A 0.100-kg ball traveling horizontally on a frictionless surface approaches a very massive stone at 20.0 m/s perpendicular to wall and rebounds with 70.0% of its initial kinetic energy. What is the magnitude of the change in momentum of the stone

Answers

Answer 1

Answer:

Change in momentum of the stone is 3.673 kg.m/s.

Explanation:

Given:

Mass of the ball on the horizontal the surface, m = 0.10 kg

Velocity of the ball with which it hits the stone, v = 20 m/s

According to the question it rebounds with 70% of the initial kinetic energy.

We have to find the change in momentum i.e Δp

Before that:

We have to calculate the rebound velocity with which the object rebounds.

Lets say that the rebound velocity be "v1" and KE remaining after the object rebounds be "KE1".

⇒ [tex]KE_1=0.7\times \frac{mv^2}{2}[/tex]    

⇒ [tex]KE_1=0.7\times \frac{0.10\times (20)^2}{2}[/tex]

⇒ [tex]KE_1=0.7\times \frac{0.10\times 400}{2}[/tex]

⇒ [tex]KE_1=14[/tex] Joules (J).

Rebound velocity "v1".

⇒ [tex]KE_1=\frac{m(v_1)^2}{2}[/tex]

⇒ [tex]v_1 = \sqrt{\frac{2KE_1}{m} }[/tex]

⇒ [tex]v_1 = \sqrt{\frac{2\times 14}{0.10} }[/tex]

⇒ [tex]v_1=16.73[/tex]

⇒ [tex]v_1=-16.73[/tex] m/s ...as it rebounds.

Change in momentum Δp.

⇒ [tex]\triangle p= m\triangle v[/tex]

⇒ [tex]\triangle p= 0.10\times (20-(-16.73)[/tex]

⇒ [tex]\triangle p= 0.10\times (20+16.73)[/tex]

⇒ [tex]\triangle p= 0.10\times (36.73)[/tex]

⇒ [tex]\triangle p = 3.673[/tex] Kg.m/s

The magnitude of the change in momentum of the stone is 3.673 kg.m/s.


Related Questions

A wheel, starting from rest, rotates with a constant angular acceleration of 2.80 rad/s2. During a certain 5.00 s interval, it turns through 65.0 rad. (a) How long had the wheel been turning before the start of the 5.00 s interval? (b) What was the angular velocity of the wheel at the start of the 5.00 s interval?

Answers

Answer:

a) time t1 = 2.14s

b) initial angular speed w1 = 6 rad/s

Explanation:

Given that;

Initial Angular velocity = w1

Angular distance = s = 65 rad

time = t = 5 s

Angular acceleration a = 2.80 rad/s^2

Using the equation of motion;

s = w1t + (at^2)/2

w1 = (s-0.5(at^2))/t

Substituting the values;

w1 = (65 - (0.5×2.8×5^2))/5

w1 = 6rad/s

Time to reach w1 from rest;

w1 = at1

t1 = w1/a = 6/2.8 = 2.14s

a) time t1 = 2.14s

b) initial angular speed w1 = 6 rad/s

Answer:

a. The wheel was turning 2.14 s before the start of the 5.00 s interval.

b. The angular velocity of the wheel at the start of the 5.00 s interval was 6.00 rad/s.

Explanation:

At the start of the 5.00s interval, the wheel might have an initial angular velocity [tex]\omega_0[/tex]. We can obtain it from the kinematic equation:

[tex]\theta=\omega_0t+\frac{1}{2}\alpha t^{2}\\\\\implies \omega_0=\frac{\theta}{t}-\frac{1}{2}\alpha t[/tex]

Plugging in the known values for the time interval, the angular displacement and the angular acceleration, we get:

[tex]\omega_0=\frac{65.0rad}{5.00s}-\frac{1}{2}(2.80rad/s^{2})(5.00s)\\\\\omega_0=6.00rad/s[/tex]

It means that the angular velocity of the wheel at the start of the 5.00 s interval was 6.00 rad/s (b).

The time it took for the wheel to reach that angular velocity can be obtained from another kinematic equation:

[tex]\omega = \omega_0+\alpha t\\\\\implies t=\frac{\omega-\omega_0}{\alpha}[/tex]

It is important to take in account that in this case, the initial angular velocity is zero as the wheel started from rest, and the final angular velocity is the one we got in the previous question:

[tex]t=\frac{6.00rad/s-0}{2.80rad/s^{2}}\\\\t=2.14s[/tex]

Finally, the wheel was turning 2.14 s before the start of the 5.00 s interval (a).

A student throws a rock horizontally from the edge of a cliff that is 20 m high. The rock has an initial speed of 10 m/s. If air resistance is negligible, the distance from the base of the cliff to where the rock hits the level ground below the cliff is most nearly

a.5m
b.10m
c.20m
d.40m
e.200m

Answers

Answer:

c.20

Explanation:

Which of the following treatments would enhance the level of the Pfr form of phytochrome?A) exposure to far-red lightB) exposure to red lightC) long dark periodD) inhibition of protein synthesisE) synthesis of phosphorylating enzymes

Answers

Answer:

B) exposure to red light

Explanation:

Plants use a phytochrome system to sense the level, intensity, duration, and color of environmental light do as to adjust their physiology.

The phytochromes are a family of chromoproteins with a linear tetrapyrrole chromophore, similar to the chlorophyll. Phytochromes have two photo-interconvertible forms: Pr and Pfr. Pr absorbs red light (~667 nm) and is immediately converted to Pfr. Pfr absorbs far-red light (~730 nm) and is quickly converted back to Pr. Absorption of red or far-red light causes a massive change to the shape of the chromophore, altering the conformation and activity of the phytochrome protein to which it is bound. Together, the two forms represent the phytochrome system.

A student throws a 130 g snowball at 6.5 m/s at the side of the schoolhouse, where it hits and sticks. What is the magnitude of the average force on the wall if the duration of the collision is 0.18 s?

Answers

Answer:

4.7 N

Explanation:

130 g = 0.13 kg

The momentum of the snowball when it's thrown at the wall is

[tex]p = mv = 0.13*6.5 = 0.845 kgm/s[/tex]

Which is also the impulse. From here we can calculate the magnitude of the average force F knowing the duration of the collision is 0.18 s

[tex]p = F\Delta t[/tex]

[tex]F*0.18 = 0.845[/tex]

[tex]F = 0.845 / 0.18 = 4.7 N[/tex]

The idea that little children are continually coming up with ideas and testing them is called the ______ theory.

atomic
theory
moral foundations
general

Answers

Answer:

The idea that little children are continually coming up with ideas and testing them is called the general theory.

A 2.05 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0390 m. The spring has force constant 830 N/m. The coefficient of kinetic friction between the floor and the block is 0.380. The block and spring are released from rest and the block slides along the floor.What is the speed of the block when it has moved a distance of 0.0200 m from its initial position?

Answers

Answer:

0.552 m/s

Explanation:

Given,

Mass of the block = 2.05 Kg

initial compression, x₁ = 0.03690 m

Spring constant, k = 830 N/m

coefficient of friction of the block, μ = 0.380

distance moved by the block,x₂ = 0.20 m

Speed, v  = ?

Using conservation of energy

Initial spring energy + Work done by friction = Final spring energy + kinetic energy

[tex]\dfrac{1}{2}kx_1^2 - \mu mg x_2 = \dfrac{1}{2}kx_2^2 + \dfrac{1}{2}mv^2[/tex]

[tex]\dfrac{1}{2}\times 830\times 0.039^2 - 0.38\times 2.05\times 9.81\times 0.02 = \dfrac{1}{2}\times 830 \times 0.02^2 + \dfrac{1}{2}\times 2.05\times v^2[/tex]

v² = 0.3047

v = 0.552 m/s

Hence, the speed of the block is equal to 0.552 m/s

Two identical closely spaced circular disks form a parallel-plate capacitor. Transferring 1.4×109 electrons from one disk to the other causes the electric field strength between them to be 1.9×105 N/C

Answers

Answer:

r = 6.5*10^-3 m

Explanation:

I'm assuming you meant to ask the diameters of the disk, if so, here's it

Given

Quantity of charge on electron, Q = 1.4*10^9

Electric field strength, e = 1.9*10^5

q = Q * 1.6*10^-19

q = 2.24*10^-10

E = q/ε(0)A, making A the subject of formula, we have

A = q / [E * ε(0)], where

ε(0) = 8.85*10^-12

A = 2.24*10^-10 / (1.9*10^5 * 8.85*10^-12)

A = 2.24*10^-10 / 1.6815*10^-6

A = 1.33*10^-4 m²

Remember A = πr²

1.33*10^-4 = 3.142 * r²

r² = 1.33*10^-4 / 3.142

r² = 4.23*10^-5

r = 6.5*10^-3 m

A(n)______is a device intended for the protection of personnel that functions to deenergize a circuit or portion thereof within an established period of time when a current to ground exceeds the values established for a Class A device.

Answers

Answer:

The answer is GFCI

(ground fault circuit interrupter)

Explanation:

A ground fault circuit interrupter (GFCI) can help prevent electrocution.

If a person's body starts to receive a shock, the GFCI senses this and cuts off the power before he/she can get injured. GFCIs are generally installed where electrical circuits may accidentally come into contact with water.

What is a circuit breaker?

It is an automatically operated electrical switch designed to protect an electrical circuit from damage caused by excess current from an overload or short circuit. Its basic function is to interrupt current flow after a fault is detected.

Describe what is happening within the system when it is at equilibrium in terms of concentrations

Answers

Answer:

When a system is at equilibrium in terms of concentration what happens is that the rate of change of the concentration of the product and the reactants does not vary or change with time.

Explanation:

What is equilibrium?

A chemical reaction is in equilibrium when the concentrations of reactants and products are constant - their ratio does not vary.

Equilibrium does not necessarily mean that reactants and products are present in equal amounts. It means that the reaction has reached a point where the concentrations of the reactant and product are unchanging with time, because the forward and backward reactions have the same rate.

Final answer:

A chemical system at equilibrium reflects no net change in reactant and product concentrations. Upon a concentration change, Le Chatelier's principle dictates that the system will adjust to partially counteract the change and set up a new equilibrium.

Explanation:

When a system is at equilibrium, it means no net change in the concentrations of reactants and products takes place. This is because the rate of the forward reaction, in which reactants are converted into products, is equal to the rate of the reverse reaction, in which products transform back into reactants. However, when there is a change in concentration of either reactants or products during equilibrium, the system responds according to Le Chatelier's principle. This principle states that the system will adjust to partially counteract the change and reestablish a new equilibrium state.

For example, if you were to increase the concentration of a reactant, the system tends to counter this by producing more product, essentially shifting the equilibrium to the right. Conversely, if you decrease the concentration of a product, the system will proceed to produce more of that product from the reactants, again shifting the reaction to the right, until a new equilibrium is established.

If an otherwise empty pressure cooker is filled with air of room temperature and then placed on a hot stove, what would be the magnitude of the net force F120 on the lid when the air inside the cooker had been heated to 120∘C? Assume that the temperature of the air outside the pressure cooker is 20∘C (room temperature) and that the area of the pressure cooker lid is A. Take atmospheric pressure to be pa

Answers

Answer:

The magnitude of the net force F₁₂₀ on the lid when the air inside the cooker has been heated to 120 °C is [tex]\frac{135.9}{A}N[/tex]

Explanation:

Here we have

Initial temperature of air T₁ = 20 °C = ‪293.15 K

Final temperature of air T₁ = 120 °C = 393.15 K

Initial pressure P₁ = 1 atm = ‪101325 Pa

Final pressure P₂ = Required

Area = A

Therefore we have for the pressure cooker, the volume is constant that is does not change

By Chales law

P₁/T₁ = P₂/T₂

P₂ = T₂×P₁/T₁ = 393.15 K× (‪101325 Pa/‪293.15 K) = ‭135,889.22 Pa

∴ P₂ = 135.88922 KPa = 135.9 kPa

Where Force = [tex]\frac{Pressure}{Area}[/tex] we have

Force = [tex]F_{120}=\frac{135.9}{A}N[/tex].

Four long, parallel conductors carry equal currents of I = 5.00 A. The direction of the current is into the page at points A and B (indicated by the crosses) and out of the page at C and D (indicated by the dots). Calculate the magnitude and direction of the magnetic field at point P, located at the center of the square with an edge length 0.200 m.

Answers

Answer:

Explanation:

The magnetic field due to a straight wire carrying current is given by

B = μo• I / 2πr

Where,

μo = permeability of free space

μo = 4π×10^-7 Tm/A

I is the current in wire

I = 5A

r Is the distance of point from the wire.

The distance between the parallel conductors and the point is r/2

R = 0.283/2 = 0.1415m

Check attachment on how I used Pythagoras theorem to find the diagonal of the square..

Hence, the magnetic field at point P is

B = μo•I / 2πR

B = 4π × 10^-7 × 5 / 2π × 0.1415

B = 7.07 × 10^-6 T.

In the space below, explain why you agree or disagree with the first statement: Each person in a family has the same traits. There are no differences in traits between parents and offspring or among siblings.

Answers

Answer:

I disagree.

Explanation:

Yes, traits may be similar, but it all depends on the dominant and recessive alleles that are passed on.  No one person can look alike.  Even with twins, a widow's peak or close lobes can be different.

I hope this was the brainliest answer! Thank you for letting me help you.

An electric circuit consists of a variable resistor connected to a source of constant potential difference. If the resistance of the resistor is doubled, then

Answers

Then nothing will happen

how does an antenna produce radio waves?

Answers

Answer:

As the electrons (tiny particles inside atoms) in the electric current wiggle back and forth along the antenna, they create invisibleelectromagnetic radiation in the form ofradio waves. ... 1) Electricity flowing into the transmitter antenna makes electrons vibrate up and down it, producing radio waves.

Answer:

As the electrons (tiny particles inside atoms) in the electric current wiggle back and forth along the antenna, they create invisible electromagnetic radiation in the form of radio waves.

Explanation:

During which phase of the moon may a solar eclipse occur?

Answers

Answer:

New moon

Explanation:

A solar eclipse can only take place at the phase of new moon, when the moon passes directly between the sun and Earth and its shadows fall upon Earth's surface.

A solar eclipse happens when the moon is perfectly aligned between the Earth and the Sun, thus obscuring it.

If the moon is between the Earth and the Sun, the far side of the moon is lighted, and thus you have a new moon.

You drop an irregular piece of metal into a container partially filled with water and measure that the water level rises 4.8 centimeters. The square base of the container has a side length of 8 centimeters. You measure the mass of the metal to be 450 grams. What is the density of the metal?

Answers

Answer:

Density = 1464.8kg/m3

the density of the metal is 1464.8kg/m^3

Explanation:

Given;

Mass m = 450g

Density = Mass/Volume = m/V

Volume V = change in height × base area = ∆h × A

∆h = 4.8cm

A = 8×8 = 64cm^2

V = 4.8×64 = 307.2cm^3

Density = 450g/307.2cm^3

Density = 1.4648g/cm^3

Density = 1.4648 × 1000kg/m^3

Density = 1464.8kg/m3

the density of the metal is 1464.8kg/m^3

Answer:

1464.84 kg/m³

Explanation:

Density = mass/volume.

D = m/v................. Equation 1

But from Archimedes principle,

every object immersed in water will displaced an amount of water equal to its own volume

Therefore,

v = v'................... Equation 2

Where v = volume of the irregular object, v' = volume of water displaced.

Since the base of the container is a square,

Then,

v' = L²(d)...................... Equation 3

Where L = length of the square base of the container, d = rise in water level.

Substitute equation 3 into equation 1

D = m/L²d......................... Equation 4

Given: m = 450 g = 0.45 kg, L = 8 cm = 0.08 m, d = 4.8 cm = 0.048 m

Substitute into equation 4

D = 0.45/(0.08²×0.048)

D = 0.45/0.0003072

D = 1464.84 kg/m³

A ball thrown upward near the surface of the Earth with a velocity of 50 m/s will come to rest about 5 seconds later. If the ball were thrown up with the same velocity on Planet X, after 5 seconds it would be still moving upwards at nearly 31 m/s. The magnitude of the gravitational field near the surface of Planet X is what fraction of the gravitational field near the surface of the Earth? Using the MathType functions, be sure to show your work

Answers

Answer:

19/49

Explanation:

Using v = u + at  where v = velocity of ball after 5 s on planet X = 31 m/s, u = initial velocity of ball on planet X = 50 m/s , a = acceleration due to gravity on planet X and t = 5 s

So, 31 = 50 - a × 5 = 50 - 5a

31 - 50 = 5a

-19 = 5a

a = -19/5 = -3.8 m/s²

So, the magnitude of a = 3.8 m/s²

So a/g = 3.8/9.8 = 19/49

The fraction of the magnitude of the gravitational field near the surface of Planet X to the gravitational field near the surface of the Earth is 0.39.

Given the following data:

Time = 5 secondsInitial velocity = 50 m/sFinal velocity = 30 m/s

We know that the acceleration due to gravity (g) of an object on planet Earth is equal to 9.8 [tex]m/s^2[/tex]

To determine what fraction is the magnitude of the gravitational field near the surface of Planet X to the gravitational field near the surface of the Earth:

First of all, we would calculate the acceleration due to gravity (g) on Planet X by using first equation of motion:

Mathematically, the first equation of motion is calculated by using the formula;

[tex]V = U-at[/tex]

Where:

V is the final velocity.U is the initial velocity.a is the acceleration.t is the time measured in seconds.

Substituting the given parameters into the formula, we have;

[tex]31=50-a(5)\\\\5a =50-31\\\\5a=19\\\\a=\frac{19}{5}[/tex]

Acceleration, a = 3.8 [tex]m/s^2[/tex]

For the ratio:

[tex]Fraction = \frac{a}{g} \\\\Fraction = \frac{3.8}{9.8}[/tex]

Fraction = 0.39

Read more: https://brainly.com/question/8898885

how many days are in a year on mars

Answers

687 days
hope this helps
stay safe
brainliest is appreciated

Provide 2 examples in sport or rehab where instantaneous velocity is more important than average velocity and 2 examples where average velocity is more important. Provide rationale.

Answers

Answer:

In high jump as well as long jump, instateneous velocity is more important than average velocity.

In relay races and 400m races, average is more important than instateneous velocity.

Explanation:

Instantaneous velocity is the velocity of anything in motion at a specific point in time. This is determined quite similarly to average velocity, however, we look at the period of time so that it approaches zero. If there is a standard velocity over a period of time, its average and instantaneous velocities may be the same. Instantaneous velocity is calculated as the limit as t approaches zero of the change in d over the change in t.

The range or length of long jump depends on the instantenous velocity of the jump and the height of high jump depends on the instantenous velocity of the height.

A person with greater average velocity wins a race. The average velocity of anything or object is referred to as its total displacement divided by the total time taken. That is to say, it is the rate at which an object changes its position from one place to another. Average velocity is also a Vector quantity. Meters per second is the SI unit. Although, any distance unit per any time unit can be used when necessary, such as miles per hour (mph) or kilometer per hour (kmph)

Final answer:

Instantaneous velocity is more important in specific instances like a tennis stroke or a football collision, while average velocity is more important for calculating average rates of change in situations like road trips or rehab.

Explanation:

Instantaneous velocity is more important than average velocity in situations where we need to know the velocity at a specific instant in time. Examples of this include a tennis player's stroke in which they aim to hit the ball on the sweet spot of the racket for maximum velocity and minimal vibration, and in a collision in football where a player with the same velocity but greater mass has a greater impact due to their greater momentum.

On the other hand, average velocity is more important in situations where we need to calculate the average rate of change of position over a given time interval. Examples include calculating the average velocity of a car during a road trip to determine the time taken to reach a destination, and in rehab where the average velocity of a patient's movement is measured to track progress over time.

Learn more about Velocity here:

https://brainly.com/question/39711173

#SPJ12

50 kg grandma is roller skating down the sidewalk at 2 m/s. Suddenly, someone throws her a 10 kg sack of oranges. How fast does she travel afterwards? (Inelastic)

Answers

Answer:

v2 = 1.67m/s

she will travel at 1.67m/s afterwards

Explanation:

Given;

Mass of grandma m1 = 50kg

Mass of sack m2 = 10kg

Initial speed of grandma v1 = 2m/s

Final velocity of both = v2

The momentum equation of the initial and final momentum can be written as;

m1v1 = m1v2 + m2v2 = (m1+m2)v2

(Since the collision is inelastic they both move at the same velocity v2 after the collision)

making v2 the subject of formula;

v2 = (m1v1)/(m1+m2)

Substituting the values;

v2 = (50×2)/(50+10)

v2 = 1.67m/s

she will travel at 1.67m/s afterwards

A parallel-plate capacitor has plates of area 0.30 m2 and a separation of 2.10 cm. A battery charges the plates to a potential difference of 190 V and is then disconnected. A dielectric slab of thickness 4 mm and dielectric constant 4.8 is then placed symmetrically between the plates.

(a) What is the capacitance before the slab is inserted?
(b) What is the capacitance with the slab in place?
(c) What is the free charge q before and after the slab is inserted?
(d) What is the magnitude of the electric field in the space between the plates and dielectric and in the dielectric itself?
(f) With the slab in place, what is the potential difference across the plates?
(g) How much external work is involved in inserting the slab?

Answers

Answer:

a) 1.26e^-10F

b) 1.47e^-10F

c) 2.39e^-8C   2.89e^-8C

d) E=4500.94N/C

e) E'=5254.23N/C

f) 100.68V

g) 1.65e^-10J

Explanation:

To compute the capacitance we can use the formula:

[tex]C=\frac{k\epsilon_o A}{d}[/tex]

where k is the dielectric constant of the material between the plates. d is the distance between plates and A is the area.

(a) Before the material with dielectric constant is inserted we have that k(air)=1. Hence, we have:

[tex]k=1\\A=0.30m^2\\d=0.021m\\e_o=8.85*10^{-12}C^2/(Nm^2)\\\\C=\frac{(1)(8.85*10^{-12}C^2/(Nm^2))(0.30m^2)}{0.021m}=1.26*10^{-10}F[/tex]

(b) With the slab we have that k=4.8 and the thickness is 4mm=4*10^{-3}m. In this case due to the thickness of the slab is not the same as d, we have to consider the equivalent capacitance of the series of capacitances:

[tex]C=(\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_1})\\\\\\C_1=\frac{(1)(8.85*10^{-12}C^2/(Nm^2))(0.30m^2)}{8.5*10^{-3}m}=3.1*10^{-10}F\\\\C_2=\frac{(4.8)(8.85*10^{-12}C^2/(Nm^2))(0.30m^2)}{4*10^{-3}m}=3.186*10^{-9}F\\\\C=1.47*10^{-10}F[/tex]

(c)

The charge between the plates for both cases, with the slab is given by:

Q : without the slab

Q': with the slab

[tex]Q=CV=(1.26*10^{-10}F)(190V)=2.39*10^{-8}C\\\\Q'=C'V=(1.47*10^{-10F})(190V)=2.79*10^{-8}C\\[/tex]

(d) The electric field between the plate is given by:

[tex]E=\frac{Q}{2\epsilon_o A}[/tex]

E: without the slab

E': with the slab

[tex]E=\frac{2.39*10^{-8}C}{2(8.85*10^{-12}C^2/Nm^2)(0.30m^2)}=4500.94N/C\\\\E'=\frac{2.79*10^{-8}C}{2(8.85*10^{-12}C^2/Nm^2)(0.30m^2)}=5254.23N/C\\[/tex]

(f) We can assume the system as composed by V=V1+V'+V1 as in (c). By using the equation V=Ed we obtain:

[tex]V=2(4500.94)(8.85*10^{-3}m)+(5254.23)(4*10^{-3}m)=100.68V[/tex]

(g) External work is the difference between the energies of the capacitor before and after the slab is placed between the parallels:

[tex]\Delta E=\frac{1}{2}[(1.26*10^{-10}F)(120V)-(1.47*10^{-10})(100.6V)]=1.65*10^{-10}J[/tex]

A battery-operated car utilizes a 120.0 V battery with negligible internal resistance. Find the charge, in coulombs, the batteries must be able to store and move in order to accelerate the 770 kg car from rest to 26 m/s, make it climb a 2.15 x 10^2 m high hill while maintaining that speed, and then cause it to travel at a constant 26 m/s by exerting a 5.3 x 10^2 N force for an hour

Answers

Answer:

4.29×10⁵ C

Explanation:

From the question,

The energy stored in the battery = Kinetic energy of the car+ Energy needed to make the car climbed the hill+Energy required to exert a force.

E = 1/2mv²+mgh+Fd.................... Equation 1

Where E = Energy stored in the battery, m = mass of the car, v = velocity of the car, h = height of the hill, F = force exerted on the car, d = distance traveled by the car.

But,

d = vt.................... Equation 2

Where v = velocity, t = time.

Substitute equation 2 into equation 1

E = 1/2mv²+mgh+F(vt)................... Equation 3

Given: m = 770 kg, v = 26 m/s, h = 2.15×10² m = 215 m, F = 5.3×10² N = 530 N, t = 1 hour = 3600 s, g = 9.8 m/s²

Substitute into equation 1

E = 1/2(770)(26²)+(770)(9.8)(215)+(530)(26)(3600)

E = 260260+1622390+49608000

E = 51490650 J

Using,

E = qV................. Equation 4

Where q = charge of the battery, V = Voltage.

make q the subject of the equation

q = E/V............... Equation 5

Given: E = 51490650 J, V = 120 V

Substitute into equation 5

q = 51490650/120

q = 429088.75 C

q = 4.29×10⁵ C

The magnetic field within a long, straight solenoid with a circular cross section and radius r is increasing at a rate of dbdt. part a what is the rate of change of flux through a circle with radius r1 inside the solenoid, normal to the axis of the solenoid, and with center on the solenoid axis? express your answer in terms of the variables r, b, r1, and appropriate constants.

Answers

Answer:

[tex]\frac{d\Phi_B}{dt}=\frac{d(\pi r_1^2B)}{dt}=\pi r_1^2\frac{dB}{dt}[/tex]

Explanation:

To calculate the rate of change of the flux we have to take into account that the magnetic flux is given by

[tex]\Phi_B=\vec{B}\cdot \vec{A}[/tex]

in this case the direction of B is perpendicular to the direction of A. Hence

[tex]\Phi_B=BA[/tex]

and A is the area of a circle:

[tex]A=\pi r^2[/tex]

in this case we are interested in the flux of a area of a lower radius r1. Hence

[tex]A=\pi r_1^2[/tex]

Finally, the change in the magnetic flux will be

[tex]\frac{d\Phi_B}{dt}=\frac{d(\pi r_1^2B)}{dt}=\pi r_1^2\frac{dB}{dt}[/tex]

hope this helps!!

Part A If the velocity of a pitched ball has a magnitude of 47.5 m/s and the batted ball's velocity is 51.5 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.

Answers

Explanation:

Let us assume that the mass of a pitched ball is 0.145 kg.

Initial velocity of the pitched ball, u = 47.5 m/s

Final speed of the ball, v = -51.5 m/s (in opposite direction)

We need to find the magnitude of the change in momentum of the ball and the impulse applied to it by the bat. The change in momentum of the ball is given by :

[tex]\Delta p=m(v-u)\\\\\Delta p=0.145\times ((-51.5)-47.5)\\\\\Delta p=-14.355\ kg-m/s[/tex]

So, the magnitude of the change in momentum of the ball is 14.355 kg-m/s.

Let the the ball remains in contact with the bat for 2.00 ms. The impulse is given by :

[tex]J=\dfrac{\Delta p}{t}\\\\J=\dfrac{14.355}{2\times 10^{-3}}\\\\J=7177.5\ kg-m/s[/tex]

Hence, this is the required solution.

Final answer:

The magnitude of the change in momentum of the ball is 99 m/s. The magnitude of the impulse applied to the ball by the bat is also 99 m/s.

Explanation:

To find the magnitude of the change in momentum of the ball, we can use the equation:

Magnitude of change in momentum = magnitude of final momentum - magnitude of initial momentum

Given that the initial velocity of the ball is 47.5 m/s and the final velocity of the batted ball is 51.5 m/s in the opposite direction, the magnitude of the change in momentum is:

Magnitude of change in momentum = 51.5 m/s - (-47.5 m/s) = 99 m/s

The magnitude of the impulse applied to the ball by the bat is equal to the magnitude of the change in momentum. Therefore, the magnitude of the impulse applied to the ball is 99 m/s.

Learn more about momentum here:

https://brainly.com/question/30677308

#SPJ3

A pin fin of uniform, cross-sectional area is fabricated of an aluminum alloy (k= 160 w/m·k). the fin diameter is d= 4.2 mm, and the fin is exposed to convective conditions characterized by h= 231 w/m2·k. it is reported that the fin efficiency is ηf= 0.65. determine (a) the fin length l and the fin effectiveness ɛf. account for tip convection.

Answers

Answer:

length of fin = 34.417

effectiveness = 33.77

Explanation:

the pictures attached below shows the whole explanation

Use the following terms to write a short paragraph that describes what you learned from this lab: potential energy, kinetic energy, mass, velocity, collision and momentum. (underline or bold the terms in your paragraph, thank you!)

please help me~

due tomorrow at 12 pm

Answers

Answer:

Kinetic Energy is proportional to mass and velocity squared. Potential energy can be transferred to and from Kinetic Energy by doing work on a mass to raise it from the ground. Both momentum and kinetic energy are conserved during elastic collisions.

Final answer:

The lab illustrated energy transformation from potential to kinetic, the role of mass and velocity in kinetic energy and momentum, and the principles of elastic collision conserving total kinetic energy and momentum.

Explanation:

Through this lab, I better understood the concepts of energy and its transformation. Initially, an object at rest on a height possesses potential energy, which depends on its mass and the height from the ground. As it falls, this potential energy converts into kinetic energy, which is directly proportional to the mass of the object and the square of its velocity. Moreover, when two objects collide, they exchange energy and momentum, where momentum is calculated as the product of an object's mass and velocity.

An elastic collision is a special scenario in which the total kinetic energy before and after the collision remains the same, demonstrating the law of conservation of momentum and kinetic energy.

The time between a lightning flash and the following thunderclap may be used to estimate, in kilometers, how far away a storm is. How far away is a storm if 6 seconds elapse between the lightning and the thunderclap?

Answers

Given Information:  

Elapsed time = t = 6 seconds

Required Information:

Distance = d = ?

Answer:

Distance = d = 2.058 km

Explanation:

We know that the speed of sound in the air is given by

v = 343 m/s

The relation between distance, speed and time is given by

distance = speed*time

substituting the given values yields,

distance = 343*6

distance = 2058 m

There are 1000 meters in 1 km so

d = 2058/1000

d = 2.058 km

Therefore, the storm is about 2.058 km away when elapse time between the lightning and the thunderclap is 6 seconds.

Which situations contain unbalanced forces? Check all that apply.

Answers

Answer:

Explanation:

Without seeing the options i can tell you this:

A balanced force is equal on both sides

The friction would equal the force

The amount on the left (friction side) would equal the amount on right (force side)

Or the net force would equal zero

You should post the answer options for more help

Answer: A book falls to the floor.

A car skids to a stop.

A foam ball launches

Explanation:

In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is
Fext=dp/dt=m dv/dt+v dm/dt
Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx, where k is a constant, and dm/dt=kv
dm/dt=kv This gives, since Fext=mg
Fext​=mg,
mg=m dv/dt+v(kv)
Or, dividing by k,
xg=x dv/dt+v2
This is a differential equation that has a solution of the form v = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero.
(a) Using the proposed solution for v find the acceleration a.
(b) Find the distance the raindrop has fallen in t = 3.00 s.
(c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s.

Answers

Final answer:

The acceleration of the raindrop is equal to the acceleration due to gravity. The distance the raindrop has fallen in 3.00 seconds is 44.1 meters. The mass of the raindrop at 3.00 seconds is 88.2 grams.

Explanation:

To find the acceleration, we can use the given proposed solution for velocity, v = at. Taking the derivative of this equation with respect to time gives us dv/dt = a. Substituting this into the differential equation, we have xg = x(a) + v^2. Since the initial velocity is zero, v = 0 and the equation simplifies to xg = xa. Dividing by x, we get g = a. Therefore, the acceleration is equal to the acceleration due to gravity, g.

To find the distance the raindrop has fallen in t = 3.00 s, we can use the equation x = (1/2)at^2. Since we know the acceleration is g, we plug in the values into the equation: x = (1/2)(g)(3.00 s)^2 = (1/2)(9.8 m/s^2)(9.00 s^2) = 44.1 meters.

To find the mass of the raindrop at t = 3.00 s, we can use the given equation m = kx. Plugging in the values, m = (2.00 g/m)(44.1 m) = 88.2 grams.

Learn more about Rocket-propulsion problem here:

https://brainly.com/question/15363207

#SPJ2

Complete the sentence to explain when waves interact.

Waves interact with

and other
.

Answers

Answer:

Objects and waves

Explanation:

Answer:

Objects,  Waves.

Explanation:

Other Questions
A research firm conducted a survey of 49 randomly selected Americans to determine the mean amount spent on coffee during a week. The sample mean was $20 per week. The population distribution is normal with a standard deviation of $5. What is the point estimate of the population mean? Using the 95% level of confidence, determine the confidence interval for . Solve for j . 1/3=/j410/3 A manufacturer produces piston rings for an automobile engine. It is known that ring diameter is normally distributed with millimeters. A random sample of 15 rings has a mean diameter of . Construct a 99% two-sided confidence interval on the true mean piston diameter and a 95% lower confidence bound on the true mean piston diameter. Round your answers to 3 decimal places. (a) Calculate the 99% two-sided confidence interval on the true mean piston diameter. Find the volume of a cylinder that has a radius of 7 and a height of 16. Leave your answer in terms of .a0 HELP!!!! WILL GIVE BRAINLIEST TO FIRST RIGHT ANSWER!!!A corporation must appoint a president, chief executive officer (CEO), chief operating officer (COO), and chief financial officer (CFO). It must also appoint a planning committee with five different members. There are 14 qualified candidates, and officers can also serve on the committee.How many different ways can the officers be appointed?How many different ways can the committee be appointed? why would it be advantageous for an invading military force to land on a beachhead? the effect on the us economy from vietnam war Why will all of the books in this line of books fall over?Check all that apply.Each book is too close to the next book.Each book pushes the next book.Each book transfers energy to the next book.Each book pulls the next book.Each book does work on the next book. Write ten questions you would use to interview a famous person coming to visit your town. Use qu and cul(es). The products of restriction digestion can be visualized by gel electrophoresis, which separates fragments based on their size. View Available Hint(s) The products of restriction digestion can be visualized by gel electrophoresis, which separates fragments based on their size. True False In 2017, the entire fleet of lightduty vehicles sold in the United States by each manufacturer must emit an average of no more than 86 milligrams per mile (mg/mi) of nitrogen oxides (NOX) and nonmethane organic gas (NMOG) over the useful life ( 150,000 miles of driving) of the vehicle. NOX + NMOG emissions over the useful life for one car model vary Normally with mean 80 mg/mi and standard deviation 4 mg/mi. (a) What is the probability that a single car of this model emits more than 86 mg/mi of NOX + NMOG? (Enter your answer rounded to four decimal places.) Bird guides once listed the myrtle warbler and Audubon's warbler as distinct species. Recently, these birds have been classified as eastern and western forms of a single species, the yellow-rumped warbler. Which of the following pieces of evidence, if true, would be cause for this reclassification? Solve the following inequality for n. Write your answer in simplest form.4 + 3(10n+6) - 3 - 10 A movie theater faces the following hourly inverse demand curves: Seniors: PS = 88 - Q Adults: PA = 94 - Q The theater has a fixed cost of $40, and a constant marginal cost of $2 per ticket. a) If the movie theater uses segmenting, calculate the ticket prices charged to adults and seniors. You measure 40 watermelons' weights, and find they have a mean weight of 66 ounces. Assume the population standard deviation is 13.3 ounces. Based on this, what is the maximal margin of error associated with a 90% confidence interval for the true population mean watermelon weight. Laura retired from her job recently, and she has saved about $414,731.00 over the course of her career. She plans to withdraw $2,224.00 each month to pay for living expenses. After a certain amount of time, the balance in Laura's account is $381,371.00. How many months have passed since Laura retired Explain how multicellular organisms grow using cell division. In triangle ABC, a = 4, b = 6, and cos C = 1/4. What is the length of side c?(1)8(2)27(3)210(4)4 A 2-kg sphere A strikes the frictionless inclined surface of a 6-kg wedge B at a 90 degree angle with a velocity of magnitude 4 m/s. The wedge can roll freely on the ground and is initially at rest. Knowing that the coefficient of restitution between the wedge and the sphere is 0.5 and that the inclined surface of the wedge forms an angle =40 degrees with the horizontal, determine the velocities of the sphere and the wedge immediately after impact. Three students take equivalent stress tests. Which is the highest relative score (meaning whichhas the largest z score value)?a. A score of 144 on a test with a mean of 128 and a standard deviation of 34b. A score of 90 on a test with a mean of 86 and a standard deviation of 18c. A score of 18 on a test with a mean of 15 and a standard deviation of 5