A 1L solution containing 25,000 units of heparin must run at 30mL/hr. How much heparin is administered per hour?

Answers

Answer 1

Answer:

750 units

Step-by-step explanation:

As given in question,

speed of solution = 30 mL/hr

1 L of solution contains heparin = 25000 units

=> 1000 mL of solution contains heparin = 25000 units

[tex]=>\ \textrm{1 mL of solution contains heparin}\ =\ \dfrac{25000}{1000}\ units[/tex]

                                                                             = 25 units

Hence, 30 mL of solutions contains heparin = 30 x 1 mL of solution contains heparin

                                                                         = 30 x 25

                                                                         = 750 units

Hence, heparin administered per hour = 750 units

Answer 2

Final answer:

To find the amount of heparin administered per hour at a rate of 30mL/hr in a 1L solution with 25,000 units, calculate the concentration in units/mL and multiply by the hourly rate. This results in 750 units of heparin administered per hour.

Explanation:

To calculate the amount of heparin administered per hour when the infusion rate is 30mL/hr, use the given total units of heparin in the 1L solution. Since there are 25,000 units in 1L (1,000 mL), we can find the amount per mL and then multiply by the hourly rate.

First, calculate the units per mL:
Units per mL = Total units / Total volume
Units per mL = 25,000 units / 1,000 mL
Units per mL = 25 units/mL

Next, calculate the units delivered per hour:
Units per hour = Units per mL * Infusion rate (mL/hr)
Units per hour = 25 units/mL * 30 mL/hr
Units per hour = 750 units/hr

Therefore, 750 units of heparin are administered per hour.


Related Questions

Martinez Company’s relevant range of production is 7,500 units to 12,500 units. When it produces and sells 10,000 units, its average costs per unit are as follows:

Average Cost per Unit
Direct materials $ 6.10
Direct labor $ 3.60
Variable manufacturing overhead $ 1.40
Fixed manufacturing overhead $ 4.00
Fixed selling expense $ 3.10
Fixed administrative expense $ 2.10
Sales commissions $ 1.10
Variable administrative expense $ 0.55
2. For financial accounting purposes, what is the total amount of period costs incurred to sell 10,000 units? (Do not round intermediate calculations.)

Answers

Answer:

$68,500

Step-by-step explanation:

The following costs are included in the period costs:

Fixed selling expense = $3.10

Fixed administrative expense = $2.10

Sales commissions = $1.10

Variable administrative expense = $0.55

Hence,

the total period costs incurred

= Sum of the above expenses × Total number of  units sold

= ( $3.10 + $2.10 + $1.10 + $0.55 ) × 10,000

= $68,500

Subtract : 8,878-2,314

5.4 from 12 ( the difference is.....

Answers

Answer:

1st question : 6564

2nd question : 6.6

Step-by-step explanation:

We have to subtract 8,878-2,314.

We will subtract the smaller number from greater number.

So, the answer will be = 6564

We also have to subtract 5.4 from 12 .

Hence, the difference will be = 6.6

One of the interior angles of a triangle is equal to 30°, and one of the exterior angles is equal to 40°. Find the remaining interior angles of this triangle.

Answers

Answer:

The remaining interior angles of this triangle are 140º and 10º

Step-by-step explanation:

The sum of the interior angles of a triangle is always 180º.

A triangle has 3 angles. In this problem, we have one of them, that i am going to call A1 = 30º.

The sum of a interior angle with it's respective exterior angle is also always 180º.

We have that one of the exterior angles is equal to 40°. So it's respective interior angle is

40º + A2 = 180º

A2 = 180º - 40º

A2 = 140º

Now we have two interior angles, and we know that the sum of the 3 interior angles is 180º. So:

A1 + A2 + A3 = 180º

A3 = 180º - A1 - A2

A3 = 180º - 30º - 140º

A3 = 180º - 170º

A3 = 10º

Answer:

140 and 10

Step-by-step explanation:

I need help in "Matlab' with how to "Create a column vector from 15 to -25 with a step size of 5"

Answers

Answer:

x=[15:-5:-25]'

Step-by-step explanation:

In order to create a vector you need to use this command:

x = [j:i:k]'

This creates a regularly-spaced vector x using i as the increment between elements. j is the initial value and k is the final value. Besides you need to add the character ' at the end in order to convert the arrow vector in a column vector

use completeling the square to solve for x in the equation (x-12)(x+4)=9

Answers

Answer:

x= [tex]4\pm \sqrt{73}[/tex]

Step-by-step explanation:

First step. Solve the binomial product from the left side of the equation:

[tex](x-12)(x+4)=9[/tex]

[tex]x^2+4x-12x-48=9[/tex]

Second step. Simplify and move independent terms to the right side of the equation:

[tex]x^2-8x=57[/tex]

Third step. Find a number that multiplied by two gives -8, then square this number and sum it on both sides of the equation:

[tex]x^2-8x+16=57+16[/tex]

Fourth step. Write the left side of the equation as a squared binomial:

[tex](x-4)^2=73[/tex]

Fifth step. First, take the square root and then add 4 to both sides of the equation to solve for x:

[tex](x-4)=\pm \sqrt{73}[/tex]

[tex]x= 4\pm \sqrt{73}[/tex]

Prove that an integer is odd if and only if it is the sum of two consecutive integers.

Answers

Answer:

A proof can be as follows:

Step-by-step explanation:

Remember that an odd interger is of the form [tex]2p+1[/tex] where [tex]p[/tex] is a integer and remember that two consecutive integer are two numbers of the form [tex]p, p+1[/tex]

[tex](\Rightarrow)[/tex] Suppose the [tex]n[/tex] is an odd integer.

Then [tex]n-1[/tex] must be an even integer and hence divisible by 2. Then we define

[tex]p=\dfrac{n-1}{2}\\q=\dfrac{n-1}{2}+1[/tex]

Then we have that

[tex]p+q=\dfrac{n-1}{2}+\dfrac{n-1}{2}+1=\frac{(n-1)+(n-1)}{2}+1=\frac{2(n-1)}{2}+1=n-1+1=n[/tex]

The converse is as follows:

[tex](\Leftarrow)[/tex] Let [tex]p[/tex] an integer, then[tex]p,p+1[/tex]  are two consecutive integers. Then

[tex]n=p+(p+1)=2p+1[/tex] is an odd integer.

Use Gaussian Elimination to find an equation of a polynomial that passes through points A(-5,-3), B(-2,3). C(3,3), D(6,19). Indicates row operations with the R notation. Leave coefficients in fraction form, do not report in decimals.

Answers

Answer:

The polynomial equation that passes through the points is [tex]2-\frac{2}{3}x+\frac{1}{12}x^{2}+\frac{1}{12}x^{3}[/tex]

Step-by-step explanation:

Suppose you have a function y = f(x) which goes through these points

A(-5,-3), B(-2,3). C(3,3), D(6,19)

there is a polynomial P(x) of degree 3 which goes through these point.

We use the fact that four distinct points will determine a cubic function.

P(x) is the degree 3 polynomial through the 4 points, a standard way to write it is

[tex]P(x) = a+bx+cx^2+dx^3[/tex]

Next replace the given points one by one, which leads to a system of 4 equations and 4 variables (namely a,b,c,d)

[tex]-3=a+b\cdot-5+c\cdot -5^2+d\cdot -5^3\\3=a+b\cdot-2+c\cdot -2^2+d\cdot -2^3\\3=a+b\cdot 3+c\cdot 3^2+d\cdot 3^3\\19=a+b\cdot 6+c\cdot 6^2+d\cdot 6^3[/tex]

We can rewrite this system as follows:

[tex]-3=a-5\cdot b+25\cdot c-125\cdot d\\3=a-2\cdot b+4\cdot c-8\cdot d\\3=a+3\cdot b+9\cdot c+27\cdot d\\19=a+6\cdot b+36\cdot c+216\cdot d[/tex]

To use the Gaussian Elimination we need to express the system of linear equations in matrix form (the matrix equation Ax=b).

The coefficient matrix (A) for the above system is

[tex]\left[\begin{array}{cccc}1&-5&25&-125\\1&-2&4&-8\\1&3&9&27\\1&6&36&216\end{array}\right][/tex]

the variable matrix (x) is

[tex]\left[\begin{array}{c}a&b&c&d\end{array}\right][/tex]

and the constant matrix (b) is

[tex]\left[\begin{array}{c}-3&3&3&19\end{array}\right][/tex]

We also need the augmented matrix, it is obtained by appending the columns of the coefficient matrix and the constant matrix.

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\1&-2&4&-8&3\\1&3&9&27&3\\1&6&36&216&19\end{array}\right][/tex]

To transform the augmented matrix to the reduced row echelon form we need to follow these steps:

Subtract row 1 from row 2 [tex]\left(R_2=R_2-R_1\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\1&3&9&27&3\\1&6&36&216&19\end{array}\right][/tex]

Subtract row 1 from row 3 [tex]\left(R_3=R_3-R_1\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\0&8&-16&152&6\\1&6&36&216&19\end{array}\right][/tex]

Subtract row 1 from row 4 [tex]\left(R_4=R_4-R_1\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right][/tex]

Divide row 2 by 3 [tex]\left(R_2=\frac{R_2}{3}\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&1&-7&39&2\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right][/tex]

Add row 2 multiplied by 5 to row 1 [tex]\left(R_1=R_1+\left(5\right)R_2\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right][/tex]

Subtract row 2 multiplied by 8 from row 3 [tex]\left(R_3=R_3-\left(8\right)R_2\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&40&-160&-10\\0&11&11&341&22\end{array}\right][/tex]

Subtract row 2 multiplied by 11 from row 4 [tex]\left(R_4=R_4-\left(11\right)R_2\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&40&-160&-10\\0&0&88&-88&0\end{array}\right][/tex]

Divide row 3 by 40 [tex]\left(R_3=\frac{R_3}{40}\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right][/tex]

Add row 3 multiplied by 10 to row 1 [tex]\left(R_1=R_1+\left(10\right)R_3\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&-7&39&2\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right][/tex]

Add row 3 multiplied by 7 to row 2 [tex]\left(R_2=R_2+\left(7\right)R_3\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right][/tex]

Subtract row 3 multiplied by 88 from row 4 [tex]\left(R_4=R_4-\left(88\right)R_3\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&264&22\end{array}\right][/tex]

Divide row 4 by 264 [tex]\left(R_4=\frac{R_4}{264}\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right][/tex]

Subtract row 4 multiplied by 30 from row 1 [tex]\left(R_1=R_1-\left(30\right)R_4\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right][/tex]

Subtract row 4 multiplied by 11 from row 2 [tex]\left(R_2=R_2-\left(11\right)R_4\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&0&-2/3\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right][/tex]

Add row 4 multiplied by 4 to row 3 [tex]\left(R_3=R_3+\left(4\right)R_4\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&0&-2/3\\0&0&1&0&1/12\\0&0&0&1&1/12\end{array}\right][/tex]

From the reduced row-echelon form the solutions are:

[tex]\left[\begin{array}{c}a=2&b=-2/3&c=1/12&d=1/12\end{array}\right][/tex]

The polynomial P(x) is:

[tex]2-\frac{2}{3}x+\frac{1}{12}x^{2}+\frac{1}{12}x^{3}[/tex]

We can check our solution plotting the polynomial and checking that it passes through the points.

What is the area under the curve y=x−x^2and above the x-axis?

Answers

Answer:

The area between the x-axis and the given curve equals 1/6 units.

Step-by-step explanation:

given any 2 functions f(x) and g(x) the area between the 2 figures is calculated as

[tex]A=\int_{x_1}^{x_2}(f(x)-g(x))dx[/tex]

The area needed is shown in the attached figure

The points of intersection of the given curve and x-axis are calculated as

[tex]x-x^2=0\\\\x(1-x)=0\\\\\therefore x=0,x=1[/tex]

hence the points of intersection are[tex](0,0),(1,0)[/tex]

The area thus equals

[tex]A=\int_{0}^{1}(x-x^2-0)dx\\\\A=\int_{0}^{1}xdx-\int_{0}^{1}x^2dx\\\\A=1/2-1/3\\\\A=1/6[/tex]

x dx − y^2 dy = 0, y(0) = 1

Answers

The solution is [tex]\(\frac{x^2}{2} + \frac{y^3}{3} = C\)[/tex], where \(C\) is the constant of integration.

To solve the differential equation [tex]\( xdx + y^2 dy = 0 \),[/tex] we can separate the variables and integrate both sides:

[tex]\[ \int x \, dx + \int y^2 \, dy = 0 \][/tex]

Integrating each term separately:

[tex]\[ \frac{x^2}{2} + \frac{y^3}{3} = C \][/tex]

Where  C is the constant of integration.

Complete question : Solve the following differential equation xdx+y2dy=0.

In 1912, the RMS Titanic, a British passenger ship, sank in the North Atlantic Ocean after colliding with an iceberg. Historians do not know the exact passenger list, so the death toll is estimated. Here is data from the 2201 passengers on board, by cabin class. First Class Second Class Third Class Crew Row Totals Died 122 167 528 673 1490 Survived 203 118 178 212 711 Col Totals 325 285 706 885 2201 Source: Wikipedia, RMS Titanic (2015) If we randomly select a passenger who survived the Titanic, what is the probability that this passenger is in a second class cabin?

Answers

Final answer:

The probability that a randomly selected survivor was in second class is calculated by dividing the number of second class passengers who survived (118) by the total number of survivors (711), resulting in a probability of 16.6%.

Explanation:

The subject of this question is probability. To calculate the probability that a randomly selected survival was in the second class cabin, we need to consider the number of second class passengers who survived compared to the total number of survivors. From the data provided, we can see that 118 passengers in second class survived the incident. The total number of survivors is 711.

Therefore, the probability (P) is calculated as follows:
P = Number of successful outcomes / Total number of outcomes.
Hence, P = 118 / 711 = 0.166.

This means that there is a 16.6% chance that a passenger who survived was from the second-class cabin.

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ12

Final answer:

The probability that a randomly selected survivor is from the second-class cabin is approximately 0.166, or 17% when rounded to the nearest percent.

Explanation:

Any calculation of probability involves dividing the number of favorable outcomes by the total number of outcomes. In this case, you want to find the probability that a randomly selected passenger who survived the Titanic was in a second-class cabin.

From the chart, we can see that 118 second-class passengers survived. The total number of survivors is 711. Hence, the probability of a survivor being from the second-class cabin is given by the formula:

Probability = favorable outcomes / total outcomes = number of second class survivors / total number of survivors.

Substituting these values into the formula we get: Probability = 118 / 711 = 0.166, or around 17% when rounded to the nearest percent.

So, if we randomly select a passenger who survived the Titanic, there is a 17% probability that this passenger is in a second-class cabin.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ2

Janae was vacuuming the narrow hallway in her house. She went 5 feet forwards in the first 4 seconds, then went 3 feet backwards in the next 4 seconds. She continued to do this, forwards 5 feet in 4 seconds and backwards 3 feet in 4 seconds. If she continues in this way, how many seconds will it take her to reach the end of her hallway, which is 15 feet long? 1.

Answers

Final answer:

Janae will reach the end of the 15-foot hallway in 56.8 seconds. She progresses 2 feet every 8 seconds, and in the last cycle, she only needs an additional 0.8 seconds to cover the final foot.

Explanation:

Calculating Janae's Time to Reach the End of Her Hallway

Janae is vacuuming by moving forwards and backwards in a consistent pattern. She moves 5 feet forwards in 4 seconds and then 3 feet backwards in the next 4 seconds. This means that every 8 seconds, Janae makes a net progress of 2 feet (5 feet - 3 feet = 2 feet).

To cover the entire 15-foot length of the hallway, we need to calculate how many 2-foot increments she can complete before reaching the end.

First, divide the total hallway length by Janae's net progress per cycle: 15 feet ÷ 2 feet per cycle = 7.5 cycles. Since Janae cannot complete half a cycle, she will have to complete a whole 8th cycle. Now, multiply the number of complete cycles by the time per cycle: 8 cycles × 8 seconds per cycle = 64 seconds.

However, in the last cycle, Janae only needs to make 1 extra foot instead of 2, since her total net progress after 7 cycles is 14 feet. Thus, during the 8th cycle, she moves forward 5 feet in 4 seconds, but as soon as she reaches the 15-foot mark, she stops.

This means that she won't need the full 8 seconds of the last cycle. We can calculate the extra time required to move the final foot by setting up a ratio. Since 5 feet take 4 seconds, 1 foot will take 4 seconds ÷ 5 = 0.8 seconds.

The total time Janae takes to reach the end of the hallway is the time for the 7 full cycles plus the time to move the last foot: (7 × 8 seconds) + 0.8 seconds = 56.8 seconds. This is the time required for Janae to reach the end of her 15-foot hallway.

What is 1/4 divided by 1/2, and create and solve a real-world word problem that uses the above division expression.

Answers

Answer:

1/4 divided by 1/2 equals 1/2

Real-world problem:

A constructor official knows that he needs 1/2 sack of cement to produce 10 blocks of concrete for a wall. The official only has 1/4 of the sack left and want to know how many blocks he can produce with this material.

Step-by-step explanation:

Since you know that 1/2 of the sack is needed to make 10 blocks, you can use this information to find the number of blocks that 1/4 of a sack can make. The question you want to answer is:  

if [tex]\frac{1}{2}[/tex] of a sack produces 10 blocks, how may blocks [tex]\frac{1}{4}[/tex] of a sack can produce?

Using the Rule of Three you can solve

[tex]\frac{\frac{1}{4} }{\frac{1}{2}} =\frac{2}{4}=\frac{1}{2}[/tex]

Now you know that 1/4 of a sack can produce 1/2 the number of blocks that 1/2 of the sack can produces, this means that you can produce 5 blocks of concrete.

Answer:

if you have 1/4 of a rope and you need to give 7/16 to your friend how much rope did you give to your friend?

Step-by-step explanation:

Possible grades for a class are A, B, C, D, and F. (No +/− 's.)

(a) How many ways are there to assign grades to a class of eight students?


(b) How many ways are there to assign grades to a class of seven students if nobody receives an F and exactly one person receives an A?

Answers

Answer: a) 390,625, b) 2916.

Step-by-step explanation:

Since we have given that

Number of possible grades = 5

a) Number of students = 8

Using the "Fundamental theorem of counting", we get that

[tex]5\times 5\times 5\times 5\times 5\times 5\times 5\times 5\\\\=5^8\\\\=390,625[/tex]

b) Number of students = 7

Number of students receive F = 0

Number of students receive A = 1

Number of remaining grades = 4

So, Using fundamental theorem of counting , we get that

[tex]4\times 3\times 3\times 3\times 3\times 3\times 3\\\\=4\times 3^6\\\\=2916[/tex]

Hence, a) 390,625, b) 2916.

Final answer:

There are 390,625 ways to assign grades to a class of eight students. Also, there are 4,096 ways to assign grades to a class of seven students if nobody receives an F and exactly one person receives an A.

Explanation:

(a)  In this case, each student can receive one of the five possible grades (A, B, C, D, or F). So, for each student, there are 5 choices. Since there are 8 students, we multiply the number of choices for each student together:

5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 = 58 = 390,625

Therefore, there are 390,625 ways to assign grades to the class of eight students.

(b)  In this case, the first student has only one choice, which is to receive an A. The remaining six students can receive one of the four possible grades (B, C, D, or F). So, for each of the remaining six students, there are 4 choices:

1 * 4 * 4 * 4 * 4 * 4 * 4 = 46 = 4,096

Therefore, there are 4,096 ways to assign grades to the class of seven students if nobody receives an F and exactly one person receives an A.

The number (in millions) of employees working in educational services in a particular country was 14.4 in 2005 and 18.8 in 2014. Letx=5 correspond to the year 2005, and estimate the number of employees in 2011. Assume that the data can be modeled by a straight line and that the trend continues indefinitely. Use two data points to find such a line and then estimate the requested quantity Let y represent the number of employees. The linear equation that best models the number of employees (in Millions) is (Simplify your answer. Use integers or decimals for any numbers in the equation. Round to the nearest hundredth as needed.)

Answers

Answer:

For 2011 the number of employees will be 17.33 millions.The linear equation that best models the number of employees (in Millions) is [tex]y(x)  = 0.49 * x + 11.94 [/tex]

Step-by-step explanation:

If we wish to model the data as a straight line, we need to use the straight line formula:

[tex]y(x)  = m * x + b[/tex]

where x is the years that have passed since the year 2000, m is the slope of the line and b the value of y when x=0, and y the numer (in millions) of employees.

For x=5 we know that y(5) = 14.4. So, we have:

[tex]y(5)  = m * 5 + b = 14.4 [/tex]

And for x=14 we know that y(14)= 18.8

[tex]y(14)  = m * 14 + b = 18.8 [/tex]

Subtracting the first equation from the second one:

[tex]y(14) - y(5) = m * 14 + b  - m * 5 - b = 18.8 -  14.4 [/tex]

[tex] m * (14  - 5 ) + b - b = 4.4[/tex]

[tex] m * 9  = 4.4[/tex]

[tex] m  = 4.4 / 9[/tex]

[tex] m  = 0.49 [/tex]

Putting this in the second equation

[tex]y(14)  = 0.49 * 14 + b = 18.8 [/tex]

[tex] 6.86 + b = 18.8 [/tex]

[tex]  b = 18.8 - 6.86 [/tex]

[tex]  b = 11.94 [/tex]

So, our equation will be:

[tex]y(x)  = 0.49 * x + 11.94 [/tex]

For 2011 the number of employees will be

[tex]y(11)  = 0.49 * 11 + 11.94 =17.33[/tex]

For 2011 the number of employees will be 17.33 millions.

The linear equation that best models the number of employees (in Millions) is  

Step-by-step explanation:

If we wish to model the data as a straight line, we need to use the straight line formula:

where x is the years that have passed since the year 2000, m is the slope of the line and b the value of y when x=0, and y the numer (in millions) of employees.

For x=5 we know that y(5) = 14.4. So, we have:

And for x=14 we know that y(14)= 18.8

Subtracting the first equation from the second one:

Putting this in the second equation

So, our equation will be:

For 2011 the number of employees will be

Decide whether the statement is true or false. The solution set of 2x-7=4x +9 is (-8) Choose the correct answer below O True ○ False

Answers

Answer:

2x - 4x -7 = 4x -4x + 9

-2x -7 +7 = 9 + 7

-2x ÷ (- 2 ) = 16 ÷ (-2)

x = -8

In Exercises 15-22, change the number given as a percent to a decimal number. 15. 7% 0.07 18, 0.75% 0.0075 212 135.9% 1.359 17, 5.15% 00515 16.39% 0.39 19, %00025 22, 298.7% 2.987 20. % 0.00375 27.

Answers

Step-by-step explanation:

We are asked to convert given percent to a decimal number.

We know to convert a number to decimal, we divide given percent by 100 as percent means per hundred.

We also know that to divide a number by hundred, we need to move decimal to two digits to left.

(15). [tex]7\%[/tex]

[tex]7\%=\frac{7}{100}=0.07[/tex]

(16). [tex]39\%[/tex]

[tex]39\%=\frac{39}{100}=0.39[/tex]

(17). [tex]5.15\%[/tex]

[tex]5.15\%=\frac{5.15}{100}=0.0515[/tex]

(18). [tex]0.75\%[/tex]

[tex]0.75\%=\frac{0.75}{100}=0.0075[/tex]

(19). [tex]\frac{1}{4}\%[/tex]

[tex]\frac{1}{4}\%=\frac{\frac{1}{4}}{100}=\frac{1}{4*100}=\frac{1}{400}=0.0025[/tex]

(20). [tex]\frac{3}{8}\%[/tex]

[tex]\frac{3}{8}\%=\frac{\frac{3}{8}}{100}=\frac{1}{8*100}=\frac{3}{800}=0.00375[/tex]

(21). [tex]135.9\%[/tex]

[tex]135.9\%=\frac{135.9}{100}=1.359[/tex]

(22). [tex]298.7\%[/tex]

[tex]298.7\%=\frac{298.7}{100}=2.987[/tex]

At Lamppost Pizza there are four pizza toppings: pepperoni, sausage, mushrooms, and anchovies. When you order a pizza you can have as few or as many toppings you want from the above list. You can also choose to have none of the above. How many different kinds of pizza could you order?
Please help immediately!!! :(

Answers

Answer:

You could order 16 different kinds of pizza.

Step-by-step explanation:

You have those following toppings:

-Pepperoni

-Sausage

-Mushrooms

-Anchovies

The order is not important. For example, if you choose Sausage and Mushrooms toppings, it is the same as Mushrooms and Sausage. So we have a combination problem.

Combination formula:

A formula for the number of possible combinations of r objects from a set of n objects is:

[tex]C_{(n,r)} = \frac{n!}{r!(n-r!}[/tex]

How many different kinds of pizza could you order?

The total T is given by

[tex]T = T_{0} + T_{1} + T_{2} + T_{3} + T_{4}[/tex]

[tex]T_{0}[/tex] is the number of pizzas in which there are no toppings. So [tex]T_{0} = 1[/tex]

[tex]T_{1}[/tex] is the number of pizzas in which there are one topping [tex]T_{1}[/tex] is a combination of 1 topping from a set of 4 toppings. So:

[tex]T_{1} = \frac{4!}{1!(4-1)!} = 4[/tex]

[tex]T_{2}[/tex] is the number of pizzas in which there are two toppings [tex]T_{2}[/tex] is a combination of 2 toppings from a set of 4 toppings. So:

[tex]T_{2} = \frac{4!}{2!(4-2)!} = 6[/tex]

[tex]T_{3}[/tex] is the number of pizzas in which there are three toppings [tex]T_{3}[/tex] is a combination of 3 toppings from a set of 4 toppings. So:

[tex]T_{3} = \frac{4!}{3!(4-3)!} = 4[/tex]

[tex]T_{0}[/tex] is the number of pizzas in which there are four toppings. So [tex]T_{4} = 1[/tex]

Replacing it in T

[tex]T = T_{0} + T_{1} + T_{2} + T_{3} + T_{4} = 1 + 4 + 6 + 4 + 1 = 16[/tex]

You could order 16 different kinds of pizza.

9 + 22 = x + 1

HALPP

Answers

Answer:

x = 30

Step-by-step explanation:

9 + 22 = x + 1

9 + 22 = 31

31 = x + 1

-1          -1

30 = x

x = 30

Add all like terms.
So 22 and 9 are added together.
Which equals to 31.
31= x+1
Subtract 1 on both sides.
31-1= x+1-1
This cancel the 1s on the right side.
Which gives you 30=x

Answer: x= 30

Keith has 40-pound bags of mulch in his truck that weigh a total of 3600 pounds. His Owner’s Manual lists the truck’s capacity as at most 3000 pounds. How many bags does Keith need to remove in order to meet the weight requirements?
Please show step by step explanation

Answers

Final answer:

Keith is 600 pounds over the weight limit of his truck. Given that each bag of mulch weighs 40 pounds, Keith needs to remove 15 bags of mulch to be within the truck's weight capacity.

Explanation:

This is a straightforward math problem involving subtraction and division. First, let's find out how much weight is over the truck's capacity. Keith's truck is currently carrying 3600 pounds of mulch, but his truck's capacity is only 3000 pounds. So, he is over by 3600 - 3000 = 600 pounds.

Each bag of mulch weighs 40 pounds, so to find out how many bags Keith needs to remove, we simply divide the total excess weight by the weight of each bag: 600 / 40 = 15 bags. Therefore, Keith needs to remove 15 bags of mulch from his truck to meet the weight requirements.

Learn more about Subtraction and Division here:

https://brainly.com/question/1292482

#SPJ12

Final answer:

Keith needs to remove 15 bags of mulch to meet the weight requirements.

Explanation:

To find out how many bags Keith needs to remove, we need to determine the weight of one bag of mulch. If he has 40-pound bags and a total weight of 3600 pounds, we can divide the total weight by the weight of one bag:

Number of bags = Total weight / weight of one bag = 3600 pounds / 40 pounds = 90 bags

Since the truck's capacity is at most 3000 pounds, Keith needs to remove the excess weight:

Excess weight = Total weight - Truck's capacity = 3600 pounds - 3000 pounds = 600 pounds

Now, we can calculate how many bags he needs to remove using the weight of one bag:

Bags to remove = Excess weight / weight of one bag = 600 pounds / 40 pounds = 15 bags

Learn more about Mulch bags here:

https://brainly.com/question/15368655

#SPJ12

Percents

George's stock went down 12.6% since yesterday. The closing price for this
stock yesterday was $80.74

1. How much money did each share lose?​

2. How much is each share of stock worth today?

Answers

Answer:

$10.17$70.57

Step-by-step explanation:

1. The change in value was 12.6% of $80.74, calculated as ...

  0.126×$80.74 = $10.17324 ≈ $10.17

__

2. The new price is lower than the price yesterday by that amount, so is ...

  $80.74 -10.17 = $70.57

_____

Note on percents

A percent should be no mystery. The word "per cent" literally means "per hundred", or "/100" in symbols. The symbol "%" is a shorthand way to write "/100". So 12.6% means 12.6/100 = 126/1000 = 0.126.

When written as a decimal, the units digit of a percent is placed in the hundredths digit of the decimal number, as you can see in the example above. (The "2" in "12.6" is in the hundredths place in 0.126.)

Generally percentages are used to express ratios. They are usually a "pure number" with no units attached. Since they are a ratio, they are generally useless unless you know what the numbers involved in the ratio are. Here, the denominator of the ratio, the "base" or "reference", is yesterday's stock price. The percentage is described as the drop in price since yesterday, so it is the ratio ...

  (drop in price since yesterday)/(yesterday's price)

Both of these values have units of dollars, so the numerator units cancel the denominator units and what is left is a pure number. The ratio is 0.126, so to express it as a percentage, we multiply it by 100%. Of course, 100% = 100/100 = 1, so we haven't changed the value; we've only changed the way it is presented. That is ...

  0.126 = 0.126 × 100% = 12.6%

_____

Additional note on decimals and percents

You may hear that to convert a decimal to a percent, you multiply it by 100. That is only partly right. Multiplying anything by 100 changes its value by that factor. When you change a decimal to a percentage, the goal is not to change the value, merely the form. What you actually want to do is multiply by 100% = 100/100. In the example we're using here, this looks like ...

  0.126 × 100/100 = 12.6/100 = 12.6% . . . . . . remember that % means /100.

If you roll one die and flip one coin, what are all the possible outcomes?

Answers

Answer: [tex](1,T), (2,T), (3,T), (4, T), (5,T), (6,T)\\(1,H), (2,H), (3,H), (4, H), (5,H), (6,H)[/tex]

Step-by-step explanation:

The total outcomes on a die = {1,2,3,4,5,6}=6

The total outcomes on a coin = {Tails  or Heads}=2

The number of possible outcomes =[tex]6\times2=12[/tex]

If you roll one die and flip one coin, then the possible outcomes are:  

[tex](1,T), (2,T), (3,T), (4, T), (5,T), (6,T)\\(1,H), (2,H), (3,H), (4, H), (5,H), (6,H)[/tex]

Here T denotes for Tails and H denotes for heads.

Calculate the potential energy associated with 1 m^3 of water at 607 feet tall taking the mass of 1 m^3 of water to be 1000 kg

Answers

Answer:

The potential energy associated with the given mass equals 1814.98 kilo Joules.

Step-by-step explanation:

We know that for a object of mass 'm' standing at a height of 'h' meters above the surface of earth the potential energy associated with the object is given by

[tex]P.E=mass\times g\times h[/tex]

where

'g' is acceleration due to gravity.

Since it is given that mass of 1 cubic meter of water is 1000 kilograms that the mass associated with given quantity of water is also 1000 kilograms since the volume is 1 cubic meter.

The height is given as 607 feet = [tex]{607}\times 0.3048=185.0136[/tex]meters

Applying the values in the above equation we get

[tex]P.E=1000\times 9.81\times 185.0136=1814.98kJ[/tex]  

Quadratic Functions Put the equationy = x^2 + 14a + 40 into the form y = (x - h )^2 + k: Answer: y Preview Get help: Video Poins

Answers

Answer:

The required form is [tex]y=(x+7)^2-9[/tex].

Step-by-step explanation:

Consider the provided quadratic function.

[tex]y=x^2 + 14x + 40[/tex]

We need to put the equation into the form [tex]y = (x - h )^2 + k[/tex]

Add and subtract 49 in order to make the above function a perfect square.

[tex]y=x^2 + 14x+49-49 + 40[/tex]

[tex]y=x^2 + 14x+7^2-49 + 40[/tex]

[tex]y=(x+7)^2-49 + 40[/tex]

[tex]y=(x+7)^2-9[/tex]

Hence, the required form is [tex]y=(x+7)^2-9[/tex].

Prove: If n is a positive integer andn2 is
divisible by 3, then n is divisible by3.

Answers

Answer and Step-by-step explanation:

n > 0

n² divisible by 3 ⇒ n is divisible by 3.

Any number divisible by 3 has the sum of their components divisible by 3.

If n² is divisible by 3,  we can say that n² can be written as 3*x.

n² = 3x ⇒ n = √3x

As n is a positive integer √3x must be a integer and x has to have a 3 factor. (x = 3.a.b.c...)

This way, we can say that x = 3y and y is a exact root, because n is a integer.

n² = 3x ⇒ n = √3x ⇒ n = √3.3y ⇒ n = √3.3y ⇒ n = √3²y ⇒ n = 3√y

Which means that n is divisible by 3.


Which of the following sets are equal to {x | x > 9 and x < 2}

{2, 3, 4, 5, 6, 7, 8, 9}

{ }

{3, 4, 5, 6, 7, 8}

{3, 4, 5, 7, 8}

{4, 5, 6, 7, 8, 9}

Answers

Answer:

  { }

Step-by-step explanation:

There are no numbers that are both greater than 9 and less than 2. The expression describes the empty set.

find cardinality of set B

B = {∅, {1}, {1, 2}, {1, 2,3}, · · · , {1, 2, · · · , m}}

Answers

Answer:

m + 1

Step-by-step explanation:

Given set,

B = {∅, {1}, {1, 2}, {1, 2,3}, · · · , {1, 2, · · · , m}},

Since, the elements of S are,

{} , {1}, {1, 2}, {1, 2, 3}....... {1, 2,.....m }

Thus, every next set contains one more succeeding natural number than the previous set.

So, if the last set contains m natural numbers.

Then there are 'm + 1' sets in B ( m sets included ∅ )

Hence, the number of elements in B is 'm+1'

I.e. Cardinality of B is m + 1.

You are asked to bake muffins for a breakfast meeting. Just as you are about to start making them, you get a call saying that the number of people coming to the meeting has doubled! Your original recipe called for three eggs. How many eggs do you need to make twice as many muffins?

Answers

Answer:  6

Step-by-step explanation:

Given : The number of eggs required to make the current muffin receipe = 3

If the number of people coming to the meeting has doubled, then we need twice of as many eggs .

i.e. the number of eggs required to make twice of muffin =[tex]2\times3=6[/tex]

Hence, the number of people coming to the meeting has doubled = 6

Suppose that Jane borrows $8400 from a bank on April 9 at an annual rate of 9.2% simple interest. How much does she owe on August 20 of the same year?

Answers

Answer:

274.576 + 8400 = $8674.576

Step-by-step explanation:

Here, Number of days = 21 + 31 +30 +31 +20 = 123

We know that,

[tex]Simple Interest = \frac{P\timesT\timesR}{100}[/tex]

where, P = Principle = 8400

T = time = 123 ÷ 365

R = Rate = 9.2

⇒ [tex]Simple Interest = \frac{8400\times123\times9.2}{365\times100}[/tex]

⇒ Simple Interest = 274.576

Thus, total amount Jane has on 20 August = 274.576 + 8400 = $8674.576

The sugar content of the syrup is canned peaches is normally distributed. Assumethe can is designed to have standard deviation 5 milligrams. A random sample ofn= 10 cans is studied. What is the sampling distribution of the sample variance?The data yields a sample standard deviation of 4.8 milligrams. What is the chanceof observing the sample standard deviation greater than 4.8 milligrams?

Answers

Answer: 0.50477

Step-by-step explanation:

Given : The sugar content of the syrup is canned peaches is normally distributed.

We assume the can is designed to have standard deviation [tex]\sigma=5[/tex] milligrams.

The sampling distribution of the sample variance is chi-square distribution.

Also,The data yields a sample standard deviation of [tex]s=4.8[/tex] milligrams.

Sample size : n= 10

Test statistic for chi-square :[tex]\chi^2=\dfrac{s^2(n-1)}{\sigma^2}[/tex]

i.e. [tex]\chi^2=\dfrac{(4.8)^2(10-1)}{(5)^2}=8.2944[/tex]

Now, P-value = [tex]P(\chi^2>8.2944)=0.50477[/tex]  [By using the chi-square distribution table for p-values.]

Hence, the chance of observing the sample standard deviation greater than 4.8 milligrams = 0.50477

2. A random sample of 500 households was identified in a major North American city using the municipal voter registration list. Five hundred questionnaires went out, directed at one adult in each household, which asked a series of questions about attitudes regarding the municipal recycling program. Eighty of the 500 surveys were filled out and returned to the researchers. a. Can the 80 households that returned questionnaires be regarded as a random sample of households? Why or why not? b. What type of bias might affect the survey outcome?

Answers

Answer:

a. No, Returned questionnaires can't be regarded as a random sample of households.

b. Non Response Bias

Step-by-step explanation:

a. Among the 500 households only 80 responses to the survey. This type of sample can't be regarded as a random sample. Because it is possible that the question asked to people contain any embarrassing information that peoples refuse to answer the questionnaire.

b. This type of bias is known as Non-Response Bias.

Further, Non Response bias can be considered as, In conducting a survey some people did not respond to our survey, this sometimes affects our survey result very much.

For Example: It can happen that some people may refuse to participate in a survey, as the question asked to people contain personal detail or illegal activities or asking any embarrassing information, so people refused to participate in the survey. This non-response causes the results of the survey to be biased.

Other Questions
If we changed our speed limit signs to metric, what would probably replace 45 mi/h? (Please round your answer to the nearest 1 km/h.) km/h 6. Analyze Causes What caused Japan toinstitute a policy of isolation? Defend yourviewpoint with evidence from the text. A diverging lens has a focal length of 23.9 cm. An object 2.1 cm in height is placed 100 cm in front of the lens. Locate the position of the image. Answer in units of cm. 007 (part 2 of 3) 10.0 points What is the magnification? 008 (part 3 of 3) 10.0 points Find the height of the image. Answer in units of cm. Regarding the direct and indirect methods of preparing the statement of cash flows, which of the following statements is true? A. The indirect method and the direct method will produce a different amount of net cash provided by investing activities. B. The indirect method starts with net income and adjusts it to net cash provided by (used for) operating activities. C. The direct and indirect methods include different types of cash flows in the investing activities section. D. The indirect method includes all non-cash activities, whereas the direct method includes only the cash activities Reperfusion injury to cells a. results in very little cellular damage. b. involves formation of free radicals. c. results from calcium deficiency in cells. d. occurs following nutritional injury. examples of a descriptive scene of a accident While reasonable safety concerns may require changes in the building, the "beacon" promised by Mr. Libeskind cannot under any circumstances be replaced with a dreary, fear-inspired fortress. The tower could become overly bulky if extra security demands are simply grafted onto the present plan. It already calls for a massive building, with too much extra office space - added to suit the developer - and a very tall spire for those who want a perpetual sign of defiance to terrorists. Nothing would better express capitulation to terrorism than a large skyscraper that looks like a vertical bunker. Given the authors tone, how do you think he feels about the security changes being made to the Freedom Tower? a. He is happy about the changes. b. He is unhappy about the changes. c. He is neutral about the changes. d. He believes the changes should be kept secret. Howdoes photography connect us? Susan's English professor thinks that she is always listening to her lectures because she makes eye contact, nods, and take notes. In reality, Susan is using the class time to catch up on her personal diary. Susan is guilty of ___________ An example of a pull factor would be What is 249,926 rounded to the nearest hundred thousand A cubic function generally has the form f(x) = ax3 + bx2 + cx + d. If we know that for some x-value x = p we have f(p) = 0, then it must be true that x p is a factor of f(x). Since we are told that f(3) = 0, we know that _____ is a factor. Which branch of the federal government did John Jay participate in? Gasoline prices typically rise during the summer, a time of heavy tourist traffic. A "street talk" feature on a radio station sought tourist reaction to higher gasoline prices. Here was one response: "I dont like em [the higher prices] much. I think the gas companies just use any excuse to jack up prices, and theyre doing it again now." How does this tourists perspective differ from that of economists who use the model of demand and supply? A diagram showing limited variations of life developing from the creation model would appear as: a tree a forest of unique trees a tree with different branches A carafe at a banquet holds about 12 cups of coffee. When the carafe has 1 cup or less of coffee left , the waiter dumps the coffee out and pours in a fresh pot. Each coffee mug at the banquet holds 0.75 cups of coffee . Assuming each person fills their mug , what inequality represents the number of people who can fill their mugs before the carafe needs to be refilled? Two point charges, A and B, are separated by a distance of 16.0cm. The magnitude of the charge on A is twice that of the charge on B. If each charge exerts a force of magnitude 43.0 N on the other, find the magnitudes of the charges. Charge A: ____ in CCharge B: _____ in C The bone that is attached to the eardrum is called the ________; the bone that is connected to the oval window is called the ________. hammer (malleus); stirrup (stapes) anvil (incus); stirrup (stapes) hammer (malleus); anvil (incus) stirrup (stapes); hammer (malleus) Part of the tooth covered with enamel. At a bookstore, 960 books were placed on the discount shelf for 70% off the regular price. If 2/3 of the books sold, how many books remain on the discount shelf?a. 320 booksb. 296 booksc. 293 booksd. 332 bookse. 356 booksf. None of the above.