A 20-kg crate is sitting on a frictionless ice rink. A child standing at the side of the ice rink uses a slingshot to launch a 1.5-kg beanbag at the crate. Assume that the beanbag strikes the crate horizontally in the +x direction with a speed of 10 m/s. The beanbag bounces straight back in the -x direction with a speed of 6 m/s. Using conservation of momentum, calculate the speed of the crate after the beanbag hits it.

Answers

Answer 1

Answer:

The speed of the crate after the beanbag hits it is 1.2 m/s.

Explanation:

Hi there!

The momentum of the system beanbag-crate remains the same after the collision, i.e., the momentum of the system is conserved. The momentum of the system is calculated by adding the momenta of each object. So, the initial momentum (before the collision) is calculated as follows:

initial momentum = momentum of the crate + momentum of the beanbag

initial momentum = mc · vc + mb · vb

Where:

mc = mass of the crate.

vc = initial velocity of the crate.

mb = mass of the beanbag

vb = initial mass of the beanbag

With the data we have, we can calculate the initial momentum:

initial momentum  = 20 kg · 0 m/s + 1.5 kg · 10 m/s = 15 kg · m/s

Now, let´s write the equation of the momentum of the system after the collision:

final momentum = mc · vc´ + mb · vb´

Where vc´ and vb´ are the final velocity of the crate and the beanbag respectively. Let´s replace with the data we have:

final momentum = 20 kg · vc´ + 1.5 · (-6 m/s)

Since

initial momentum = final momentum

Then:

15 kg · m/s = 20 kg · vc´ + 1.5 kg · (-6 m/s)

Solving for vc´:

(15 kg · m/s + 9 kg · m/s) / 20 kg = vc´

vc´ = 1.2 m/s

The speed of the crate after the beanbag hits it is 1.2 m/s.

Answer 2
Final answer:

Using the law of conservation of momentum, the speed of the crate after the beanbag hits it is found to be 1.2 m/s in the +x direction.

Explanation:

The situation described can be solved using the law of conservation of momentum. According to this law, the total momentum before the collision is equal to the total momentum after the collision. The momentum (p) of an object is its mass (m) times its velocity (v), or p = mv.

Before the collision, the 1.5-kg beanbag has a momentum of 1.5 kg * 10 m/s = 15 kg*m/s in the +x direction, and the 20-kg crate has a momentum of 0, as it is at rest. Therefore, the total momentum before the collision is 15 kg*m/s.

After the collision, the beanbag has a momentum of 1.5 kg * -6 m/s = -9 kg*m/s in the -x direction. Since the total momentum must be conserved, the crate must have a momentum of 15 kg*m/s (total initial momentum) + 9 kg*m/s (final momentum of beanbag) = 24 kg*m/s in the +x direction. Therefore, the speed (v) of the crate after the collision is its momentum divided by its mass, or v = p/m = 24 kg*m/s / 20 kg = 1.2 m/s.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ3


Related Questions

A truck horn emits a sound with a frequency of 238 Hz. The truck is moving on a straight road with a constant speed. If a person standing on the side of the road hears the horn at a frequency of 220 Hz, then what is the speed of the truck? Use 340 m/s for the speed of the sound.

Answers

Answer:

[tex]v_s=27.8m/s[/tex]

Explanation:

If the person hearing the sound is at rest, then the equation for the frequency heard [tex]f[/tex] given the emitted frequency [tex]f_0[/tex], the speed of the truck [tex]v_s[/tex] and the speed of sound [tex]c[/tex] will be:

[tex]f=f_0\frac{c}{c+v_s}[/tex]

Where [tex]v_s[/tex] will be positive if the truck is moving away from the person, and negative otherwise. We then do:

[tex]\frac{f}{f_0}=\frac{c}{c+v_s}[/tex]

[tex]\frac{f_0}{f}=\frac{c+v_s}{c}=1+\frac{v_s}{c}[/tex]

[tex]v_s=c(\frac{f_0}{f}-1)=(340m/s)(\frac{238Hz}{220Hz}-1)=27.8m/s[/tex]

Which one of the following phrases best describes the electric potential of a charged particle?

A) the total force exerted on or by the charged particle

B) the force per unit charge

C) the potential energy of the particle relative to infinity

D) the potential energy per unit charge

E) the potential energy per unit force on the particle

Answers

Answer:

D.The potential energy per unit charge

Explanation:

Electric potential of a charged particle:

It is scalar quantity because it has magnitude but it does not have direction.

It is the amount of work done required to move a unit positive charge from reference point to specific point in the electric field without producing any acceleration.

Mathematical representation:

[tex]V=\frac{W}{Q_0}[/tex]

Where W= Work done

[tex]Q_0[/tex]= Unit positive charge

Other formula to calculate electric field:

[tex]V=\frac{KQ}{r}[/tex]

Where K=[tex]\frac{1}{4\pi \epsilon_0}[/tex]

It can be defined as potential energy per unit charge.

Hence, option D is true.

Suppose you are selling apple cider for two dollars a gallon when the temperature is 3.3 degree C. The coefficient of volume expansion of the cider is 280*10^-6(C degree)^-1. How much more money (in pennies) would you make per gallon be refilling the container on a day when the temperature is 32 degrees C? Ignore the expansion of the container. Round your answer to 0.1 penny.

Answers

Answer:

1.6 penny

Explanation:

[tex]V_0[/tex] = Original volume = 1 gal (Assumed)

[tex]\Delta T[/tex] = Change in temperature

[tex]\beta[/tex] = Coefficient of volume expansion = [tex]280\times 10^{-6}\ /^{\circ}[/tex]

Change in volume is given by

[tex]\Delta_V=\beta V_0\Delta T\\\Rightarrow \Delta_V=280\times 10^{-6}\times 1\times (32-3.3)\\\Rightarrow \Delta_V=0.008036[/tex]

New volume would be

[tex]1+0.008036=1.008036\ gal[/tex]

The amount of money earned extra would be

[tex]0.008036\times 2=0.016072\ \$[/tex]

1.6 penny more would be earned if the temperature is 32°C

Final answer:

By refilling a container of apple cider at 32 degrees C instead of 3.3 degrees C, you would make approximately 1.6 pennies more per gallon due to thermal expansion of the cider.

Explanation:

To calculate how much more money you would make per gallon by refilling the container of apple cider when the temperature is 32 degrees C, as opposed to 3.3 degrees C, you need to determine the change in volume due to thermal expansion.

The formula for volume expansion is ΔV = βV₀ΔT, where ΔV is the change in volume, β is the coefficient of volume expansion, V₀ is the initial volume, and ΔT is the change in temperature.

The initial temperature T1 is 3.3°C, and the final temperature T2 is 32°C, thus ΔT = T2 - T1 = 32°C - 3.3°C = 28.7°C. The coefficient of volume expansion of the cider, given as β, is 280 x 10^-6 (C°)^-1.

Assuming that the initial volume V₀ of the cider is 1 gallon, the change in volume ΔV would be:

ΔV = 280 x 10^-6 x 1 x 28.7 = 0.008036 gallons

To convert gallons to liters, we use the fact that 1 gallon is approximately 3.78541 liters. So, the increase in volume in liters would be:

ΔV (liters) = 0.008036 x 3.78541 = 0.0304 liters

Since there are approximately 3.78541 liters in a gallon, and knowing that the price for one gallon is two dollars, we can calculate the additional revenue (in pennies) as follows:

Extra revenue = ΔV (liters) / 3.78541 x 200 pennies = 0.0304 / 3.78541 x 200 ≈ 1.6 pennies

Therefore, you would make approximately 1.6 pennies more per gallon by refilling the container at 32°C compared to 3.3°C.

A planet is in an elliptical orbit around a distant star. At periastron (the point of closest approach to the star), the planet is rp=4.50×108 km from the star and is moving with a speed of vp=18.5 km/s . When the planet is at apastron (the point of greatest distance from the star), it is ra=9.10×108 km from the star. How fast is the planet moving at apastron? va=? km/s

Answers

Answer:

9.15 km/s

Explanation:

rp = 4.5 x 10^8 km

vp = 18.5 km/s

ra = 9.10 x 10^8 km

va = ?

According to the conservation of angular momentum constant.

Let m be the mass of planet

m x rp x vp = m x ra x va

4.5 x 10^8 x 18.5 = 9.10 x 10^8 x va

va = 9.15 km/s

Final answer:

To calculate the speed of the planet at apastron, we can use Kepler's second law and the given values of rp, vp, and ra. Plugging in the values, we find that the planet is moving at a speed of 0.92 km/s at apastron.

Explanation:

To calculate the speed of the planet at apastron, we can use Kepler's second law, which states that the area swept out by a planet in equal time intervals is constant. At periastron, the planet is moving fastest, so we can use the equation:



A1 = A2



where A1 is the area swept out at periastron and A2 is the area swept out at apastron.



Since the areas are equal, we can set up the following equation:



0.5 * rp * vp = 0.5 * ra * va



where rp is the distance at the periastron, vp is the velocity at the periastron, ra is the distance at the apastron, and VA is the velocity at the apastron. We can rearrange this equation to solve for va:



va = (rp * vp) / ra



Plugging in the given values, we get:



va = (4.50 x 10^8 km * 18.5 km/s) / (9.10 x 10^8 km)



va = 0.92 km/s

Learn more about Speed of Planet at Apastron here:

https://brainly.com/question/13999216

#SPJ11

(7%) Problem 5: A thermos contains m1 = 0.73 kg of tea at T1 = 31° C. Ice (m2 = 0.095 kg, T2 = 0° C) is added to it. The heat capacity of both water and tea is c = 4186 J/(kg⋅K), and the latent heat of fusion for water is Lf = 33.5 × 104 J/kg. dho32@student.mtsac.edu

Answers

The final temperature of the mixture is approximately 29.91°C.

The heat exchange between the tea and the ice. The temperature of the final mixture will be somewhere between 0°C and 31°C, and we need to determine that final temperature. The heat transfer can be calculated using the principle of conservation of energy:

Qin = Qout

The heat gained by the ice as it melts is given by:
Qice = m2 ⋅ Lf

The heat gained by the tea as it cools down is given by:
Qtea = m1 ⋅ c ⋅ (T1 - Tfinal)

The negative sign is used because the tea is losing heat. Setting these equal to each other and solving for Tfinal, we get:
m1 ⋅ c ⋅ (T1 - Tfinal) = m2 ⋅ Lf

Now, let's plug in the given values:

0.73 kg ⋅ 4186 J/(kg ⋅ K) ⋅ (31°C - Tfinal) = 0.095 kg ⋅ 33.5 × 10^4 J/kg

Now, solve for Tfinal:

0.73 ⋅ 4186 ⋅ (31 - Tfinal) = 0.095 ⋅ (33.5 × 10^4)

3050.78 ⋅ (31 - Tfinal) = 3182.5

94602.78 - 3050.78 ⋅ Tfinal = 3182.5

-3050.78 ⋅ Tfinal = -91420.28

Tfinal = 91420.28/3050.78

Tfinal ≈ 29.91°C

So, the final temperature of the mixture is approximately 29.91°C.

A beam of x-rays with wavelength λ = 0.300 nm is directed toward a sample in which the x-rays scatter off of electrons that are effectively free. The wavelength of the outgoing electrons is measured as a function of scattering angle, where a scattering angle of 0 means the direction of the x-rays was unchanged when passing through the sample. When looking at all possible scattering angles, what are the longest and shortest wavelengths that the scattered x-rays can have?

Answers

Answer:

Explanation:

The problem relates to Compton Effect in which electrons are scattered due to external radiation . The electron is scattered out and photons relating to radiation also undergo scattering at angle θ .

The formula relating to Compton Effect is as follows

[tex]\lambda_f-\lambda_i=\frac{h}{m_0c} (1-cos\theta)[/tex]

Here [tex]\lambda_i[/tex]  = 3 0 x 10⁻¹¹

For longest [tex]\lambda_f[/tex] θ =180°

[tex]\lambda_f[/tex] = [tex]\lambda_i + \frac{2\times h}{m_0c}[/tex]

= .3 x 10⁻⁹ + [tex]\frac{2\times6.6\times 11^{-34}}{9\times10^{-31}\times3\times10^8}[/tex]

= .348 nm

For shortest wavelength θ = 0

Putting this value in the given formula

[tex]\lambda_f=\lambda_i[/tex]

[tex]\lambda_f[/tex] = .3 nm

A 45.0-kg girl is standing on a 166-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.48 m/s to the right relative to the plank. (Let the direction the girl is moving in be positive. Indicate the direction with the sign of your answer.)
1. What is her velocity relative to the surface of the ice?
2. What is the velocity of the plank relative to the surface of ice?

Answers

Answer:

-0.31563 m/s

1.16437 m/s

Explanation:

[tex]m_1[/tex] = Mass of girl = 45 kg

[tex]m_2[/tex] = Mass of plank = 166 kg

[tex]v_1[/tex] = Velocity of girl relative to plank = 1.48 m/s

[tex]v_2[/tex] = Velocity of the plank relative to ice surface

In this system the linear momentum is conserved

[tex](m_1+m_2)v_2+m_1v_1=0\\\Rightarrow v_2=-\frac{m_1v_1}{m_1+m_2}\\\Rightarrow v_2=-\frac{45\times 1.48}{45+166}\\\Rightarrow v_2=-0.31563\ m/s[/tex]

Velocity of the plank relative to ice surface is -0.31563 m/s

Velocity of the girl relative to the ice surface is

[tex]v_1+v_2=1.48-0.31563=1.16437\ m/s[/tex]

The volume of water in the Pacific Ocean is about 7.00 × 108 km3. The density of seawater is about 1030 kg/m3. For the sake of the calculations, treat the Pacific Ocean as a point like object (obviously a very rough approximation). 1) Determine the gravitational potential energy of the Moon–Pacific Ocean system when the Pacific is facing away from the Moon. (Express your answer to three significant figures.) Answer in Joules 2) Repeat the calculation when Earth has rotated so that the Pacific Ocean faces toward the Moon. (Express your answer to three significant figures.) Answer in Joules

Answers

The concepts used to solve this exercise are given through the calculation of distances (from the Moon to the earth and vice versa) as well as the gravitational potential energy.

By definition the gravitational potential energy is given by,

[tex]PE=\frac{GMm}{r}[/tex]

Where,

m = Mass of Moon

G = Gravitational Universal Constant

M = Mass of Ocean

r = Radius

First we calculate the mass through the ratio given by density.

[tex]m = \rho V[/tex]

[tex]m = (1030Kg/m^3)(7*10^8m^3)[/tex]

[tex]m = 7.210*10^{11}Kg[/tex]

PART A) Gravitational potential energy of the Moon–Pacific Ocean system when the Pacific is facing away from the Moon

Now we define the radius at the most distant point

[tex]r_1 = 3.84*10^8 + 6.4*10^6 = 3.904*10^8m[/tex]

Then the potential energy at this point would be,

[tex]PE_1 = \frac{GMm}{r_1}[/tex]

[tex]PE_1 = \frac{(6.61*10^{-11})*(7.21*10^{11})*(7.35*10^{22})}{3.904*10^8}[/tex]

[tex]PE_1 = 9.05*10^{15}J[/tex]

PART B) when Earth has rotated so that the Pacific Ocean faces toward the Moon.

At the nearest point we perform the same as the previous process, we calculate the radius

[tex]r_2 = 3.84*10^8-6.4*10^6 - 3.776*10^8m[/tex]

The we calculate the Potential gravitational energy,

[tex]PE_2 = \frac{GMm}{r_2}[/tex]

[tex]PE_2 = \frac{(6.61*10^{-11})*(7.21*10^{11})*(7.35*10^{22})}{3.776*10^8}[/tex]

[tex]PE_2 = 9.361*10^{15}J[/tex]

A student pushes a 21-kg box initially at rest, horizontally along a frictionless surface for 10.0 m and then releases the box to continue sliding. If the student pushes with a constant 10 N force, what is the box's speed when it is released?

Answers

Answer:v=3.08 m/s

Explanation:

Given

mass of student [tex]m=21 kg[/tex]

distance moved [tex]d=10 m[/tex]

Force applied [tex]F=10 N[/tex]

acceleration of system during application of force is a

[tex]a=\frac{F}{m}=\frac{10}{21}=0.476 m/s^2[/tex]

using [tex]v^2-u^2=2 as[/tex]

where v=final velocity

u=initial velocity

a=acceleration

s=displacement

[tex]v^2-0=2\times 0.476\times 10[/tex]

[tex]v=\sqrt{9.52}[/tex]

[tex]v=3.08 m/s[/tex]

A 60-kg woman stands on the very end of a uniform board, which is supported one-quarter of the way from one end and is balanced. What is the mass of the board?

a. 60 kg
b. 30 kg
c. 20 kg
d. 15 kg
e. 120 kg

Answers


B 30 kg because


One quarter =1/2
Kg=60

1/2 of Kg
1/2*60
30 kg

The correct option can be seen in Option A.

The diagrammatic expression of the question can be seen in the image attached below.

From the given question, we are being informed that the uniform board is balanced. As a result, the torque(i.e. a measurement about how significantly a force acts on a body for it to spin about an axis) acting on the right-hand side of the balance point should be equal to that of the left-hand side.

Mathematically;

[tex]\mathbf{\tau_{_{right}}= \tau_{_{left}}}[/tex]

Given that the mass of the woman = 60 kg

[tex]\mathbf{\tau =\dfrac{m\times g \times l}{\mu}}[/tex]

[tex]\mathbf{\tau_{left} =\dfrac{m\times g \times l}{\mu}}---(1)[/tex]

[tex]\mathbf{\tau_{_{right}} =\dfrac{60 \times g \times l}{\mu}}---(2)[/tex]

Equating both (1) and (2) together, we have:

[tex]\mathbf{\dfrac{m\times g \times l}{\mu} =\dfrac{60 \times g \times l}{\mu} }[/tex]

Dividing like terms on both side

mass (m) = 60 kg

As such, the correct option can be seen in Option A.

Thus, we can conclude that from the 60-kg woman who stands on the very end of a uniform board, the mass of the board on the other end is also 60 kg.

Learn more about mass here:

https://brainly.com/question/6240825?referrer=searchResults

Water flows through a horiztonal pipe at a rate of 94 ft3/min. A pressure gauge placed on a 3.3 inch diameter section of the pipe reads 15 psi.

What is the gauge pressure in a section of pipe where the diameter is 5.2 inches?

Answers

Answer:

The gauge pressure is 1511.11 psi.

Explanation:

Given that,

Flow rate = 94 ft³/min

Diameter d₁=3.3 inch

Diameter d₂ = 5.2 inch

Pressure P₁= 15 psi

We need to calculate the pressure on other side

Using Bernoulli equation

[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2=P_{2}+\dfrac{1}{2}\rho v_{2}^2[/tex]

We know that,

[tex]V=Av[/tex]

[tex]v=\dfrac{V}{A}[/tex]

Where, V = volume

v = velocity

A = area

Put the value of v into the formula

[tex]P_{1}+\dfrac{1}{2}\rho (\dfrac{V}{A_{1}})^2=P_{2}+\dfrac{1}{2}\rho (\dfrac{V}{A_{2}})^2[/tex]

Put the value into the formula

[tex]15+\dfrac{1}{2}\times0.36\times(\dfrac{2707.2\times4}{\pi\times(3.3)^2})^2=P_{2}+\dfrac{1}{2}\times0.36\times(\dfrac{2707.2\times4}{\pi\times(5.2)^2})^2[/tex]

[tex]P_{2}=15+\dfrac{1}{2}\times0.036\times(\dfrac{2707.2\times4}{\pi\times(3.3)^2})^2-\dfrac{1}{2}\times0.036\times(\dfrac{2707.2\times4}{\pi\times(5.2)^2})^2[/tex]

[tex]P_{2}=1525.8\ psi[/tex]

We need to calculate the gauge pressure

Using formula of gauge pressure

[tex]P_{g}=P_{ab}-P_{atm}[/tex]

Put the value into the formula

[tex]P_{g}=1525.8-14.69[/tex]

[tex]P_{g}=1511.11\ psi[/tex]

Hence, The gauge pressure is 1511.11 psi.

Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface. Model a spherically symmetric planet, with the same radius as the earth, as having a density that decreases linearly with distance from the center. Let the density be 1.30×104 kg/m3 at the center and 2100 kg/m3 at the surface. Part A What is the acceleration due to gravity at the surface of this planet?

Answers

Final answer:

The acceleration due to gravity at the surface of a planet depends on its mass and radius, and assumes a uniform density. Since your model has a density that decreases linearly from the center to the surface, the exact value for gravity would require integration over the volume of the planet to account for mass distribution. This arrangement involves advanced calculus.

Explanation:

The acceleration due to gravity at the surface of any planet, including Earth, is determined by a constant (G), the mass of the planet (M), and the radius of the planet (R). The formula is g = GM/R². However, this calculation assumes a uniform density throughout the planet, which is often not the case. In reality, like in your model where the density decreases linearly from the center to the surface, finding the precise acceleration due to gravity at the surface becomes more complicated and involves integration over the entire volume of the planet to account for how the mass is distributed.

Given that you provided the densities at the center and surface of the modeled planet, and these densities decrease linearly, one can utilize the formula for the linear density ρ(r) = ρ_center - r(ρ_center - ρ_surface)/R, where R is the radius of the planet, r is the distance from the center, and ρ_center and ρ_surface are the density at the center and surface, respectively. Then, integrate over the volume of the planet to find the total mass.

Once you have the mass, you can use the formula g = GM/R² again to find the acceleration due to gravity at the surface. However, this calculation goes beyond a basic understanding of gravity and requires knowledge of calculus. Without specific numbers for the mass and the integration result, I cannot provide the exact value for surface gravity in this case.

Learn more about Gravity here:

https://brainly.com/question/31321801

#SPJ12

Final answer:

The acceleration due to gravity at a planet's surface depends on the planet's radius, mass and the linear decrease of density from center to surface. The formula of this acceleration is G×M/r², considering that M is the planet's mass obtained by the product of volume and average density. However, as the density changes linearly, the force of gravity also decreases linearly from the center to the surface.

Explanation:

To calculate the acceleration due to gravity at the surface of the planet, we have to consider the planet's radius, mass and density. Given the density at the center and surface, we can calculate the average density which is the total mass of the planet divided by the total volume. In this spherically symmetric planet model, we can use the formula for the volume of a sphere, which is 4/3πr³, with r being the Earth's radius. We consider that mass (M) equals density (ρ) times volume (V), and the force of gravity (F) is G×(M1×M2)/r², where G is the gravitational constant. In this case, M1 is the mass of the planet and M2 is the mass of the object where we want to know the acceleration, and r is the distance between the centers of the two masses, or in this case the radius of the planet. As force is also mass times acceleration, we can replace F in the formula with M2 times a (acceleration), and find that acceleration is G×M1/r². However, as the density changes linearly from the center to the surface, the force of gravity will also decrease linearly, affecting the acceleration.

Learn more about Acceleration due to gravity here:

https://brainly.com/question/21775164

#SPJ11

A liquid of density 1290 kg/m 3 1290 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.83 m/s 9.83 m/s and the pipe diameter d 1 d1 is 12.1 cm 12.1 cm . At Location 2, the pipe diameter d 2 d2 is 17.7 cm 17.7 cm . At Location 1, the pipe is 8.35 m higher than it is at location 2. Ignoring viscosity, calculate the difference between fluid pressure at location 2 and the fluid pressure at location 1.

Answers

Answer:

[tex]\Delta P=1060184.8946\ Pa[/tex]

[tex]P_1=124651.2383\ Pa[/tex]

Explanation:

Given:

density of liquid, [tex]\rho=1290\ kg.m^{-3}[/tex]speed of flow at location 1, [tex]v_1=9.83\ m.s^{-1}[/tex]diameter of pipe at location 1, [tex]d_1=0.121\ m[/tex]diameter of pipe at location 2, [tex]d_2=0.177\ m[/tex]height of pipe at location 1, [tex]z_1=8.35\ m[/tex]

We know the Bernoulli's equation of in-compressible flow:

[tex]\frac{P}{\rho.g} +\frac{v^2}{2g} + z=constant[/tex] ........................(1)

Cross sectional area of pipe at location 2:

[tex]A_2=\pi \frac{d_2^2}{4}[/tex]

[tex]A_2=\pi\times \frac{0.177^2}{4}[/tex]

[tex]A_2=0.0246\ m^2[/tex]

Cross sectional area of pipe at location 1:

[tex]A_1=\pi \frac{d_1^2}{4}[/tex]

[tex]A_1=\pi\times \frac{0.121^2}{4}[/tex]

[tex]A_1=0.0115\ m^2[/tex]

Using continuity equation:

[tex]A_1.v_1=A_2.v_2[/tex]

[tex]0.0115\times 9.83=0.0246\times v_2[/tex]

[tex]v_2=4.5953\ m.s^{-1}[/tex]

Now apply continuity eq. on both the locations:

[tex]\frac{P_1}{\rho.g} +\frac{v_1^2}{2g} + z_1= \frac{P_2}{\rho.g} +\frac{v_2^2}{2g} + z_2[/tex]

[tex](P_2-P_1) = \rho.g [\frac{v_1^2}{2g} + z_1-\frac{v_2^2}{2g} ][/tex]

[tex]\Delta P=1290\times 9.8 [\frac{9.83^2}{19.6} + 8.35-\frac{4.5953^2}{19.6} ][/tex]

[tex]\Delta P=154266.016\ Pa[/tex]...................................Ans (a)

Now the mass flow rate at location 1:

[tex]\dot{m_1}=\rho\times \dot{V}[/tex]

[tex]\dot{m_1}=1290\times (0.0115\times 9.83)[/tex]

[tex]\dot{m_1}=145.828\ kg.s^{-1}[/tex]

Now pressure at location 1:

[tex]P_1=\frac{\dot{m_1}\times v_1}{A_1}[/tex]

[tex]P_1=\frac{145.828\times 9.83}{0.0115}[/tex]

[tex]P_1=124651.2383\ Pa[/tex] ...................................Ans (b)

The difference between fluid pressure at location 2 and fluid pressure at location 1 is mathematically given as

dP = 114 kPa

What is the difference between fluid pressure at location 2 and fluid pressure at location 1.?

Question Parameter(s):

Generally, the Bernoulli's equation   is mathematically given as

P + ρ*g*y + v² =pipe  constant

Where

A1*v1 = A2*v2

π*(0.105/2)²*9.91 = π*(0.167/2)²*v2

v2 = 3.9 m/s

Therefore

P1 + ρ*g*y1 + v1² = P2 + ρ*g*y2 + v2²

dP = 1290*9.8*9.01 + 9.91² - 3.9²

dP = 114 kPa

In conclusion, difference between fluid pressure is

dP = 114 kPa

Read more about Pressure

https://brainly.com/question/25688500

Unpolarized light is passed through an optical filter that is oriented in the vertical direction.
If the incident intensity of the light is 46 W/m2 , what is the intensity of the light that emerges from the filter? (Express your answer to two significant figures.)

Answers

In order to solve this problem it is necessary to apply the concepts related to intensity and specifically described in Malus's law.

Malus's law warns that

[tex]I = I_0 cos^2\theta[/tex]

Where,

[tex]\theta=[/tex] Angle between the analyzer axis and the polarization axis

[tex]I_0 =[/tex]Intensity of the light before passing through the polarizer

The intensity of the beam from the first polarizer is equal to the half of the initial intensity

[tex]I = \frac{I_0}{2}[/tex]

Replacing with our the numerical values we get

[tex]I = \frac{46}{2}[/tex]

[tex]I = 23W/m^2[/tex]

Therefore the  intensity of the light that emerges from the filter is [tex]23W/m^2[/tex]

A 44.0 kg uniform rod 4.90 m long is attached to a wall with a hinge at one end. The rod is held in a horizontal position by a wire attached to its other end. The wire makes an angle of 30.0° with the horizontal, and is bolted to the wall directly above the hinge. If the wire can withstand a maximum tension of 1450N before breaking, how far from the wall can a 69.0kg person sit without breaking the wire?

Answers

Answer:

x ≤ 3.6913 m

Explanation:

Given

Mrod = 44.0 kg

L = 4.90 m

Tmax = 1450 N

Mman = 69 kg

A: left end of the rod

B: right end of the rod

x = distance from the left end to the man

If we take torques around the left end as follows

∑τ = 0   ⇒   - Wrod*(L/2) - Wman*x + T*Sin 30º*L = 0

⇒   - (Mrod*g)*(L/2) - (Mman*g)*x + Tmax*Sin 30º*L = 0

⇒  -  (44*9.8)*(4.9/2) - (69*9.8)*x + (1450)*(0.5)*(4.9) = 0

⇒ x ≤ 3.6913 m

Why is fusion an appealing energy source?

Fusion products are generally not radioactive.

Extremely high temperatures are required.

The reaction can be confined by available structural materials.

Extremely high pressures are required.

Answers

To take place the process of nuclear fusion basically seeks to reach heavy nuclei through light nuclei. Reaching this process implies a release of energy that is what makes this process attractive because it is possible to obtain significant volumes of energy. The procedure to arrive at this process also implies a high cost concerning high temperatures and exorbitant pressures as it is necessary to be able to overcome the barrier of electrostatic repulsion.

This process does not generate any type of radioactive waste like other processes, therefore it is not as dangerous as nuclear fission. For this reason the correct answer is A. Fusion products are generally not radioactive.

A "biconvex" lens is one in which both surfaces of the lens bulge outwards. Suppose you had a biconvex lens with radii of curvature with magnitudes of |R1|=10cm and |R2|=15cm. The lens is made of glass with index of refraction nglass=1.5. We will employ the convention that R1 refers to the radius of curvature of the surface through which light will enter the lens, and R2 refers to the radius of curvature of the surface from which light will exit the lens.Part AIs this lens converging or diverging?Part BWhat is the focal length f of this lens in air (index of refraction for air is nair=1)?Express your answer in centimeters to two significant figures or as a fraction.

Answers

Final answer:

A biconvex lens with the given parameters is a converging lens. Using the Lens Maker's Equation with the radii of curvature and index of refraction for glass and air, the focal length of the lens is calculated to be approximately 12 cm.

Explanation:

A biconvex lens, where both surfaces of the lens bulge outwards, will bend light rays such that they converge at a focal point. With the parameters given (|R1|=10cm, |R2|=15cm, and nglass=1.5), we can deduce that this lens is a converging lens.

Part A: Since a biconvex lens makes parallel rays of light converge at a point after passing through the lens, it is classified as a converging lens.

Part B: To calculate the focal length (f) of the lens, we use the Lens Maker's Equation:

First, we convert the radii of curvature to the appropriate signs as per the lensmaker's convention (positive for convex surfaces when the outside medium is air). R1 = +10cm and R2 = -15cm, since the light exits from the second surface.Next, we plug the values into the equation (1/f) = (nglass - nair) ((1/R1) - (1/R2)) to get the reciprocal of the focal length.

Carrying out the calculation with the data given (nglass=1.5, nair=1, R1=+10cm, and R2=-15cm), we get:

(1/f) = (1.5 - 1) ((1/10cm) - (1/(-15cm)))

(1/f) = 0.5 * (0.1cm⁻¹ + 0.0667cm⁻¹)

(1/f) = 0.5 * 0.1667cm⁻¹

(1/f) = 0.08335cm⁻¹

Therefore, the focal length f is the reciprocal of 0.08335cm⁻¹ which is approximately:

f ≈ 12cm

Part APart complete If the CD rotates clockwise at 500 rpm (revolutions per minute) while the last song is playing, and then spins down to zero angular speed in 2.60 s with constant angular acceleration, what is α, the magnitude of the angular acceleration of the CD, as it spins to a stop?

Answers

Answer:

20.13841 rad/s²

Explanation:

[tex]\omega_i[/tex] = Initial angular velocity = [tex]500\times \frac{2\pi}{60}\ rad/s[/tex]

[tex]\omega_f[/tex] = Final angular velocity = 0

t = Time taken = 2.6 s

[tex]\alpha[/tex] = Angular acceleration

Equation of rotational motion

[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{0-500\times \frac{2\pi}{60}}{2.6}\\\Rightarrow \alpha=-20.13841\ rad/s^2[/tex]

The magnitude of the angular acceleration of the CD, as it spins to a stop is 20.13841 rad/s²

Case 1: A 0.780-kg silver pellet with a temperature of 85 oC is added to 0.150 kg of water in a copper cup of unknown mass. The initial temperature of the water and the copper cup is 14 oC. The equilibrium temperature of the system (silver water copper cup) is measured to be 26.0 °C. Assume no heat is exchanged with the surroundings. The specific heats of silver, water and copper are: 234 J/(kg oC), 4186 J/(kg oC) and 387 J/(kg oC) , respectively. (a) Which substance releases heat

Answers

Answer: The silver pellet will release heat

Explanation:

Based on the case scenario, the silver pellet has a higher temperature that the system of water and copper cup and is thereby added to the system. Because of the higher kinetic energy of the molecules of silver in the silver pellet, some of energy will be released to the water and copper cup system because the system will aim to achieve thermal equilibrium.

An aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 39 . It has been determined that fracture results at a stress of 208 MPa when the maximum (or critical) internal crack length is 2.82 mm. a) Determine the value of for this same component and alloy at a stress level of 270 MPa when the maximum internal crack length is 1.41 mm.

Answers

Answer:

[tex]27.57713\ MPa\sqrt{m}[/tex]

Explanation:

Y = Fracture parameter

a = Crack length

[tex]\sigma[/tex] = Stress in part

Plane strain fracture toughness is given by

[tex]K_I=Y\sigma\sqrt{\pi a}\\\Rightarrow Y=\frac{K_I}{\sigma\sqrt{\pi a}}\\\Rightarrow Y=\frac{39}{270\times \sqrt{\pi 0.00282}}\\\Rightarrow Y=1.53462[/tex]

When a = 1.41 mm

[tex]K_I=Y\sigma\sqrt{\pi a}\\\Rightarrow K_i=1.53462\times 270\sqrt{\pi 0.00141}\\\Rightarrow K_I=27.57713\ MPa\sqrt{m}[/tex]

The value of plane strain fracture toughness is [tex]27.57713\ MPa\sqrt{m}[/tex]

Two horizontal curves on a bobsled run are banked at the same angle, but one has twice the radius of the other. The safe speed (no friction needed to stay on the run) for the smaller radius curve is v. What is the safe speed on the larger radius curve?

Answers

Answer:

safe speed for the larger radius track u= √2 v

Explanation:

The sum of the forces on either side is the same, the only difference is the radius of curvature and speed.

Also given that r_1= smaller radius

r_2= larger radius curve

r_2= 2r_1..............i

let u be the speed of larger radius curve

now, [tex]\sum F = \frac{mv^2}{r_1} =\frac{mu^2}{r_2}[/tex]................ii

form i and ii we can write

[tex]v^2= \frac{1}{2} u^2[/tex]

⇒u= √2 v

therefore, safe speed for the larger radius track u= √2 v

A thin flashlight beam traveling in air strikes a glass plate at an angle of 52° with the plane of the surface of the plate. If the index of refraction of the glass is 1.4, what angle will the beam make with the normal in the glass?

Answers

To solve this problem it is necessary to apply Snell's law and thus be able to calculate the angle of refraction.

From Snell's law we know that

[tex]n_1sin\theta_1 = n_2 sin\theta_2[/tex]

Where,

n_i = Refractive indices of each material

[tex]\theta_1[/tex] = Angle of incidence

[tex]\theta_2[/tex] = Refraction angle

Our values are given as,

[tex]\theta_1 = 38\°[/tex]

[tex]n_1 = 1[/tex]

[tex]n_2 = 1.4[/tex]

Replacing

[tex]1*sin38 = 1.4*sin\theta_2[/tex]

Re-arrange to find [tex]\theta_2[/tex]

[tex]\theta_2 = sin^{-1} \frac{sin38}{1.4}[/tex]

[tex]\theta_2 = 26.088°[/tex]

Therefore the  angle will the beam make with the normal in the glass is 26°

A 40 kg slab rests on a frictionless floor. A 10 kg block rests on top of the slab (Fig. 6-58). The coefficient of static friction µstat beltween the block and the slab is 0.70, whereas their kinetic friction coefficient µkin is 0.40. The 10 kg block is pulled by a horizontal force with a magnitude of 100 N.

Answers

Answer:

[tex]\text { The "resulting action" on the slab is } 0.98 \mathrm{m} / \mathrm{s}^{2}[/tex]

Explanation:

Normal reaction from 40 kg slab on 10 kg block

M × g  = 10 × 9.8 = 98 N  

Static frictional force = 98 × 0.7 N

Static frictional force = 68.6 N is less than 100 N applied  

10 kg block will slide on 40 kg slab and net force on it  

= 100 N - kinetic friction  

[tex]=100-(98 \times 0.4)\left(\mu_{\text {kinetic }}=0.4\right)[/tex]

= 100 - 39.2

= 60.8 N

[tex]10 \mathrm{kg} \text { block will slide on } 40 \mathrm{kg} \text { slab with, } \frac{\mathrm{Net} \text { force }}{\text { mass }}[/tex]

[tex]10 \mathrm{kg} \text { block will slide on } 40 \mathrm{kg} \text { slab with }=\frac{60.8}{10}[/tex]

[tex]10 \mathrm{kg} \text { block will slide on } 40 \mathrm{kg} \text { slab with }=6.08 \mathrm{m} / \mathrm{s}^{2}[/tex]

[tex]\text { Frictional force on 40 kg slab by 10 kg block, normal reaction \times \mu_{kinetic } }[/tex]

Frictional force on 40 kg slab by 10 kg block = 98 × 0.4  

Frictional force on 40 kg slab by 10 kg block = 39.2 N  

[tex]40 \mathrm{kg} \text { slab will move with } \frac{\text { frictional force }}{\text { mass }}[/tex]

[tex]40 \mathrm{kg} \text { slab will move with }=\frac{39.2}{40}[/tex]

40 kg slab will move with = [tex]0.98 \mathrm{m} / \mathrm{s}^{2}[/tex]

[tex]\text { The "resulting action" on the slab is } 0.98 \mathrm{m} / \mathrm{s}^{2}[/tex]

The return-air ventilation duct in a home has a cross-sectional area of 900 cm^2. The air in a room that has dimensions 5.0 m x 11.0 m ×x 2.4 m is to be completely circulated in a 50-min cycle.
1) What is the speed of the air in the duct? (Express your answer to two significant figures.)

Answers

To solve the problem it is necessary to apply the concepts related to the flow rate of a fluid.

The flow rate is defined as

[tex]Q = Av[/tex]

Where,

[tex]Q = Discharge (m^3/s)[/tex]

[tex]A = Area (m^2)[/tex]

v = Average speed (m / s)

And also as

[tex]Q = \frac{V}{t}[/tex]

Where,

V = Volume

t = time

Let's start by finding the total volume according to the given dimensions, that is to say

[tex]V = 5*11*2.4[/tex]

[tex]V = 132m^3[/tex]

The entire cycle must be completed in 50 min = 3000s

In this way we know that the [tex]132m ^ 3[/tex] must be filled in 3000s, that is to say that there should be a flow of

[tex]Q = \frac{V}{t}[/tex]

[tex]Q = \frac{132}{3000}[/tex]

[tex]Q = 0.044m^3/s[/tex]

Using the relationship to find the speed we have to

[tex]Q = Av[/tex]

[tex]v = \frac{Q}{A}[/tex]

Replacing with our values,

[tex]v = \frac{0.044}{900*10^{-4}m^2}[/tex]

[tex]v = 0.488m/s[/tex]

Therefore the air speed in the duct must be 4.88m/s

A horizontal rod 0.300 m long carries a current through a uniform horizontal magnetic field of magnitude 6.40×10−2 T that points perpendicular to the rod. Part A If the magnetic force on this rod is measured to be 0.140 N , what is the current flowing through the rod?

Answers

Answer:

Current, 7.29 A

Explanation:

It is given that,

Length of the horizontal rod, L = 0.3 m

Magnetic field through a horizontal rod, [tex]B=6.4\times 10^{-2}\ T[/tex]

The magnetic force acting on the rod, F = 0.14 N

Let the current flowing through the rod is given by I. The magnetic force acting on an object in the uniform magnetic field is given by :

[tex]F=ILB\ sin\theta[/tex]

Here, [tex]\theta=90^{\circ}[/tex]

[tex]F=ILB[/tex]

[tex]I=\dfrac{F}{LB}[/tex]

[tex]I=\dfrac{0.14\ N}{0.3\ m\times 6.4\times 10^{-2}\ T}[/tex]

I = 7.29 A

So, the current flowing through the rod 7.29 A.

Final answer:

The current flowing in the rod is approximately 7.292 A when it is subject to a 0.140 N magnetic force within a 6.40 x [tex]10^-^2[/tex] T magnetic field. The calculation uses the formula F = I * L * B, and since the rod is perpendicular to the magnetic field, the angle θ is 90°, which simplifies the calculation.

Explanation:

The question asks for the current flowing through a rod that is experiencing a magnetic force due to an external magnetic field.

The force on a current-carrying conductor in a magnetic field is given by the equation F = I * L * B * sin(θ), where F is the force in newtons, I is the current in amperes, L is the length of the conductor in meters, B is the magnetic field in teslas, and θ is the angle between the direction of the current and the magnetic field. In this case, the rod is perpendicular to the magnetic field, so the angle θ is 90°, making sin(θ) equal to 1.

To find the current I, we rearrange the formula to be I = F / (L * B). Substituting the given values:

Force F = 0.140 N

Length L = 0.300 m

Magnetic field B = 6.40×[tex]10^-^2[/tex] T

The current I can thus be calculated as I = 0.140 N / (0.300 m * 6.40×[tex]10^-^2[/tex] T).

Performing the calculation, I equals approximately 7.292 A.

A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction.

Part A

If at a particular instant and at a certain point in space the electric field is in the +x-direction and has a magnitude of 3.40V/m , what is the magnitude of the magnetic field of the wave at this same point in space and instant in time?

Part B

What is the direction of the magnetic field?

Answers

Answer:

a) 1.13 10-8 T.  b) +y direction

Explanation:

a)

For an electromagnetic wave propagating in a vacuum, the wave speed is c = 3. 108 m/s.

At a long distance from the source, the components of the wave (electric and magnetic fields) can be considered as plane waves, so the equations for them can be written as follows:

E(z,t) = Emax cos (kz-ωt-φ) +x

B(z,t) = Bmax cos (kz-ωt-φ) +y

In an electromagnetic wave, the magnetic field and the electric field, at any time, and at any point in space, as the perturbation is propagating at a speed equal to c (light speed in vacuum), are related by this expression:

Bmax = Emax/c

So, solving for Bmax:

Bmax = 3.4 V/m / 3 108 m/s = 1.13 10-8 T.

b) As we have already said, in an electromagnetic wave, the electric field and the magnetic field are perpendicular each other and to the propagation direction, so in this case, the magnetic field propagates in the +y direction.

A parallel beam of light in air makes an angle of 43.5 ∘ with the surface of a glass plate having a refractive index of 1.68. You may want to review (Pages 1080 - 1086) . For related problemsolving tips and strategies, you may want to view a Video Tutor Solution of Reflection and refraction.
a. What is the angle between the reflected part of the beam and the surface of the glass? θθ = nothing ∘
b. What is the angle between the refracted beam and the surface of the glass? θθ = nothing ∘

Answers

a. The angle between the reflected part of the beam and the surface of the glass is [tex]\(43.5^\circ\).[/tex]

b. The angle between the refracted beam and the surface of the glass is [tex]\(64.5^\circ\).[/tex]

To solve this problem, we need to apply the laws of reflection and refraction. Let's address each part separately.

Part (a): Angle Between the Reflected Beam and the Surface of the Glass

The law of reflection states that the angle of incidence is equal to the angle of reflection. The angle of incidence is given as 43.5° with respect to the surface of the glass. However, angles in optics are typically measured with respect to the normal (a line perpendicular to the surface).

So, the angle of incidence with respect to the normal (which we'll call [tex]\(\theta_i\)[/tex] ) is:

[tex]\[ \theta_i = 90^\circ - 43.5^\circ = 46.5^\circ \][/tex]

Since the angle of incidence equals the angle of reflection:

[tex]\[ \theta_r = \theta_i = 46.5^\circ \][/tex]

Therefore, the angle between the reflected part of the beam and the surface of the glass is:

[tex]\[ 90^\circ - \theta_r = 90^\circ - 46.5^\circ = 43.5^\circ \][/tex]

So, the angle between the reflected beam and the surface of the glass is:

[tex]\[ 43.5^\circ \][/tex]

Part (b): Angle Between the Refracted Beam and the Surface of the Glass

For the refracted beam, we need to apply Snell's Law, which is:

[tex]\[ n_1 \sin(\theta_i) = n_2 \sin(\theta_t) \][/tex]

Where:

- [tex]\( n_1 \)[/tex] is the refractive index of the first medium (air), [tex]\( n_1 = 1.00 \)[/tex],

- [tex]\( \theta_i \)[/tex] is the angle of incidence with respect to the normal, [tex]\( \theta_i = 46.5^\circ \),[/tex]

- [tex]\( n_2 \)[/tex] is the refractive index of the second medium (glass), [tex]\( n_2 = 1.68 \)[/tex],

- [tex]\( \theta_t \)[/tex] is the angle of refraction with respect to the normal.

Using Snell's Law, we can solve for [tex]\(\theta_t\):[/tex]

[tex]\[ 1.00 \sin(46.5^\circ) = 1.68 \sin(\theta_t) \][/tex]

[tex]\[ \sin(\theta_t) = \frac{\sin(46.5^\circ)}{1.68} \][/tex]

Calculating [tex]\(\sin(46.5^\circ)\):[/tex]

[tex]\[ \sin(46.5^\circ) \approx 0.723 \][/tex]

So,

[tex]\[ \sin(\theta_t) = \frac{0.723}{1.68} \approx 0.430 \][/tex]

Now we find [tex]\(\theta_t\):[/tex]

[tex]\[ \theta_t = \sin^{-1}(0.430) \approx 25.5^\circ \][/tex]

The angle between the refracted beam and the surface of the glass is:

[tex]\[ 90^\circ - \theta_t = 90^\circ - 25.5^\circ = 64.5^\circ \][/tex]

So, the angle between the refracted beam and the surface of the glass is:

[tex]\[ 64.5^\circ \][/tex]

Model the concrete slab as being surrounded on both sides (contact area 24 m2) with a 2.1-m-thick layer of air in contact with a surface that is 5.0 ∘C cooler than the concrete. At sunset, what is the rate at which the concrete loses thermal energy by conduction through the air layer?

Answers

Final answer:

The rate at which the concrete loses thermal energy by conduction through the air layer can be calculated using Fourier's Law of Heat Conduction. The formula involves the thermal conductivity, area, temperature difference, and thickness of the air layer. However, without the thermal conductivity value for air, the calculation cannot be completed.

Explanation:

To calculate the rate at which the concrete slab loses thermal energy by conduction through the surrounding air layer at sunset, we can apply Fourier's Law of Heat Conduction. This law states that the heat transfer rate (Q) through a material is directly proportional to the temperature difference across the material (ΔT), the area through which heat is being transferred (A), and the thermal conductivity (k), and inversely proportional to the thickness of the material (L).

The formula to calculate the rate of heat loss is given by Q = k*A*(ΔT/L), where ΔT is the temperature difference between the two sides of the material, A is the contact area, k is the thermal conductivity of the material, and L is the thickness of the material.

Unfortunately, without the thermal conductivity value for air in the provided data, we cannot calculate the exact rate of heat loss for this specific scenario. Thermal conductivity is required to solve this problem, and it's typically obtained from tables in textbooks or scientific references.

Zirconium tungstate is an unusual material because its volume shrinks with an increase in temperature for the temperature range 0.3 K to 1050 K (where it decomposes). In fact, the volumetric coefficient of thermal expansion is –26.4 × 10–6/K. Determine the ratio ΔV/V0 for the above mentioned temperature range. Express your answer in percent.

Answers

Answer:

2.771208%

Explanation:

[tex]\Delta V[/tex] = Change of volume

[tex]V_0[/tex] = Initial volume

[tex]\Delta T[/tex] = Change in temperature = (0.3-1050)

[tex]\beta[/tex] = Volumetric coefficient of thermal expansion = [tex]-26.4\times 10^{-6}\ /K[/tex]

Volumetric expansion of heat is given by

[tex]\frac{\Delta V}{V_0}=\beta \Delta T\\\Rightarrow \frac{\Delta V}{V_0}=-26.4\times 10^{-6}\times (0.3-1050)\\\Rightarrow \frac{\Delta V}{V_0}=0.02771208[/tex]

Finding percentage

[tex]\frac{\Delta V}{V_0}=0.02771208\times 100=2.771208\%[/tex]

The ratio of change of volume to initial volume is 2.771208%

Final answer:

To calculate the ratio ΔV/V0 for zirconium tungstate, the volume change can be determined using the volumetric coefficient of thermal expansion. The formula for the ratio is ΔV/V0 = (Volume change/Initial volume) × 100.

Explanation:

The ratio ΔV/V0 can be calculated using the formula:

ΔV/V0 = (Volume change/Initial volume) × 100

Given that the volumetric coefficient of thermal expansion for zirconium tungstate is -26.4 × 10^(-6)/K, we can use this value to calculate the volume change. The volume change can be found by multiplying the coefficient of thermal expansion by the change in temperature:

Volume change = (-26.4 × 10^(-6)/K) × (1050 K - 0.3 K)

Using this value, we can calculate the ratio ΔV/V0:

ΔV/V0 = (Volume change/Initial volume) × 100

Learn more about Volumetric coefficient of thermal expansion here:

https://brainly.com/question/34643540

#SPJ3

A parallel plate capacitor is connected to a battery that maintains a constant potential difference between the plates. If the plates are pulled away from each other, increasing their separation, what happens to the amount of charge on the plates?
a. The amount of the charge decreases, because the capacitance increases.
b. Nothing happens; the amount of charge stays the same.
c. The amount of the charge increases, because the capacitance increases.
d. The amount of the charge increases, because the capacitance decreases.
e. The amount of the charge decreases, because the capacitance decreases.

Answers

When the separation between the plates of a parallel plate capacitor is increased, the amount of charge on the plates decreases due to the decrease in capacitance (option e), with the voltage remaining constant.

When parallel plate capacitor plates are pulled away from each other while connected to a battery maintaining a constant potential difference, the capacitance decreases. This is because the capacitance is inversely proportional to the distance between the plates. As the capacitance decreases, the charge on the plates also decreases since the voltage (V) remains constant, and the relation between charge (Q), capacitance (C), and voltage (V) is given by Q = CV. Therefore, the amount of charge on the plates decreases because the capacitance decreases (option e).

Other Questions
In the Scopes trial of 1925, attorney William Jennings Bryan pitted religion against... the government. the Constitution. personal choice. evolutionary theory. identify and explain two outcomes of the implementation of the phoenician alphabet on the mediterranean region leading up to the collapse of the bronze age. The angle measurements in the diagram are represented by the following expressions.Solve for X then find the measurement of B: 11. Jillian needs to make a group of 5 people. She has 10 Democrats, 13 Republicans, and 7 Independents to choose from. (a) What is the probability that the group of 5 people will have 2 Democrats, 2 Republicans, and 1 Independent The thermosphere is: 1. the layer of atmosphere closest to the Earths surface where weather occurs. 2. supports long distance communication because it reflects outgoing radio waves back to Earth without the use of satellites. 3. the layer where auroras form when electrically charged particles from the sun collide with gas molecules releasing energy visible as light of different colors Mr. Anderson drove 168 miles in 3 hours. He then drove the next 2 hours at a rateof 5 miles an hour faster than the first rate,How many miles did Mr. Anderson drive during thhours? Supreme Court chief justice John Marshall used the Court to strengthen the judiciary and made legal decisions not explicitly discussed by the Constitution. These actions demonstrated Marshall's use of judicial:_________ In stage direction, what is the location between two other locations called What happens to the energy that is stored in cells? Check all that apply.A: It is released slowly.B: It is released quickly.C: It is released in a single reaction.D: It is released in a series of reactions.E: It is used by cells for repair and growth. This is worth 20 points. solve for w: -5(3-w)+4=-5/6(24-6w) 3x + 2 = x + 4 ( x + 2 ) Allen bought a warehouse to hold his excess inventory for $3,220,000 four years ago. Allen would have to pay $3,979,000 to buy a similar warehouse now. At which amount should Allen report the warehouse on a Balance Sheet prepared in accordance with GAAP (Generally Accepted Accounting Principles)? The measure of the vertex angle of an isosceles triangle is 92. Find the measure of a base angle 10. A toy store received a shipment of 17 cases ofteddy bears. Use compatible numbers to estimatethe total number of teddy bears in the shipment.12 bears per case Sea-level changes: Group of answer choices a) are reflected by blankets of marine sediment called clathrates. b) are cyclic, consisting of episodes of transgression and regression. c) have been as great as 3,000 m during the Phanerozoic Eon. d) are termed eustatic if they affect only a local area. DiskSan has to order flash transistors ($5 each) to create USB flash memory drives. Their monthly demand is 10,000 units, their holding cost (which is mostly comprised of obsolescence costs) is 10% per month per dollar in inventory, and the setup costs for an order is $5 (mostly paperwork etc.). Determine the economic order quantity for these flash transistors. raul is 5 years older than twice carlos age. the sum of their ages is 101. how old is carlos? decide whether the pair of lines is parallel, perpendicular, or neither. 3x-6y=2 and 18x+9y=8 Consider the following equilibrium:O2(g)+ 2F2(g) 2OF2(g); Kp = 2.310-15Which of the following statements is true?a. If the reaction mixture initially contains only OF2(g), then at equilibrium, the reaction mixture will consist of essentially only O2(g) and F2(g).b. For this equilibrium, Kc=Kp.c. If the reaction mixture initially contains only OF2(g), then the total pressure at equilibrium will be less than the total initial pressure.d. If the reaciton mixture initially contains only O2(g) and F2(g), then at equilibrium, the reaction mixture will consist of essentially only OF2(g).e. If the reaction mixture initially contains only O2(g) and F2(g), then the total pressure at equilibrium will be greater than the total initail pressure. In Alice's classroom, the great majority of her students do well academically. When she is asked about why she feels she is such a successful teacher, she says that she structures her instruction in such a way that her students can do well either way, working with her directly or on their own. She says that her students often do even better working on their own than with her. Alice's classroom best exemplifies____________.