A 100 W electric heater (1 W = 1 J/s) operates for 11 min to heat the gas in a cylinder. At the same time, the gas expands from 1 L to 6 L against a constant external pressure of 3.527 atm. What is the change in internal energy of the gas? (1 L·atm = 0.1013 kJ)

Answers

Answer 1

Answer:

[tex]\Delta U = 64218.9 J[/tex]

Explanation:

As we know that power of the heater is given as

P = 100 W

now the energy given by the heater for 11 min of time

[tex]E = P \times t[/tex]

[tex]E = 100 \times 11 \times 60[/tex]

[tex]E = 100\times 11 \times 60[/tex]

[tex]E = 66000 J[/tex]

now from 1st law of thermodynamics we know that

[tex]E = \Delta U + W[/tex]

work done under constant pressure condition we have

[tex]W = P \Delta V[/tex]

[tex]W = (3.527 \times 1.01 \times 10^5)(6 - 1) \times 10^{-3}[/tex]

[tex]W = 1781.13 J[/tex]

now from first equation we have

[tex]66000 = 1781.13 + \Delta U[/tex]

[tex]\Delta U = 64218.9 J[/tex]

Answer 2

The change in the internal energy of the system is 67.787 kJ.

The given parameters;

power of the electric heater; P = 100 Wtime of operation, t = 11 min = 660 sinitial volume of the gas, = 1 Lfinal volume of the gas, = 6 Lpressure of the gas, P = 3.527 atm

The heat added to the system by the heater;

Q = Pt = 100 x 660 = 66,000 J = 66 kJ

The work done on the system is calculated as follows;

W = PΔV

W = 3.527(6 - 1)

W = 17.64 L.atm

1 Latm = 0.1013 kJ

17.64 Latm = 1.787 kJ

The change in the internal energy of the system is calculated by applying the first law of thermodynamics as follows;

ΔU = Q + W

ΔU = 66 kJ  +  1.787 kJ

ΔU = 67.787 kJ.

Thus, the change in the internal energy of the system is 67.787 kJ.

Learn more here:https://brainly.com/question/2983126


Related Questions

The amount of electrons flowing through the wire is called what?



amperes (amps)


current


voltage


ohms

Answers

Answer:

Current

Explanation:

Current can refer to the flow of electrons through a conductor of some kind as well as the number of electrons flowing through the conductor.

Final answer:

The amount of electrons flowing through the wire is called current, which is measured in amperes or amps. Current is directly proportional to voltage and inversely proportional to resistance, as stated in Ohm's Law.

Explanation:

The amount of electrons flowing through the wire is called current. Electric current is measured in the unit known as ampere (A), which is defined as the flow of one coulomb of charge through an area in one second. According to Ohm's Law, the current I in a circuit is directly proportional to the voltage V applied across the circuit and inversely proportional to the resistance R of the circuit, which can be expressed by the equation I = V/R. The SI unit of current is ampere, whereas ohm is the SI unit for electrical resistance, which represents how strongly a material opposes the flow of electric current.

What evidence supports the theory that there is a black hole at the center of our galaxy?

Answers

Explanation:

Scientist and astronomers have observed that large gas clouds and massive stars are orbiting around in an accelerated manner in center of our galaxy that is milky way. A massive star S2's motion has been studied and it is found that the star is revolving around the center of the galaxy. From this scientist have confirmed presence of super massive black hole of 3 million solar masses lurking around the center of milky way.

It is well known that for a hollow, cylindrical shell rolling without slipping on a horizontal surface, half of the total kinetic energy is translational and half is rotational. What fraction of the total kinetic energy is rotational for the following objects rolling without slipping on a horizontal surface?Part AA uniform solid cylinder.Part BA uniform sphere.Part CA thin-walled hollow sphere.Part DA hollow, cylinder with outer radius R and inner radius R/2.

Answers

Answer:

Part a)

[tex]f = \frac{0.5}{1.5} = \frac{1}{3}[/tex]

B) uniform Sphere

[tex]f = \frac{2}{7}[/tex]

C) uniform hollow sphere

[tex]f = \frac{2}{5}[/tex]

D) uniform hollow cylinder with inner radius R/2 and outer radius R

[tex]f = \frac{5}{13}[/tex]

Explanation:

As we know that fraction of total energy as rotational energy is given as

[tex]f = \frac{\frac{1}{2}I\omega^2}{\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2}[/tex]

now we have

[tex] f = \frac{mk^2(\frac{v^2}{R^2})}{mv^2 + mk^2(\frac{v^2}{R^2})}[/tex]

[tex]f = \frac{\frac{k^2}{R^2}}{1 + \frac{k^2}{R^2}}[/tex]

now we have

A) uniform Solid cylinder

for cylinder we know that

[tex]\frac{k^2}{R^2} = 0.5[/tex]

[tex]f = \frac{0.5}{1.5} = \frac{1}{3}[/tex]

B) uniform Sphere

for sphere we know that

[tex]\frac{k^2}{R^2} = \frac{2}{5}[/tex]

[tex]f = \frac{0.4}{1.4} = \frac{2}{7}[/tex]

C) uniform hollow sphere

for hollow sphere we know that

[tex]\frac{k^2}{R^2} = \frac{2}{3}[/tex]

[tex]f = \frac{\frac{2}{3}}{\frac{5}{3}} = \frac{2}{5}[/tex]

D) uniform hollow cylinder with inner radius R/2 and outer radius R

for annular cylinder we know that

[tex]\frac{k^2}{R^2} = \frac{5}{8}[/tex]

[tex]f = \frac{\frac{5}{8}}{\frac{13}{8}} = \frac{5}{13}[/tex]

The fraction of the total kinetic energy that is rotational for a uniform sphere is [tex]\frac{1}{3}[/tex]

How to calculate rotational kinetic energy.

Mathematically, the rotational kinetic energy of an object is given by this formula:

[tex]K.E_{rot}=\frac{1}{2} I\omega^2[/tex]  

Where:

I is the moment of inertia.[tex]\omega[/tex] angular velocity.

Since we know that half of the total kinetic energy for a hollow, cylindrical shell that is rolling without slipping on a horizontal surface is translational and the other half is rotational. Thus, this fraction is given by this mathematical expression:

[tex]K.E=\frac{\frac{k^2}{R^2} }{1+\frac{k^2}{R^2}}[/tex]

a. For a uniform sphere:

[tex]\frac{k^2}{R^2}=0.5[/tex]

Substituting, we have:

[tex]K.E=\frac{0.5 }{1+0.5}\\\\K.E=\frac{0.5 }{1.5}\\\\K.E =\frac{1}{3}[/tex]

b. For a thin-walled hollow sphere:

[tex]\frac{k^2}{R^2}=\frac{2}{5}[/tex]

Substituting, we have:

[tex]K.E=\frac{\frac{2}{5} }{1+\frac{2}{5}}\\\\K.E=\frac{0.4 }{1.4}\\\\K.E =\frac{2}{7}[/tex]

c. For a uniform hollow sphere:

[tex]\frac{k^2}{R^2}=\frac{2}{3}[/tex]

Substituting, we have:

[tex]K.E=\frac{\frac{2}{3} }{1+\frac{2}{3}}\\\\K.E=\frac{0.7 }{1.7}\\\\K.E =\frac{2}{5}[/tex]

d. For a hollow sphere with outer radius (R) and inner radius:

[tex]\frac{k^2}{R^2}=\frac{5}{8}[/tex]

Substituting, we have:

[tex]K.E=\frac{\frac{5}{8} }{1+\frac{5}{8}}\\\\K.E=\frac{0.625 }{1.625}\\\\K.E =\frac{5}{13}[/tex]

Read more on moment of inertia here: https://brainly.com/question/3406242

A potter's wheel (a solid, uniform disk) of mass 7.0 kg and .65 m radius spins about its central axis. A 2.1 kg lump of clay is dropped onto the wheel at a distance .41 m from the axis. Calculate the rotational inertia of the system.

a. 2.5 kg · m2
b. 1.8 kg · m2
c. 1.5 kg · m2
d. 0.40 kg · m2

Answers

Answer:

The rotational inertia of the system is 1.8 kg.m².

(b) is correct option.

Explanation:

Given that,

Mass of disk = 7.0 kg

Radius = 0.65 m

Mass of clay = 2.1 kg

Distance = 0.41 m

We need to calculate the rotational inertia of the system

Using formula of rotational inertia

[tex]I''=I+I'[/tex]

Where, I= the moment of inertia of a solid disk

I'=the moment of inertia of lump of clay

Put the value into the formula

[tex]I=\dfrac{MR^2}{2}+mr^2[/tex]

[tex]I=\dfrac{1}{2}\times7.0\times(0.65)^2+2.1\times0.41^2[/tex]

[tex]I=1.8\ kg.m^2[/tex]

Hence, The rotational inertia of the system is 1.8 kg.m².

Two technicians are discussing a fuel gauge on a General Motors vehicle. Technician A says that if the ground wire's connection to the fuel tank sending unit becomes rusty or corroded, the fuel gauge will read lower than normal. Technician B says that if the power lead to the fuel tank sending unit is disconnected from the tank unit and grounded (ignition on), the fuel gauge should go to empty. Which technician is correct?

a. Technician A only
b. Technician B only
c. Both Technicians A and B
d. Neither Technician A nor B

Answers

Answer:

b. Technician B only

Explanation:

There is a float connected to the variable resistor in a fuel tank unit. The resistance of the variable resistor also changes as the fuel level changes. The tank unit's resistance changes, the dash mount gauge also changes and available on driver's display.  

If the tank transmitter is disconnected, the operation will not take place and the resistance change will not be transmitted to the dash unit. The needle will therefore remain the empty one at all times.Even after being rusty, the ground wire connection to the fuel tank will be able to conduct. Hence Technician B   is correct and Technician A is incorrect.

Technician A is correct in stating that corrosion of the ground wire at the fuel tank sending unit can cause a lower-than-normal fuel gauge reading.

The accuracy of a fuel gauge reading can be affected by the condition of the electrical connections to the fuel tank sending unit. Technician A's statement is correct; if the ground wire's connection to the fuel tank sending unit becomes rusty or corroded, it can cause a higher resistance, leading the fuel gauge to read lower than normal due to insufficient grounding. On the other hand, Technician B's statement is incorrect because if the power lead to the fuel tank sending unit is disconnected and grounded with the ignition on, the fuel gauge should read full, not empty. The fuel gauge is designed so that grounding the sending unit wire to the chassis will mimic the resistance of a full tank, thus moving the gauge needle to the 'Full' position.

The correct answer, therefore, is a. Technician A only.

Suppose a ping pong ball and a bowling ball are rolling toward you. Both have the same linear momentum, and you exert the same force to stop each.(A) How does the time required to stop the ping pong ball compare to that required to stop the bowling ball?(B) How does the distance required to stop ping pong ball compare to that required to stop the bowling ball? Explain your reasoning and justify your answer starting from (and naming) fundamental physics principles and definitions related to momentum and energy. Thanks

Answers

Answer:

The weight of the bowling ball makes a more significant impact that the ping pong ball so therefore it would take farther to stop the bowling ball

Explanation:

(A)  The time required to stop the ping pong ball will be less than that of bowling ball.

(B)  The distance required to stop the bowling ball will be less than that of ping pong ball.

Given data:

The ping pong ball and bowling ball has the same magnitude of linear momentum.

Same amount of force to be applied on each, to stop.

(A)

With same magnitude of stopping force (F) and linear momentum (p), the time required to stop will be dependent on the mass. Since, mass of ping pong ball is less, so it will be easily stopped with less effort. While the bowling ball will take some extra seconds or minutes to acquire the rest state.

In other words, the ping pong ball has less inertia, due to which the time taken to stop the ping pong pall will be less, comparing to bowling ball.

Thus, we can conclude that the time required to stop the ping pong ball will be less than that of bowling ball.

(B)

The inertia is given as,

[tex]I = mr^{2}[/tex],

Here, m is the mass.

And the distance required to stop is given by third rotational equation of motion as,

[tex]\omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta\\\\\theta =\dfrac{ \omega_{2}^{2}-\omega_{1}^{2}}{2 \alpha}[/tex]

Here, [tex]\alpha[/tex] is the angular acceleration.

And angular acceleration is directly proportional to the inertia of object. More the inertia, more will be the angular acceleration and less will be distance required to stop.

Since, ping pong ball has less inertia, so its angular acceleration will be less. So, the distance covered by the ping pong ball will be more, compared to bowling ball.

Thus, we can conclude that the distance required to stop the bowling ball will be less than that of ping pong ball.

Learn more about the inertia here:

https://brainly.com/question/22837660

A cylinder containing an ideal gas has a volume of 2.6 m3 and a pressure of 1.5 × 105 Pa at a temperature of 300 K. The cylinder is placed against a metal block that is maintained at 900 K and the gas expands as the pressure remains constant until the temperature of the gas reaches 900 K. The change in internal energy of the gas is +6.0 × 105 J. How much heat did the gas absorb?

Answers

Answer:[tex]13.5\times 10^{8}[/tex] joules

Explanation:

From the first law of thermodynamics,

Δ[tex]Q[/tex]=Δ[tex]U[/tex]+[tex]W[/tex]

Where [tex]Q[/tex] is the heat given to the gas,

[tex]U[/tex] is the internal energy of the gas,

[tex]W[/tex] is the workdone by the gas.

When pressure is constant,

[tex]\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}[/tex]

[tex]V_{2}=\frac{2.6\times 900}{300}=7.8m^{3}[/tex]

When pressure is constant,[tex]W=P[/tex]Δ[tex]V[/tex]

Where [tex]P[/tex] is pressure and [tex]V[/tex] is the volume of the gas.

Given [tex]P=1.5\times 10^{5}Pa[/tex]

Δ[tex]V=[/tex][tex]7.8-2.6=5.2m^{3}[/tex]

So,[tex]W=1.5\times 10^{5}\times 5.2=7.8\times 10^{5}J[/tex]

Given that Δ[tex]U=6\times 10^{5}[/tex]

So,Δ[tex]Q=[/tex][tex]6\times 10^{5}+7.8\times 10^{5}=13.8\times 10^{5}J[/tex]

Final answer:

By using the first law of thermodynamics, the ideal gas law, the given parameters and an additional calculation for the work done by the gas, we can calculate the total heat absorbed by the gas.

Explanation:

To calculate the heat absorbed by the gas, we use the first law of thermodynamics which states that the heat absorbed by a system is equal to the change in its internal energy plus the work done by the system on its surroundings, expressed as Q = ΔEint + W. The change in internal energy, ΔEint, is given as +6.0 × 10^5 J.

Since the pressure is constant, the work done by the gas, W, can be calculated using W = PΔV, where P is the pressure and ΔV is the change in volume. The change in volume can be determined using the ideal gas law before and after the change, PV = nRT, thus, ΔV = nR(ΔT)/P. Substituting the given pressure, temperature change from 300 K to 900 K, and ideal gas constant, we can find ΔV.

After plugging ΔV into the equation for work done, we then add this to the change in internal energy to find the heat absorbed.

Learn more about Heat absorption by ideal gas here:

https://brainly.com/question/15872403

#SPJ3

An ideal monatomic gas expands isobarically from state A to state B. It is then compressed isothermally from state B to state C and finally cooled at constant volume until it returns to its initial state A.
[tex]V_A[/tex] = 4 x 10⁻³[tex]V_B[/tex] = 8 x 10⁻³[tex]P_A[/tex] = [tex]P_B[/tex] = 1 x 10⁶ [tex]P_C[/tex] = 2 x 10⁶[tex]T_A[/tex] = 600 k
What is the temperature of the gas when it is in state B?
How much work is done by the gas in expanding isobarically from A to B?
How much work is done on the gas in going from B to C?
The graph is a PV diagram. It does not show any other numbers on it other than what is given.

Answers

1) The temperature of the gas in state B is 1200 K

2) The work done by the gas from A to B is 4000 J

3) The work done by the gas from B to C is -5546 J

Explanation:

1)

The temperature of the gas when it is in state B can be found by using the ideal gas equation:

[tex]\frac{P_A V_A}{T_A}=\frac{P_B V_B}{T_B}[/tex]

where

[tex]P_A = 1\cdot 10^6 Pa[/tex] is the pressure in state A

[tex]V_A = 4 \cdot 10^{-3} m^3[/tex] is the volume in state A

[tex]T_A = 600 K[/tex] is the temperature in state A

[tex]P_B = 1\cdot 10^6 Pa[/tex] is the pressure in state B

[tex]V_B = 8\cdot 10^{-3} m^3[/tex] is the volume in state B

[tex]T_B[/tex] is the temperature in state B

Solving for [tex]T_B[/tex],

[tex]T_B=\frac{P_B V_B T_A}{P_A V_A}=\frac{(1\cdot 10^6)(8\cdot 10^{-3})(600)}{(1\cdot 10^6)(4\cdot 10^{-3})}=1200 K[/tex]

2)

The work done by a gas during an isobaric transformation (as the one between A and B) is

[tex]W=p\Delta V = p (V_B-V_A)[/tex]

where

p is the pressure (which is constant)

[tex]V_B[/tex] is the final volume

[tex]V_A[/tex] is the initial volume

Here we have:

[tex]p=1\cdot 10^6 Pa[/tex]

[tex]V_A = 4 \cdot 10^{-3} m^3[/tex] is the volume in state A

[tex]V_B = 8\cdot 10^{-3} m^3[/tex] is the volume in state B

Substituting,

[tex]W=(1\cdot 10^6)(8\cdot 10^{-3}-4\cdot 10^{-3})=4000 J[/tex]

3)

During an isothermal expansion, the produce between the pressure of the gas and its volume remains constant (Boyle's law), so we can write:

[tex]P_BV_B = P_C V_C[/tex]

where

[tex]P_B = 1\cdot 10^6 Pa[/tex] is the pressure in state B

[tex]V_B = 8\cdot 10^{-3} m^3[/tex] is the volume in state B

[tex]P_C = 2\cdot 10^6 Pa[/tex] is the pressure in state C

[tex]V_C[/tex] is the volume in state C

Solving for [tex]V_C[/tex],

[tex]V_C = \frac{P_B V_B}{P_C}=\frac{(1\cdot 10^6)(8\cdot 10^{-3})}{2\cdot 10^6}=4\cdot 10^{-3} m^3[/tex]

The work done by a gas during an isothermal transformation is given by

[tex]W=nRT ln(\frac{V_C}{V_B})[/tex] (1)

where

n is the number of moles

[tex]R=8.314 J/mol K[/tex] is the gas constant

T is the constant temperature (in this case, [tex]T_B[/tex])

[tex]V_C, V_B[/tex] are the final and initial volume, respectively

The number of moles of the gas can be found as

[tex]n=\frac{p_A V_A}{RT_A}=\frac{(1\cdot 10^6)(4\cdot 10^{-3})}{(8.314)(600)}=0.802 mol[/tex]

So now we can use eq.(1) to find the work done by the gas from B to C:

[tex]W=(0.802)(8.314)(1200) ln(\frac{4\cdot 10^{-3}}{8\cdot 10^{-3}})=-5546 J[/tex]

And the work is negative because the gas has contracted, so the work has been done by the surrounding on the gas.

Learn more about ideal gases:

brainly.com/question/9321544

brainly.com/question/7316997

brainly.com/question/3658563

#LearnwithBrainly

The temperature of the gas when it is in state B can be found using the ideal gas law. The work done by the gas in expanding isobarically from A to B can be calculated using a simple equation. The work done on the gas in going from B to C can also be calculated using a different equation.

The temperature of the gas when it is in state B can be found using the ideal gas law, which states that PV = nRT. Since the process is isobaric, the pressure remains constant. We can use the equation:

TB = TA * (VA / VB)

Where TA is the initial temperature (600 K), VA is the initial volume (4 x 10-3), and VB is the final volume (8 x 10-3).

The work done by the gas in expanding isobarically from A to B can be calculated using the equation:

WAB = PA * (VB - VA)

Where PA is the initial pressure (1 x 106) and VA and VB are the initial and final volumes, respectively.

The work done on the gas in going from B to C can be calculated using the equation:

WBC = -nRT * ln(VC / VB)

Where VC is the final volume (8 x 10-3) and VB is the initial volume (8 x 10-3).

Learn more about Ideal Gas Law here:

https://brainly.com/question/30458409

#SPJ3

Would you expect the tensile strength of polychlorotrifluoroethylene to be greater, the same as, or less than that of a polytetrafluoroethylene specimen having the same molecular weight and degree of crystallinity?

Answers

Final answer:

The tensile strength of PCTFE is generally expected to be higher than that of PTFE, given the same molecular weight and degree of crystallinity, mainly due to stronger intermolecular forces from the chlorine atom in the PCTFE polymer chain.

Explanation:

The tensile strength of polychlorotrifluoroethylene (PCTFE) and polytetrafluoroethylene (PTFE) specimens having the same molecular weight and degree of crystallinity can vary. Although both materials are fluoropolymers and have similar structural characteristics, PCTFE tends to have a slightly higher tensile strength than PTFE. This is primarily because PCTFE has a chlorine atom in its polymer chain, which contributes to stronger intermolecular forces and therefore, higher tensile strength.

Learn more about Tensile Strength of Polymers here:

https://brainly.com/question/9470137

#SPJ2

Find the magnitude of the gravitational force this wire exerts on a point with mass m placed at the center of curvature of the semicircle.

Answers

Answer:

[tex]F = 2\pi \dfrac{mMG}{L^2}}[/tex]

Explanation:

Assuming given,

Mass of wire be M

length of wire be L

small mass at center is = m

Radius of the wire be equal to = R = L/π

mass of small element of the wire

[tex]dM = \dfrac{M}{L}Rd\theta[/tex]

All the force are acting along y- direction

so, for force calculation

[tex]F = \int \dfrac{mdMG}{R^2} sin\theta [/tex]

[tex]F = \int_0^{\pi} \dfrac{m\dfrac{M}{L}RG}{R^2} sin\theta d\theta[/tex]

[tex]F = \int_0^{\pi} \dfrac{mMG}{L\dfrac{L}{\pi}} sin\theta d\theta[/tex]

[tex]F = \pi \dfrac{mMG}{L^2}}\int_0^{\pi}sin\theta d\theta[/tex]

[tex]F = \pi \dfrac{mMG}{L^2}}(-cos \theta)_0^{\pi}[/tex]

[tex]F = 2\pi \dfrac{mMG}{L^2}}[/tex]

The magnitude of the gravitational force is : [tex]2\pi \frac{mMG}{L^{2} }[/tex]

Given that :

mass of wire = M

length of wire = L

small mass at center = m

radius of wire = L / [tex]\pi[/tex]

Determine the magnitude of the gravitational force exerted by the wire on a point

First step : express the mass of small element of wire

dM = [tex]\frac{M}{L} Rd[/tex]∅

Since all forces act in the vertical direction the magnitude of the force exerted will be

F = [tex]\int\limits^\pi _o {\frac{m\frac{M}{L} RG}{R^2} } \, sin\beta d\beta[/tex]

[tex]F = \pi \frac{mMG}{L^2} \int\limits^\pi _0 {x} \, sin\beta d\beta[/tex]

Resolving equation above

Therefore F = [tex]2\pi \frac{mMG}{L^{2} }[/tex]

Hence we can conclude that The magnitude of the gravitational force is : [tex]2\pi \frac{mMG}{L^{2} }[/tex]

Learn more about gravitational force : https://brainly.com/question/19050897

An inflatable raft (unoccupied) floats down a river at an approximately constant speed of 4.8 m/s. A child on a bridge, 81 m above the river, sees the raft in the river below and attempts to drop a small stone onto the raft. The child releases the stone from rest. In order for the stone to hit the raft, what must be the horizontal distance between the raft and the bridge when the child releases the stone?

Answers

Answer:

19.5 m

Explanation:

t = Time taken

u = Initial velocity = 0 (Assumed thrown from rest)

s = Displacement = 81 m

g = Acceleration due to gravity = 9.81 m/s² = a

Equation of linear motion

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 81=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{81\times 2}{9.81}}\\\Rightarrow t=4.06371\ s[/tex]

The time taken for the stone to reach the river is 4.06371 seconds

Distance = Speed×Time

[tex]Distance=4.8\times 4.06371=19.5\ m[/tex]

The horizontal distance between the raft and the bridge when the child releases the stone should be 19.5 m

Calculate the velocity of the boat immediately after, assuming it was initially at rest. The mass of the child is 25.0 kg and that of the boat is 30.0 kg . (Take the package's direction of motion as positive.)

Answers

Answer:

V = -0.8 m/s

Explanation:

given,

mass of the child (m)= 25 Kg

mass of the boat(M) = 30 Kg

velocity of boat = ?

Assuming Boys throws package of mass(m₁) 6 Kg at the horizontal speed of       10 m/s

using conservation of momentum

(M + m + m₁) V = (M+ m)V + m₁ v

initial velocity V = 0 m/s

(M + m + m₁) x 0 = (M+ m)V + m₁ v

0 = (25+50)V + 6  x 1 0

75 V = -60

V = -0.8 m/s

negative direction shows that velocity in the direction opposite to the motion of package.

Final answer:

The velocity of the boat immediately after, assuming it was initially at rest, is 15.8 m/s.

Explanation:

To calculate the velocity of the boat, we can use vector addition. The boat's velocity relative to the water is perpendicular to the river's velocity. We can use the Pythagorean theorem to find the magnitude of the boat's velocity:

Vboat = sqrt((Vriver)2 + (Vboat)2)

Substituting the given values, we get:

Vboat = sqrt((5.0 m/s)2 + (15.0 m/s)2) = 15.8 m/s

Therefore, the velocity of the boat immediately after is 15.8 m/s.

A dolphin in seawater at a temperature of 25°C emits a sound wave directed toward the ocean floor 154 m below. How much time passes before it hears an echo? (The speed of sound in ocean water is 1533 m/s.)

Answers

Answer:

0.2s

Explanation:

SO for the dolphin to hear its echo, the sound wave must travel a distance twice as much as the displacement between the dolphin and the ocean floor. So d = 154 * 2 = 308 m

Since the speed of sound in ocean floor is v = 1533m/s we can find out the time by dividing the distance d by the speed of sound

t = d / v = 308 / 1533 = 0.2s

[tex](t = d / v )[/tex]The time passes before it hears an echo is 0.3secs

What is sound wave?

A sound wave  servers patterns of disturbance caused by the movement of energy traveling through a medium.

The speed of sound in ocean floor was given as [tex]( v = 1533m/s)[/tex]

To find the time, we can make use if the formula

[tex](t = d / v )[/tex]

Where t= time

v= velocity

d= distance

Then substitute ,we have

[tex]= 308 / 1533 = 0.2s[/tex]

Learn more about sound wave at;

https://brainly.com/question/1199084

UH I KINDA NEED THIS ANSWERED NOW ngl...........

Which of the following may you do to a vector without changing it?

Rotate the vector through any angle other than 360°.
Move the vector without changing its orientation.
Multiply the vector by a scalar other than 1.
Add a nonzero vector to the vector.

Answers

Move the vector without changing its orientation

Among the following, may you do to a vector without changing is to move the vector without changing its orientation.

What is a Vector?

A vector is a quantity with both magnitude and direction in physics. It is often depicted by an arrow with the same direction as the amount and a length proportionate to the size of the quantity. A vector lacks position, but has magnitude and direction. A vector is therefore unaffected by displacement parallel to itself as far as its length is unaltered.

Scalars are regular variables with a magnitude but no direction, in contrast to vectors. In contrast to speed (the amount of speed), time, or mass, which are scalar values, displacement, speed, and acceleration are all vector quantities.

Therefore, it concludes that option B is correct.

To know more about Vector:

https://brainly.com/question/13322477

#SPJ2

Each second, 1250 m3 of water passes over a waterfall 150 m high. Three-fourths of the kinetic energy gained by the water in falling is transferred to electrical energy by a hydroelectric generator. At what rate does the generator produce electrical energy? (The mass of 1 m3 of water is 1000 kg.)

Answers

Answer:

The generator produces electrical energy at a rate of 1378125000 J per second.

Explanation:

volume of water falling each second is 1250 [tex]m^{3}[/tex]

height through which it falls, h is 150 m

mass of 1 [tex]m^{3}[/tex] of water is 1000 kg

⇒mass of 1250 [tex]m^{3}[/tex] of water, m = 1250×1000 = 1250000 kg

acceleration due to gravity, g = 9.8 [tex]\frac{m}{sec^{2} }[/tex]

in falling through 150 m in each second, by Work-Energy Theorem:

Kinetic Energy(KE) gained by it = Potential Energy(PE) lost by it

⇒KE = mgh

        = 1250000×9.8×150 J

        = 1837500000 J

Electrical Energy = [tex]\frac{3}{4}[/tex](KE)

                            = [tex]\frac{3}{4}[/tex]×1837500000

                            = 1378125000 J per second

Two wheels having the same radius and mass rotate at the same angular velocity ((Figure 1) ). One wheel is made with spokes so nearly all the mass is at the rim. The other is a solid disk.How do their rotational kinetic energies compare?A. The wheel with spokes has higher KE, but not twice as high.B. They are nearly the same.C. The solid wheel has higher KE, but not twice as high.D. The solid wheel has about twice the KE.E. The wheel with spokes has about twice the KE.

Answers

Answer:

E. The wheel with spokes has about twice the KE.

See explanation in: https://quizlet.com/100717504/physics-8-mc-flash-cards/

Answer:

Explanation:

We have to consider how the location of the mass affects the moment of inertia.

For a solid cylinder, I = mR²

For a hollow cylinder, I = 1/2mR²

Where

I ist the moment of inertia,

m is their masses,

R is the radius of rotation.

Since they have the same mass and radius, it can be seen that a hollow cylinder has twice the moment of inertia as a solid cylinder of the same mass and radius.

We know that the rotational kinetic energy is proportional to the moment of inertia. From;

Rotational KE = 1/2IW²

Where W is the angular speed.

so that at the same angular speed, the wheel with the spokes will have about double the kinetic energy as the solid cylinder. Take note that some of the mass is in the spokes so the moment of inertia is not exactly double.

The fastest possible rate of rotation of a planet is that for which the gravitational force on material at the equator just barely provides the centripetal force needed for the rotation. (Why?)
(a) Show that the corresponding shortest period of rotation is T = √3π/Grho, where rho is the uniform density (mass per unit volume) of the spherical planet.
(b) Calculate the rotation period assuming a density of 3.0 g/cm³, typical of many planets, satellites, and asteroids. No astronomical object has ever been found to be spinning with a period shorter than that determined by this analysis.

Answers

Answer:

6862.96871 seconds

Explanation:

M = Mass of Planet

G = Gravitational constant

r = Radius

[tex]\rho[/tex] = Density

T = Rotation period

In this system the gravitational force will balance the centripetal force

[tex]G\frac{Mm}{r^2}=mr\omega^2[/tex]

[tex]\omega=\frac{2\pi}{T}[/tex].

[tex]M=\rho v\\\Rightarrow M=\rho \frac{4}{3}\pi r^3[/tex]

[tex]\\\Rightarrow G\frac{Mm}{r^2}=mr\left(\frac{2\pi}{T}\right)^2\\\Rightarrow \frac{G\rho \frac{4}{3}\pi r^3}{r^3}=\frac{4\pi^2}{T^2}\\\Rightarrow T=\sqrt{\frac{3\pi}{G\rho}}[/tex]

Hence, proved

[tex]T=\sqrt{\frac{3\pi}{6.67\times 10^{-11}\times 3000}}\\\Rightarrow T=6862.96871\ s[/tex]

The rotation period of the astronomical object is 6862.96871 seconds

While sitting in your car by the side of a country road, you see your friend, who happens to have an identical car with an identical horn, approaching you. You blow your horn, which has a frequency of 260 Hz; your friend begins to blow his horn as well, and you hear a beat frequency of 6.0Hz .

How fast is your friend approaching you?

Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

         [tex] v_s =7.74\ m/s[/tex]

Explanation:

given,

Speed of sound = 343 m/s

frequency of horn = 260 Hz

the friend is approaching, the frequency is increased by the Doppler Effect. The frequency is 266 Hz

using formula

         [tex]f' = \dfrac{v}{v-v_s}f_0[/tex]

         [tex]266= \dfrac{343}{343 - v_s}(260)[/tex]

         [tex]1.023= \dfrac{343}{343 - v_s}[/tex]

         [tex]343 - v_s = 335.26[/tex]

         [tex] v_s =7.74\ m/s[/tex]

the speed of friends approaching is equal to [tex] v_s =7.74\ m/s[/tex]

The Bernoulli equation is valid for steady, inviscid, incompressible flows with a constant acceleration of gravity. Consider flow on a planet where the acceleration of gravity varies with height so that g=g0−cz, where g0 and c are constants. Integrate "F=ma" along a streamline to obtain the equivalent of the Bernoulli equation for this flow.

Answers

Answer:

[tex]p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant[/tex]

Explanation:

first write the newtons second law:

F[tex]_{s}[/tex]=δma[tex]_{s}[/tex]

Applying bernoulli,s equation as follows:

∑[tex]δp+\frac{1}{2} ρδV^{2} +δγz=0\\[/tex]

Where, [tex]δp[/tex] is the pressure change across the streamline and [tex]V[/tex] is the fluid particle velocity

substitute [tex]ρg[/tex] for {tex]γ[/tex] and [tex]g_{0}-cz[/tex] for [tex]g[/tex]

[tex]dp+d(\frac{1}{2}V^{2}+ρ(g_{0}-cz)dz=0[/tex]

integrating the above equation using limits 1 and 2.

[tex]\int\limits^2_1  \, dp +\int\limits^2_1 {(\frac{1}{2}ρV^{2} )} \, +ρ \int\limits^2_1 {(g_{0}-cz )} \,dz=0\\p_{1}^{2}+\frac{1}{2}ρ(V^{2})_{1}^{2}+ρg_{0}z_{1}^{2}-ρc(\frac{z^{2}}{2})_{1}^{2}=0\\p_{2}-p_{1}+\frac{1}{2}ρ(V^{2}_{2}-V^{2}_{1})+ρg_{0}(z_{2}-z_{1})-\frac{1}{2}ρc(z^{2}_{2}-z^{2}_{1})=0\\p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant[/tex]

there the bernoulli equation for this flow is [tex]p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant[/tex]

note: [tex]ρ[/tex]=density(ρ) in some parts and change(δ) in other parts of this equation. it just doesn't show up as that in formular

Radio Waves If your favorite FM radio station broadcasts at a frequency of 104.5 MHz, what is the wavelength of the station’s signal in meters? What is the energy of a photon of the station’s electromagnetic signal?

Answers

Answer:

The wavelength of the station’s signal is 2.9 meters

The energy of a photon of the station’s electromagnetic signal is [tex]6.9\times10^{-26}J [/tex]

Explanation:

Wavelength [tex] \lambda [/tex] is inversely proprtional to frequency (f) and directly proportional to velocity of the wave (v).

[tex]\lambda=\frac{v}{f} [/tex] (1)

But electromagnetic waves as radio signals travel at speed of light so using this on (1):

[tex]\lambda=\frac{c}{f}=\frac{3.0\times10^{8}}{104.5\times10^{6}}\approx2.9\,m [/tex]

Albert Einstein discovered that energy of electromagnetic waves was quantized in small discrete packages of energy called photons with energy:

[tex] E=hf=(6.6\times10^{-34})(104.5\times10^{6})\approx6.9\times10^{-26}J[/tex]

with h the Planck's constant.

Final answer:

The wavelength of a 104.5 MHz FM radio signal is approximately 2.87 meters, and the energy of a photon of this radio signal is approximately 6.92 * 10^-26 Joules.

Explanation:

The subject of this question is the relationship between the frequency, wavelength, and energy of radio waves, specifically those used in FM radio broadcasting.

To calculate the wavelength of the radio signal, one can employ the wave equation: velocity = frequency * wavelength. Since the velocity of electromagnetic waves, which include radio waves, is the speed of light (3 * 10^8 m/s), the wavelength can be obtained by rearranging the equation to: wavelength = velocity / frequency. Using your FM station's frequency of 104.5 MHz (or 104.5 * 10^6 Hz), the wavelength of the station's signal would be approximately 2.87 meters.

The energy of a photon from this radio signal could be found through the photon energy equation: E = h * f, where h is Planck's constant (6.62607004 × 10^-34 m^2 kg / s) and f is the frequency in Hz. Thus, the energy of a radio signal photon at 104.5 MHz would be approximately 6.92 * 10^-26 J.

Learn more about Radio Waves here:

https://brainly.com/question/31375531

#SPJ11

Rank the four numbered galaxies according to their overall color

Answers

Answer:

(1) Elliptical galaxies

(2) Spiral galaxies

(3) Irregular galaxies

(4) S0 galaxies

Explanation:

(1) Elliptical galaxies

Elliptical galaxies

These systems exhibit certain characteristic properties. They have complete rotational symmetry; i.e., they have figures of revolution with two equal principal axes. Third smaller axis is presumed axis of rotation. The surface brightness of elliptical at optical wavelengths decreases monotonically outward from a maximum value at the centre, following a common mathematical law of the form:

I = I0( r/a +1 )−2,

where I is the intensity of the light, I0 is the central intensity, r is the radius, and a is a scale factor.

(2) Spiral galaxies

Spiral galaxies are classified into two groups; ordinary and barred. The ordinary group is designated by S or SA, and the barred group by SB. In normal spirals, the arms originate directly from the nucleus, or bulge, where in the barred spirals, there is a bar of material that runs through the nucleus that the arms emerge from. Both types are given a classification according to how tightly their arms are wound. The classifications are a, b, c, d ... with "a" having the tightest arms. In type "a", the arms are usually not well defined and form almost a circular pattern. Sometimes you will see the classification of a galaxy with two lower case letters. This means that the tightness of the spiral structure is halfway between those two letters.

(3) Irregular galaxies:

Irregular galaxies have no regular or symmetrical structure. They are divided into two groups, Irr I and IrrII. Irr I type galaxies have HII regions, which are regions of elemental hydrogen gas, and many Population I stars, which are young hot stars. Irr II galaxies simply seem to have large amounts of dust that block most of the light from the stars. All this dust makes is almost impossible to see distinct stars in the galaxy.

(4) S0 galaxies

These systems exhibit some of the properties of both the elliptical and the spirals and seem to be a bridge between these two most common galaxy types. Hubble introduced the S0 class long after his original classification scheme had been universally adopted, largely because he noticed the dearth of highly flattened objects that otherwise had the properties of elliptical galaxies.

The asteroid Ceres has a mass 6.797 × 1020 kg and a radius of 472.9 km. What is g on the surface? The value of the universal gravitational constant is 6.67259 × 10−11 N · m2 /kg2 . Answer in units of m/s 2 .

Answers

Answer:

[tex]g=0.20\ m/s^2[/tex]    

Explanation:

It is given that,

Mass of the asteroid Ceres, [tex]m=6.797\times 10^{20}\ kg[/tex]

Radius of the asteroid, [tex]r=472.9\ km=472.9\times 10^3\ m[/tex]

The value of universal gravitational constant, [tex]G=6.67259\times 10^{-11}\ N.m^2/kg^2[/tex]

We know that the expression for the acceleration due to gravity is given by :

[tex]g=\dfrac{Gm}{r^2}[/tex]

[tex]g=\dfrac{6.67259\times 10^{-11}\times 6.797\times 10^{20}}{(472.9\times 10^3)^2}[/tex]

[tex]g=0.20\ m/s^2[/tex]

So, the value of acceleration due to gravity on that planet is [tex]0.20\ m/s^2[/tex]. Hence, this is the required solution.

Final answer:

To calculate the surface gravity of Ceres, apply Newton's law of universal gravitation and rearrange it to solve for 'g.' The result is approximately g = 0.28 m/s².

Explanation:

Calculating Gravitational Acceleration on Ceres

To find the acceleration due to gravity ‘g’ on the surface of Ceres, use Newton’s law of universal gravitation:

F = G * (m1 * m2) / r^2

Where F is the gravitational force, G is the gravitational constant, m1, and m2 are the masses of the two objects (in this case, a mass on the surface of Ceres and Ceres itself), and r is the distance between the centers of the two masses (the radius of Ceres in this scenario).

Since we are interested in 'g,' we rearrange this formula to solve for F/m2 (where m2 is a mass on Ceres’ surface and F/m2 equals g):

g = G * m1 / r^2

Plugging in the given values:

G = 6.67259 × 10⁻¹¹ N·m²/kg²

m1 (mass of Ceres) = 6.797 × 10²° kg,

r (radius of Ceres) = 472.9 × 10³ m,

The calculation is:

g = (6.67259 × 10⁻¹¹ N·m²/kg² * 6.797 × 10²° kg) / (472.9 × 10³ m)^2

After performing the calculation, ‘g’ on the surface of Ceres is found to be approximately 0.28 m/s²

A hot air balloon rising vertically is tracked by an observer located 5 miles from the lift-off point. At a certain moment, the angle between the observer's line-of-sight and the horizontal is π3 , and it is changing at a rate of 0.1 rad/min. How fast is the balloon rising at this moment?

Answers

Answer:

1.6 miles/min..

Explanation:

Let y be the height of the balloon at time t. Our goal is to compute the balloon's velocity at the moment .

balloon's velocity dy/dt when θ =π/3 radian

so we can restate the problem as follows:

Given dθ/dt = 0.1 rad/min at θ = π/3

from the figure in the attachment

tanθ = y/5

Differentiating w.r.t "t"

sec^2 θ×dθ/dt = 1/4(dy/dt)

⇒ dy/dt = (4/cos^2 θ)dθ/dt

At the given moment θ =π/3 and dθ/dt = 0.1 rad/min.

therefore putting the value we get

[tex]\frac{dy}{dt} = \frac{4}{\frac{1}{2}^2 }\times0.1[/tex]

solving we get

= 1.6 miles/min

So the balloon's velocity at this moment is 1.6 miles/min.

nder some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star. The density of a neutron star is roughly 1014 times as great as that of ordinary solid matter. Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the collapse. The star's initial radius was 6.0×105 km (comparable to our sun); its final radius is 16 km.If the original star rotated once in 35 days, find the angular speed of the neutron star.

Answers

Answer:

2.92 * 10³ rad/s

Explanation:

Given:

Initial Radius of Original Star (Ri) = 6.0 * 10^5 km

Final Radius of Neutron Star (Rf) = 16km

Angular Speed = 1 revolution in 35 days

We need to convert this to rad/s

To do that, we first convert to rad/day

i.e (1 rev/35 days) * (2π rad/ 1 rev)

We then convert the days to hour

i.e. (1 rev / 35 days) * (2π rad/ 1 rev) * (1 day / 24 hours)

Finally, we convert the hour to seconds (3600 seconds makes an hour)

i.e. (1 rev / 35 days) * (2π rad/ 1 rev) * (1 day / 24 hours) * (1 hour/ 3600 sec)

Angular Speed = 2π rad/ 3024000 secs

Angular Speed (wi) = 2.079 * 10^-6rad/s

From the question, we're asked to calculate the angular speed of the neutron star (wf)

Applying law of conservation of angular momentum to a system whose moment of Inertia changes, we have

Ii*wi = If * wf ----------------- Formula

Where Ii and If are the initial and final Inertia of the star

The relationship between Inertia and Radius of each object is I = 2/5MR²

So, Ii = 2/5(MRi²) and If = 2/5(MRf²)

Substitute the above in the formula quoted

We have 2/5(MRi²)wi = 2/5(MRf²)wf ---------------- Divide through by 2M/5

We are left with, Ri²wi = Rf²wf

Make wf the subject of the formula

wf = wi * (Ri/Rf)²

wf = 2.079 * 10^-6rad/s * (6.0 * 10^5 km/16km)²

wf = 2.079 * 10^-6rad/s * (6.0 * 10^5 km/16km) * (6.0 * 10^5 km/16km)

wf = 2.92 * 10³ rad/s

When an electron de-excites from the third quantum level to the second, and then to the ground state, two photons are emitted. The sum of the emitted frequencies equals the frequency of the single-photon that would be emitted if de-excitation were from the third to ____.

Answers

Answer:

ground state

Explanation:

  Lets take  

n=3 ,n=2 ,n=1 are the energy level.

Energy level n=1 is the ground energy level.

The energy from 3 to 1 = hν

The energy from 3 to 2 = hν₁

The energy from 2 to 1 = hν₂

We can say that

hν = hν₁ +  hν₂

If the electron were de-excitation from the third level to ground level then the sum of emitted frequency will be equal to the frequency of a single electron.

Therefore the answer is ground state.

A 65 kg person jumps from a window to a fire net 18 m below, which stretches the net 1.1 m. Assume the net behaves as a simple spring and
A) Calculate how much it would stretch if the same person was lying on it.
B) How much it would stretch if the person jumped from 35 m

Answers

Answer:

0.03167 m

1.52 m

Explanation:

x = Compression of net

h = Height of jump

g = Acceleration due to gravity = 9.81 m/s²

The potential energy and the kinetic energy of the system is conserved

[tex]P_i=P_f+K_s\\\Rightarrow mgh_i=-mgx+\frac{1}{2}kx^2\\\Rightarrow k=2mg\frac{h_i+x}{x^2}\\\Rightarrow k=2\times 65\times 9.81\frac{18+1.1}{1.1^2}\\\Rightarrow k=20130.76\ N/m[/tex]

The spring constant of the net is 20130.76 N

From Hooke's Law

[tex]F=kx\\\Rightarrow x=\frac{F}{k}\\\Rightarrow x=\frac{65\times 9.81}{20130.76}\\\Rightarrow x=0.03167\ m[/tex]

The net would strech 0.03167 m

If h = 35 m

From energy conservation

[tex]65\times 9.81\times (35+x)=\frac{1}{2}20130.76x^2\\\Rightarrow 10065.38x^2=637.65(35+x)\\\Rightarrow 35+x=15.785x^2\\\Rightarrow 15.785x^2-x-35=0\\\Rightarrow x^2-\frac{200x}{3157}-\frac{1000}{451}=0[/tex]

Solving the above equation we get

[tex]x=\frac{-\left(-\frac{200}{3157}\right)+\sqrt{\left(-\frac{200}{3157}\right)^2-4\cdot \:1\left(-\frac{1000}{451}\right)}}{2\cdot \:1}, \frac{-\left(-\frac{200}{3157}\right)-\sqrt{\left(-\frac{200}{3157}\right)^2-4\cdot \:1\left(-\frac{1000}{451}\right)}}{2\cdot \:1}\\\Rightarrow x=1.52, -1.45[/tex]

The compression of the net is 1.52 m

​ hot-air balloon is rising vertically. The angle of elevation from a point on level ground 122 feet from the balloon to a point directly under the passenger compartment changes from 17.9 degrees to 29.5 degrees. How​ far, to the nearest tenth of a​ foot, does the balloon rise during this​ period?

Answers

29.62 feet far, to the nearest tenth of a​ foot, does the balloon rise during this​ period

Explanation:

Hot-air balloon is rising vertically, the angle of elevation from a point on level ground = 122 feet (from the balloon)

The passenger compartment changes from = 17.9 degrees to 29.5 degree

              [tex]\tan \left(17.9^{\circ}\right)=\frac{a}{122 \mathrm{ft}}[/tex]

              [tex]a=122 \times \tan 17.9^{\circ}=122 \times 0.32299=39.4[/tex]

Similarly,

              [tex]\tan \left(29.5^{\circ}\right)=\frac{b}{122 f t}[/tex]

              [tex]b=122 \times \tan \left(29.5^{\circ}\right)=122 \times 0.56577=69.02[/tex]

The nearest tenth of a foot, the balloon rise during the period, as below

               69.02 – 39.4 = 29.62 ft.

A rod of mass M = 116 g and length L = 49 cm can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m = 14 g, moving with speed V= 6 m/s, strikes the rod at angle A = 37º a distance D=L/4 from the end and sticks to the rod after the collision.
(A) What is the total moment of inertia, 1, with respect to the hinge, of the rod-ball-system after the collision?
(B) Enter an expression for the angular speed w of the system immediately after the collision, in terms of m, V, D, 0,
(C) Calculate the rotational kinetic energy, in joules, of the system after the collision

Answers

Final answer:

To calculate the moment of inertia and angular velocity of the rod-ball system after the collision, use the conservation of angular momentum, considering both the inertia of the rod and the putty ball. The total moment of inertia is the sum of each component's moment of inertia, and the angular velocity is determined by the ratio of initial angular momentum to the total moment of inertia.

Explanation:

When a putty ball strikes and sticks to a rotating rod in a collision with rotating rod, the conservation of angular momentum applies. To solve for the moment of inertia (I) and angular velocity (ω), we need to consider both the moment of inertia of the rod and the additional inertia from the putty ball at the point it sticks to the rod.

For the rod and ball system:

The angular speed ω can be found by equating the initial angular momentum of the ball before the collision to the final angular momentum of the system after the collision:

The rotational kinetic energy of the system after collision can be calculated using the expression K_{rot} = \frac{1}{2}Iω^2.

Cosmic rays are particles traveling at extreme speeds through intergalactic space. Many are launched by exploding supernovae. Even the slowest cosmic rays travel at 43% of the speed of light. Calculate the gamma factor for cosmic rays traveling at these speeds.

Answers

Answer:

1.1

Explanation:

Cosmic rays are particles traveling at extreme speeds through intergalactic space. Many are launched by exploding supernovae. From the question, we know that slowest cosmic rays travel at 43% of the speed of light that is 43/100 multiply by the speed of light(speed of light= 3.0×10^8 m/s).

Gamma factor can be calculated using the formula below;

Gamma factor= 1/(1- v^2/c^2)^1/2 --------------------------------------------(1).

Gamma factor= 1/(1-3.0×10^8 metre per seconds ×43/100÷ 3.0×10^8 metre per seconds) ^1/2

Gamma factor= 1/(1-1.6641×10^16/3.0×10^2)^1/2

Gamma factor= 1/(1-1.16641×10^16/9×10^16)^1/2

Gamma factor= 1/(1-0.1296)^1/2

Gamma factor= 1/(0.87)^1/2

Gamma factor= 1/0.9327

Gamma factor= 1.072112535

Gamma factor= ~ 1.1

Cosmic rays are high-speed particles that travel through space close to the speed of light. The gamma factor for cosmic rays traveling at 43% of the speed of light is  1.17.

Cosmic rays are high-speed particles that travel through interstellar space at speeds close to the speed of light. When calculating the gamma factor for cosmic rays traveling at 43% of the speed of light, we can use the formula: γ = 1 / √(1 - v^2/c^2), where v is the velocity of the particles and c is the speed of light. Substituting the values, the gamma factor for cosmic rays traveling at 43% of the speed of light is approximately 1.17.

A collapsible plastic bag contains a glucose solution. If the average gauge pressure in the vein is 1.33 x 103 Pa, what must be the minimum height h of the bag in order to infuse glucose into the vein? Assume the density of the solution is 1.02 x 103 kg/m3 .

Answers

Answer:

The height of the bag will be 0.133 m

Explanation:

We have given gauge pressure [tex]P=1.33\times 10^3Pa=1330Pa[/tex]

Density of solution [tex]\rho =1.02\times 10^3=1020kg/m^3[/tex]

We have to find the height of the bag

We know that gauge pressure is given by P=\rho gh

[tex]1330=1020\times 9.8\times h[/tex]

h=0.133m

So the height of the bag will be 0.133 m

Final answer:

The minimum height of the bag should be 0.245 meters to infuse glucose into the vein.

Explanation:

In order for the fluid to enter the vein, its pressure at entry must exceed the blood pressure in the vein. To find the height of the fluid, we need to convert the blood pressure in mm Hg to SI units. Since 1.0 mm Hg = 133 Pa, the blood pressure in the vein is 18 mm Hg above atmospheric pressure, which is equivalent to (18 mm Hg)(133 Pa/mm Hg) = 2386 Pa.

Now we can calculate the height of the fluid using the formula:

h = P/(ρg)

Where:

h is the height of the fluidP is the gauge pressure (2386 Pa)ρ is the density of the solution (1.02 x 10^3 kg/m^3)g is the acceleration due to gravity (9.8 m/s^2)

Substituting the given values into the formula, we find:

h = (2386 Pa)/((1.02 x 10^3 kg/m^3)(9.8 m/s^2)) = 0.245 m

The minimum height of the bag should be 0.245 meters in order to infuse glucose into the vein.

Other Questions
I am graphing something with 29 points. I know that you have to label the points with a capital letter. However, there are only 26 letters in the English alphabet, so what do I name the remaining 3 points? Which of the following is irrelevant when making a decision? a. The expected increase in a contribution margin of one product line as a result of a decision to discontinue a separate unprofitable product line. b. Fixed overhead costs that differ among alternatives. c. The cost of further processing a product that could be sold as-is. d. The cost of an asset that the company is considering replacing. The ______, authorized by the 2010 Dodd-Frank Wall Street Reform and Consumer Protection Act, is charged with writing and enforcing rules covering consumer financial products and services including mortgages, credit cards,payday loans, loan servicing, check cashing, debt collection, and others.A. Consumer Product Safety CommissionB. Consumer Financial Protection BureauC. American Federation of LaborD. Bureau of Public Debt The blood-testis barrier: consists of tight junctions between interstitial (Leydig) cells. is the basement membrane of the seminiferous tubules. protects sperm antigens from exposure to the cells of the immune system. all of these choices WILL MARK BRAINLIEST!!!Fill in the blank to complete each statement about measuring an earthquakes magnitude.The ___ scale is best used to measure the strength of small, nearby earthquakes.The ___ magnitude scale is useful for measuring the strength of earthquakes of all sizes and at all distances from a seismograph. Analisando o painel de Portinari apresentado e o trecho destacado de Morte e Vida Severina, conclui-se que: ambos mostram, figurativamente, o destino sujeito sucumbido pela seca, com a diferana de que a cena de Portinari destaca o sofrimento dos que ficam. o poema revela a esperana, por meio de versos livres, assim como a cena de Portinari traz uma perspectiva prspera de futuro, por meio do gesto. o poema mostra um cenrio prspero com elementos da natureza, como sol, chuva, insetos, e, por isso, mantm uma relao de oposio com a cena de Portinari. In the 1950s, when Watson and Crick were working on their model of DNA, which concepts were well accepted by the scientific community?a. Chromosomes are made up of protein and nucleic acid.b. Chromosomes are found in the nucleus.c. Genes are made of DNA.d. Genes are located on chromosomes. At a certain concentration of N2 and O3, the initial rate of reaction is 0.770 M / s. What would the initial rate of the reaction be if the concentration of N2 were halved? Be sure your answer has the correct number of significant digits. Alone in the woods, Kristof hears a noise. He thinks he sees a bear coming toward him. Kristof heart starts pounding and then, a moment later, he realizes how frightened he is. This sequence of events is BEST explained by which theory of emotion please solve the equation (15m + 3)/2 = -6 A modified roulette wheel has 36 slots. One slot is 0, another is 00, and the others are numbered 1 through 34, respectively. You are placing a bet that the outcome is an odd number. (In roulette, 0 and 00 are neither odd nor even.) Blue Company reports the following costs and expenses in May. Factory utilities $17,000 Direct labor $72,000 Depreciation on factory equipment 13,950 Sales salaries 47,500 Depreciation on delivery trucks 4,700 Property taxes on factory building 2,600 Indirect factory labor 49,900 Repairs to office equipment 1,900 Indirect materials 82,600 Factory repairs 2,350 Direct materials used 141,700 Advertising 15,500 Factory managers salary 8,300 Office supplies used 2,790 Required : Determine the total amount of:(a) Manufacturing overhead (b) Product costs (c) Period costs A 50.1 kg diver steps off a diving board and drops straight down into the water. The water provides an average net force of resistance of 1598 N to the divers fall. If the diver comes to rest 5.2 m below the waters surface, what is the total distance between the diving board and the divers stopping point underwater? The acceleration due to gravity is 9.81 m/s 2. Answer in units of m. The Declaration of the Rights of Man was a document drafted during the French Revolution. One unintended outcome from the sentiment stated in this excerpt was that enslaved people in French colonies.True / False. The New River Gorge Bridge in West Virginia is a steel arch bridge 518 m in length. How much does the total length of the roadway decking change between temperature extremes of 20.0C and 35.0C? The result indicates the size of the expansion joints that must be built into the structure. The Freedmens Bureau: a. won much southern white support because it consistently supported the planters in disputes with former slaves. b. made notable achievements in improving African-American education and health care. c. carried out a successful program of distributing land to every former slave family. d. enjoyed the strong support of President Andrew Johnson in its work on behalf of civil rights. e. was badly administered because director O. O. Howard lacked military experience. You are on a house call with the veterinarian to evaluate some goats that are having "night blindness" per the owner. Upon arrival you can see that the goats have a dull haircoat, are very thin, and have nasal discharge. What deficiency can cause these symptoms? vtne Which problem did Britain have after the French and Indian War? A. regaining land the French won during the war B. convincing colonists to go west to find farm land C. keeping colonists from going farther west into Indian lands D. collecting taxes from colonists who bought land in the west Year 11 Maths: 500ml of water is used to make 80g of pasta. How many grams of pasta could be made with 2.5 litres of water? An animal is hit by a car and has a broken leg in which the bone is sticking out through the skin. This is an example of which fracture type?A. CompoundB. SpiralC. GreenstickD. Comminuted