snown falls than melts If there is a basic conflict between the individual's expectations and the reality of working in an organization, the employee is most likely to be disillusioned and quit during the ________ stage of socialization. 7. If a 12 pack of soda cost Mr. Key $3.84, what would the unit price be forone can? Write your answer using the constant of proportionalityequationOy 3.125xO y-0.23O y = 0,32%y0.30X What unintended consequence did perestroika have? (07.01 MC)Read carefully and choose the option that answers the question. Read carefully and choose the option that answers the question.I am in front of a clothes kiosk and to the right is a shoe kiosk. Food kiosks are behind the clothes kiosk. Where I am? (1 point)Select one:to. You are in the restaurant.b. You are in the market.c. You are in the park.d. You are in the stadium. What are five important types of information to include in a summary of ascience text?A. Characters, dates, places, problems, solutionsB. Characters, wants, needs, causes, effectsC. People, places, documents, causes, effectsD. Terms, effects, causes, conclusions, steps in a process Read the passage to answer the question that follows.Which of the following is a restatement or synonym clue for newcomers in this passage?new peopleoral traditionscultureimmigration Question HelpA bag contains 7 green marbles and 35 white marbles. If a representative sample contains 2 greenmarbles, then how many white marbles would you expect it to contain? Explain. Which of the statements is true? Dizygotic twins must be of the same gender, but monozygotic twins can be of different genders. The tendency to produce monozygotic twins often runs in families and is influenced by genetic factors, whereas genetic factors seem to have no impact on the occurrence of dizygotic twins. Monozygotic twins develop from one egg fertilized by two sperm, whereas dizygotic twins develop from two eggs fertilized by one sperm. Dizygotic twins, on average, have 50% of their genes in common, whereas monozygotic twins have 100% of their genes in common. Dizygotic twins usually look more alike than do monozygotic twins. Select the correct answer.What does the underlined sentence mean?Beth and Jenna walked toward the water. The lake was a mirror. In it, they could see every detail of the sky above them. It was difficult to knowwhere the water ended and the sky began.A The lake was covered with ice that could break into pieces like a mirror.The lake was so calm and clear that it reflected the surroundings like a mirror.The lake was covered with a reflective material that looked like a mirror.D. The lake was fragile, and the ecosystem could easily be destroyed like a mirrorResetNext