A 4:1 scale drawing of a bearing is shown on an A-size print. Using a ruler, you measure the inside diameter of the part on the paper and you get 1.50 inches. What is the actual part size in inches? A. 6.0 B. 1.5 C.4.0 D 375

Answers

Answer 1

Answer:

A. 6.0

Step-by-step explanation:

We have been given that the the inside diameter of the part on the paper is 1.50 inches.

We have been given that scale is 4:1 for actual size to drawing side.

[tex]\text{Scale}=\frac{\text{Actual size}}{\text{Map size}}=\frac{4}{1}[/tex]

Upon substituting 1.50 in our given proportion, we will get:

[tex]\frac{\text{Actual size}}{1.50\text{ inches}}=\frac{4}{1}[/tex]

[tex]\frac{\text{Actual size}}{1.50\text{inches}}\times 1.50\text{ inches}=\frac{4}{1}\times 1.50\text{ inches}[/tex]

[tex]\text{Actual size}=4\times 1.50\text{ inches}[/tex]

[tex]\text{Actual size}=6.0\text{ inches}[/tex]

Therefore, the actual size is 6.0 inches and option A is the correct choice.


Related Questions

7% of items in a shipment are known to be defective. If a sample of 5 items is randomly selected from this shipment, what is the probability that at least one defective item will be observed in this sample? Round your result to 2 significant places after the decimal (For example, 0.86732 should be entered as 0.87).

Answers

Answer: 0.30

Step-by-step explanation:

Binomial distribution formula :-

[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex], where P(x) is the probability of getting success in x trials , n is the total number of trials and p is the probability of getting success in each trial.

Given : The probability that a shipment are known to be defective= 0.07

If a sample of 5 items is randomly selected from this shipment,then the probability that at least one defective item will be observed in this sample will be :-

[tex]P(X\geq1)=1-P(0)\\\\=1-(^5C_0(0.07)^0(1-0.07)^{5-0})\\\\=1-(0.93)^5=0.3043116307\approx0.30[/tex]

Hence, the probability that at least one defective item will be observed in this sample =0.30

*Asymptotes*
g(x) =2x+1/x-3

Give the domain and x and y intercepts

Answers

Answer: Assuming the function is [tex]g(x)=\frac{2x+1}{x-3}[/tex]:

The x-intercept is [tex](\frac{-1}{2},0)[/tex].

The y-intercept is [tex](0,\frac{-1}{3})[/tex].

The horizontal asymptote is [tex]y=2[/tex].

The vertical asymptote is [tex]x=3[/tex].

Step-by-step explanation:

I'm going to assume the function is: [tex]g(x)=\frac{2x+1}{x-3}[/tex] and not [tex]g(x)=2x+\frac{1}{x}-3[/tex].

So we are looking at [tex]g(x)=\frac{2x+1}{x-3}[/tex].

The x-intercept is when y is 0 (when g(x) is 0).

Replace g(x) with 0.

[tex]0=\frac{2x+1}{x-3}[/tex]

A fraction is only 0 when it's numerator is 0.  You are really just solving:

[tex]0=2x+1[/tex]

Subtract 1 on both sides:

[tex]-1=2x[/tex]

Divide both sides by 2:

[tex]\frac{-1}{2}=x[/tex]

The x-intercept is [tex](\frac{-1}{2},0)[/tex].

The y-intercept is when x is 0.

Replace x with 0.

[tex]g(0)=\frac{2(0)+1}{0-3}[/tex]

[tex]y=\frac{2(0)+1}{0-3}[/tex]  

[tex]y=\frac{0+1}{-3}[/tex]

[tex]y=\frac{1}{-3}[/tex]

[tex]y=-\frac{1}{3}[/tex].

The y-intercept is [tex](0,\frac{-1}{3})[/tex].

The vertical asymptote is when the denominator is 0 without making the top 0 also.

So the deliminator is 0 when x-3=0.

Solve x-3=0.

Add 3 on both sides:

x=3

Plugging 3 into the top gives 2(3)+1=6+1=7.

So we have a vertical asymptote at x=3.

Now let's look at the horizontal asymptote.

I could tell you if the degrees match that the horizontal asymptote is just the leading coefficient of the top over the leading coefficient of the bottom which means are horizontal asymptote is [tex]y=\frac{2}{1}[/tex].  After simplifying you could just say the horizontal asymptote is [tex]y=2[/tex].

Or!

I could do some division to make it more clear.  The way I'm going to do this certain division is rewriting the top in terms of (x-3).

[tex]y=\frac{2x+1}{x-3}=\frac{2(x-3)+7}{x-3}=\frac{2(x-3)}{x-3}+\frac{7}{x-3}[/tex]

[tex]y=2+\frac{7}{x-3}[/tex]

So you can think it like this what value will y never be here.

7/(x-3) will never be 0 because 7 will never be 0.

So y will never be 2+0=2.

The horizontal asymptote is y=2.

(Disclaimer: There are some functions that will cross over their horizontal asymptote early on.)

If 20600 dollars is invested at an interest rate of 10 percent per year, find the value of the investment at the end of 5 years for the following compounding methods, to the nearest cent.

(a) Annual: $

(b) Semiannual: $

(c) Monthly: $

(d) Daily: $

Answers

Answer:

a) The value of the investment is $33176.506

b) The value of the investment is $33555.53

c) The value of the investment is $33893.36

d) The value of the investment is $33961.33

Step-by-step explanation:

This is a compound interest problem

Compound interest formula:

The compound interest formula is given by:

[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]

A: Amount of money(Balance)

P: Principal(Initial deposit)

r: interest rate(as a decimal value)

n: number of times that interest is compounded per unit t

t: time the money is invested or borrowed for.

In our problem, we have:

A: the value we want to find

P = 20600(the value invested)

r = 0.1

n: Will change for each letter

t = 5.

a) If the interest is compounded anually, n = 1. So.

[tex]A = 20600(1 + \frac{0.1}{1})^{1*5}[/tex]

[tex]A = 33176.506[/tex]

The value of the investment is $33176.506

b) If the interest is compounded semianually, it happens twice a year, which means n = 2. So:

[tex]A = 20600(1 + \frac{0.1}{2})^{2*5}[/tex]

[tex]A = 33555.23[/tex]

The value of the investment is $33555.53

c) If the interest is compounded monthly, it happens 12 times a year, which means n = 12. So:

[tex]A = 20600(1 + \frac{0.1}{12})^{12*5}[/tex]

[tex]A = 33893.36[/tex]

The value of the investment is $33893.36

d) If the interest is compounded monthly, it happens 365 times a year, which means n = 365. So:

[tex]A = 20600(1 + \frac{0.1}{365})^{365*5}[/tex]

[tex]A = 33961.33[/tex]

The value of the investment is $33961.33

Final answer:

The future value of $20,600 invested at a 10% annual interest rate after 5 years varies based on the compounding frequency: annually it will be $33,186.35, semiannually $33,644.31, monthly $33,949.69, and daily $34,030.18.

Explanation:

Calculating Future Value with Different Compounding Methods

To calculate the future value of an investment with compound interest, we use the formula  [tex]FV =PV(1+r/n)^{nt}[/tex],where FV is the future value, P is the principal amount, r is the annual interest rate, n is the number of times the interest is compounded per year, and t is time in years.

Given a principal amount of $20,600 and an annual interest rate of 10%, we will calculate the value of the investment at the end of 5 years for the following compounding methods:

Annual compounding (n=1): FV = 20600(1 + 0.10/1)⁽¹ˣ⁵⁾

Semiannual compounding (n=2): FV = 20600(1 + 0.10/2)⁽²ˣ⁵⁾

Monthly compounding (n=12): FV = 20600(1 + 0.10/12)⁽¹²ˣ⁵⁾

Daily compounding (n=365): FV = 20600(1 + 0.10/365)⁽³⁶⁶ˣ⁵⁾

Using a calculator or spreadsheet software, we can find the values to the nearest cent:

(a) Annual: $33,186.35

(b) Semiannual: $33,644.31

(c) Monthly: $33,949.69

(d) Daily: $34,030.18

The compounding effect shows that the more frequently the interest is compounded, the greater the final value of the investment.

A basketball team sells tickets that cost​ $10, $20,​ or, for VIP​ seats,​ $30. The team has sold 3142 tickets overall. It has sold 207 more​ $20 tickets than​ $10 tickets. The total sales are ​$59,670. How many tickets of each kind have been​ sold?

Answers

Answer:

1,084 tickets were sold that cost $10

1,291 tickets were sold that cost $20

767 tickets were sold that cost $30

Step-by-step explanation:

Let

x ----> the number of tickets  that cost $10 sold

y ----> the number of tickets  that cost $20 sold

z ----> the number of tickets  that cost $30 sold

we know that

x+y+z=3,142 -----> equation A

10x+20y+30z=59,670 ----> equation B

y=x+207 ----> equation C

substitute equation C in equation A and equation B

x+(x+207)+z=3,142 ----> 2x+z=2,935 ----> equation D

10x+20(x+207)+30z=59,670 ---> 30x+30z=55,530 ----> equation E

Solve the system of equations D and E by graphing

The solution is the intersection point both graphs

The solution is the point (1,084,767)

so

x=1,084, z=767

see the attached figure

Find the value of y

y=x+207 ----> y=1,084+207=1,291

therefore

1,084 tickets were sold that cost $10

1,291 tickets were sold that cost $20

767 tickets were sold that cost $30

he diameters of red delicious apples of an orchard have a normal distribution with a mean of 3 inches and a standard deviation of 0.5 inch. One apple will be randomly chosen. What is the probability of picking an apple with diameter between 2.5 and 4.25 inches?

Answers

Answer: 0.8351

Step-by-step explanation:

Given :Mean : [tex]\mu=\text{ 3 inches}[/tex]

Standard deviation : [tex]\sigma =\text{ 0.5 inch}[/tex]

The formula for z -score :

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 2.5 ,

[tex]z=\dfrac{2.5-3}{0.5}=-1[/tex]

For x= 4.25 ,

[tex]z=\dfrac{4.25-3}{0.5}=2.5[/tex]

The p-value = [tex]P(-1<z<2.5)=P(z<2.5)-P(z<-1)[/tex]

[tex]=0.9937903-0.1586553=0.835135\approx0.8351[/tex]

Hence,  the probability of picking an apple with diameter between 2.5 and 4.25 inches =0.8351.

Final answer:

To find the probability, we standardize the values, convert them into z-scores, look up the z-scores in a z-table, and subtract the lower cumulative probability from the higher one. The probability of picking an apple with diameter between 2.5 inches and 4.25 inches is 83.51%.

Explanation:

The problem involves a normal distribution where the diameter of Red Delicious apples has a mean of 3 inches and a standard deviation of 0.5 inch. The objective is to find the probability of picking an apple with a diameter between 2.5 and 4.25 inches.

We first standardize the given values to convert them into z-scores by subtracting the mean from the given value and dividing by the standard deviation. For 2.5 inches, z = (2.5 - 3) / 0.5 = -1. For 4.25 inches, z = (4.25 - 3) / 0.5 = 2.5.

Using a z-table, the z-score of -1 corresponds to a cumulative probability of 0.1587 and the z-score of 2.5 corresponds to a cumulative probability of 0.9938. To find the probability between these two diameters, we subtract the cumulative probability of -1 from the cumulative probability of 2.5.

Therefore, the probability of picking an apple with diameter between 2.5 inches and 4.25 inches is 0.9938 - 0.1587 = 0.8351 or 83.51%.

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ3


The correct conversion from metric system to household system is

A. 5 ml equals 1 tablespoon

B. 15 ml equals 1 teaspoon

C. 30 ml equals 1 fluid ounce

D. 500 ml equals 1 measuring cup

Answers

Answer:

The closest conversion would be C. 30 ml equals 1 fluid ounce , it is only off by 0.43 ml

Step-by-step explanation:

Great question, it is always good to ask away in order to get rid of any doubts you may be having.

The metric system is a decimal system of measurement while the household system is a system of measurement usually found with kitchen utensils. The correct conversions are the following.

5 ml equals 0.33814 tablespoon

15 ml equals 3.04326 teaspoon

29.5735 ml equals 1 fluid ounce

236.588 ml equals 1 measuring cup

So the closest conversion would be C. 30 ml equals 1 fluid ounce , it is only off by 0.43 ml

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

Final answer:

The correct conversion between the metric and household system provided in the choices is 30ml equals 1 fluid ounce. However, 5ml is equivalent to 1 teaspoon, 15 ml to 1 tablespoon, and 250 ml to 1 measuring cup.

Explanation:

The correct conversion from the metric system to the household system among the options given is C. 30 ml equals 1 fluid ounce. The rationale behind this is that 30 ml is universally accepted as being equal to 1 fluid ounce in the household system.

Option A, B and, D are incorrect conversions. More accurate conversions would be: A. 5 ml equals 1 teaspoon; B. 15 ml equals 1 tablespoon; D. 250 ml equals 1 measuring cup.

Learn more about Conversion here:

https://brainly.com/question/33720372

#SPJ6

What is the value of x?



Enter your answer in the box.

Answers

Answer:

x = 25

Step-by-step explanation:

Step 1: Identify the similar triangles

Triangle DQC and triangle DBR are similar

Step 2: Identify the parallel lines

QC is parallel to BR

Step 3: Find x

DQ/QB = DC/CR

40/24 = x/15

x = 25

!!

Answer: [tex]x=25[/tex]

Step-by-step explanation:

In order to calculate the value of "x", you can set up de following proportion:

[tex]\frac{BQ+QD}{QD}=\frac{RC+CD}{CD}\\\\\frac{24+40}{40}=\frac{15+x}{x}[/tex]

Now, the final step is to solve for "x" to find its value.

Therefore, its value is the following:

[tex]1.6=\frac{15+x}{x}\\\\1.6x=x+15\\\\1.6x-x=15\\\\0.6x=15\\\\x=\frac{15}{0.6}\\\\x=25[/tex]

Suppose you just received a shipment of nine televisions. Three of the televisions are defective. If two televisions are randomly​ selected, compute the probability that both televisions work. What is the probability at least one of the two televisions does not​ work?

Answers

Answer:

a)

The probability that both televisions work is:  0.42

b)

The probability at least one of the two televisions does not​ work is:

                          0.5833

Step-by-step explanation:

There are a total of 9 televisions.

It is given that:

Three of the televisions are defective.

This means that the number of televisions which are non-defective are:

          9-3=6

a)

The probability that both televisions work is calculated by:

[tex]=\dfrac{6_C_2}{9_C_2}[/tex]

( Since 6 televisions are in working conditions and out of these 6 2 are to be selected.

and the total outcome is the selection of 2 televisions from a total of 9 televisions)

Hence, we get:

[tex]=\dfrac{\dfrac{6!}{2!\times (6-2)!}}{\dfrac{9!}{2!\times (9-2)!}}\\\\\\=\dfrac{\dfrac{6!}{2!\times 4!}}{\dfrac{9!}{2!\times 7!}}\\\\\\=\dfrac{5}{12}\\\\\\=0.42[/tex]

b)

The probability at least one of the two televisions does not​ work:

Is equal to the probability that one does not work+probability both do not work.

Probability one does not work is calculated by:

[tex]=\dfrac{3_C_1\times 6_C_1}{9_C_2}\\\\\\=\dfrac{\dfrac{3!}{1!\times (3-1)!}\times \dfrac{6!}{1!\times (6-1)!}}{\dfrac{9!}{2!\times (9-2)!}}\\\\\\=\dfrac{3\times 6}{36}\\\\\\=\dfrac{1}{2}\\\\\\=0.5[/tex]

and the probability both do not work is:

[tex]=\dfrac{3_C_2}{9_C_2}\\\\\\=\dfrac{1}{12}\\\\\\=0.0833[/tex]

Hence, Probability that atleast does not work is:

             0.5+0.0833=0.5833

Final answer:

To find the probability that both televisions work, use the combination formula to determine the number of ways to select 2 working televisions out of the total number of televisions. Divide this number by the total number of ways to select 2 televisions.

Explanation:

To find the probability that both televisions work, we need to first determine the number of ways we can select 2 televisions out of the 9 available. This can be done using the combination formula, which is C(n, r) = n!/(r!(n-r)!), where n is the total number of items and r is the number of items being selected. In this case, n = 9 and r = 2.

Now we need to determine the number of ways we can select 2 working televisions out of the 6 working televisions. Again, we can use the combination formula with n = 6 and r = 2.

The final step is to divide the number of ways we can select 2 working televisions by the total number of ways we can select 2 televisions to get the probability that both televisions work.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Thirty-five more than the limit of weight (w) in an elevator is greater then 1,050 pounds.

A. Model with an inequality.

B. Solve the inequality.

C. Where would the solution for the inequality be graphed on the number line?

Answers

Answer:

Part A) [tex]w+35 > 1,050[/tex]

Part B) [tex]w > 1,015\ pounds[/tex]

Part C) The graph in the attached figure

Step-by-step explanation:

Part A) Model with an inequality.

Let

w -----> the limit of weight in an elevator

we know that

The inequality that represent this situation is

[tex]w+35 > 1,050[/tex]

Part B)   Solve the inequality

[tex]w+35 > 1,050[/tex]

solve for w

Subtract 35 sides

[tex]w+35-35 > 1,050-35[/tex]

[tex]w > 1,015\ pounds[/tex]

All real numbers greater than 1,015 pounds

Part C) Where would the solution for the inequality be graphed on the number line?

[tex]w > 1,015\ pounds[/tex]

The solution is the interval -------> (1,015,∞)

In a number line is the shaded area at right of the number x=1.015 (open circle)

see the attached figure

The production department of Celltronics International wants to explore the relationship between the number of employees who assemble a subassembly and the number produced. As an experiment, 2 employees were assigned to assemble the subassemblies. They produced 11 during a one-hour period. Then 4 employees assembled them. They produced 18 during a one-hour period. The complete set of paired observations follows.
Number of Assemblers One-Hour Production (units)
2 11
4 18
1 7
5 29
3 20
The dependent variable is production; that is, it is assumed that different levels of production result from a different number of employees.
a. Draw a scatter diagram.
b. Based on the scatter diagram, does there appear to be any relationship between the number of assemblers and production? Explain.
c. Compute the correlation coefficient.

Answers

Answer:

We are given that The dependent variable is production; that is, it is assumed that different levels of production result from a different number of employees.

Number of Assemblers(x)  One-Hour Production(y) (units)

2                                                           11

4                                                           18

1                                                            7

5                                                           29

3                                                           20

a. Draw a scatter diagram.

Solution : Refer the attached figure  

b. Based on the scatter diagram, does there appear to be any relationship between the number of assemblers and production? Explain.

Solution: The equation that shows the relationship between the number of assemblers and production is [tex]y=5.1x+1.7[/tex]

Where y is One-Hour Production (units)  and x is the Number of Assemblers

c.Compute the correlation coefficient.

Solution:

Formula of correlation coefficient:[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{[n \sum x^2 -(\sum x)^2][n \sum y^2 -(\sum y)^2]}[/tex]

            x        y         xy       [tex]x^2[/tex]   [tex]y^2[/tex]

           2        11        22              4                   121

           4        18       72               16                 324

           1          7         7                 1                    49

           5         29      145             25                  841

           3         20      60               9                    400            

Sum:   15     85       306           55                  1735

n=5

Substitute the values in the formula :

[tex]r=\frac{5(306)-(15)(85)}{[5 (55) -(15)^2][5 (1735) -(85)^2]}[/tex]

[tex]r=0.00351[/tex]

The correlation coefficient is 0.00351

solve the system of equation by guess sidle method

8x1 + x2 + x3 = 8

2x1 + 4x2 + x3 = 4

x1 + 3x2 + 5x3 = 5

Answers

Answer: The solution is,

[tex]x_1\approx 0.876[/tex]

[tex]x_2\approx 0.419[/tex]

[tex]x_3\approx 0.574[/tex]

Step-by-step explanation:

Given equations are,

[tex]8x_1 + x_2 + x_3 = 8[/tex]

[tex]2x_1 + 4x_2 + x_3 = 4[/tex]

[tex]x_1 + 3x_2 + 5x_3 = 5[/tex],

From the above equations,

[tex]x_1=\frac{1}{8}(8-x_2-x_3)[/tex]

[tex]x_2=\frac{1}{4}(4-2x_1-x_3)[/tex]

[tex]x_3=\frac{1}{5}(5-x_1-3x_2)[/tex]

First approximation,

[tex]x_1(1)=\frac{1}{8}(8-(0)-(0))=1[/tex]

[tex]x_2(1)=\frac{1}{4}(4-2(1)-(0))=0.5[/tex]

[tex]x_3(1)=\frac{1}{5}(5-1-3(0.5))=0.5[/tex]

Second approximation,

[tex]x_1(2)=\frac{1}{8}(8-(0.5)-(0.5))=0.875[/tex]

[tex]x_2(2)=\frac{1}{4}(4-2(0.875)-(0.5))=0.4375[/tex]

[tex]x_3(2)=\frac{1}{5}((0.875)-3(0.4375))=0.5625[/tex]

Third approximation,

[tex]x_1(3)=\frac{1}{8}(8-(0.4375)-(0.5625))=0.875[/tex]

[tex]x_2(3)=\frac{1}{4}(4-2(0.875)-(0.5625))=0.421875[/tex]

[tex]x_3(3)=\frac{1}{5}(5-(0.875)-3(0.421875))=0.571875[/tex]

Fourth approximation,

[tex]x_1(4)=\frac{1}{8}(8-(0.421875)-(0.571875))=0.875781[/tex]

[tex]x_2(4)=\frac{1}{4}(4-2(0.875781)-(0.571875))=0.419141[/tex]

[tex]x_3(4)=\frac{1}{5}(5-(0.875781)-3(0.419141))=0.573359[/tex]

Fifth approximation,

[tex]x_1(5)=\frac{1}{8}(8-(0.419141)-(0.573359))=0.875938[/tex]

[tex]x_2(5)=\frac{1}{4}(4-2(0.875938)-(0.573359))=0.418691[/tex]

[tex]x_3(5)=\frac{1}{5}(5-(0.875938)-3(0.418691))=0.573598[/tex]

Hence, by the Gauss Seidel method the solution of the given system is,

[tex]x_1\approx 0.876[/tex]

[tex]x_2\approx 0.419[/tex]

[tex]x_3\approx 0.574[/tex]

If (x,y) is a solution to the system of equations shown below, what is the product of the y-coordinates of the solutions? x^2+4y^2=40 x+2y=8

Answers

Answer:

The product of the y-coordinates of the solutions is equal to 3

Step-by-step explanation:

we have

[tex]x^{2}+4y^{2}=40[/tex] -----> equation A

[tex]x+2y=8[/tex] ------> equation B

Solve by graphing

Remember that the solutions of the system of equations are the intersection point both graphs

using a graphing tool

The solutions are the points (2,3) and (6,1)

see the attached figure

The y-coordinates of the solutions are 3 and 1

therefore

The product of the y-coordinates of the solutions is equal to

(3)(1)=3

According to a recent​ study, 9.3​% of high school dropouts are​ 16- to​ 17-year-olds. In​ addition, 6.3​% of high school dropouts are white​ 16- to​ 17-year-olds. What is the probability that a randomly selected dropout is​ white, given that he or she is 16 to 17 years​ old?

Answers

Answer:  [tex]\dfrac{21}{31}[/tex]

Step-by-step explanation:

Let A represents the event that high school dropouts are ​16- to​ 17-year-olds and B be the event that high school dropouts are ​white.

Given : The probability of high school dropouts are​ 16- to​ 17-year-olds :[tex]P(A)=0.093[/tex]

The probability of of high school dropouts are white​ 16- to​ 17-year-olds :

[tex]P(A\cap B)=0.063[/tex]

Then , the conditional  probability that a randomly selected dropout is​ white, given that he or she is 16 to 17 years​ old is given by :-

[tex]P(B|A)=\dfrac{P(A\cap B)}{P(A)}\\\\\Rightarrow\ P(B|A)=\dfrac{0.063}{0.093}=\dfrac{21}{31}[/tex]

8. 8 + (-2) – 9 – (-7)

A.24
B.-8
C.4
D.-10

Answers

Answer:

4

Step-by-step explanation:

8+(-2) is 66-9 is -3-3 -(-7) is -3+7 which is 4

What is the optimal solution for the following problem?

Minimize

P = 3x + 15y

subject to

2x + 4y ? 12

5x + 2y ? 10

and

x ? 0, y ? 0.

(x, y) = (2, 0)

(x, y) = (0, 3)

(x, y) = (0, 0)

(x, y) = (1, 2.5)

(x, y) = (6, 0)

Answers

Answer:Find the slope of the line that passes through the points shown in the table.

The slope of the line that passes through the points in the table is

.

Step-by-step explanation:

Final answer:

By substitifying the given points into the objective function, we can evaluate the minimum P. The point (x, y) = (0, 0) gives the minimum value of P = 0, which is the optimal solution for this problem.

Explanation:

This problem is a classic example of a linear programming problem, a method to achieve the best outcome in a mathematical model whose requirements are represented by linear relationships. In this case, we are asked to minimize P = 3x + 15y subject to the constraints [tex]2x + 4y \leq 12, 5x + 2y \leq 10, and ,x \geq 0, y \geq 0.[/tex] In other words, we are looking for values of x and y that satisfy the constraints and result in the smallest possible value of P.

By substituting our given points into the equation for P we can compare the results. The smallest value for P corresponds to the point (x, y) = (0, 0) with P = 0. This is the optimal solution for this problem because it results in the lowest value for P while still satisfying all the constraints.

Learn more about Linear Programming here:

https://brainly.com/question/34674455

#SPJ5

Assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. Find the probability that a given score is between negative 2.13 and 3.88 and draw a sketch of the region.

Answers

Answer: 0.9834

Step-by-step explanation:

Given : The test scores are normally distributed with

Mean : [tex]\mu=\ 0[/tex]

Standard deviation :[tex]\sigma= 1[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = -2.13

[tex]z=\dfrac{-2.13-0}{1}=-2.13[/tex]

For x = 3.88

[tex]z=\dfrac{3.88-0}{1}=3.88[/tex]

The p-value = [tex]P(-2.13<z<3.88)=P(z<3.88)-P(z<-2.13)[/tex]

[tex]0.9999477-0.0165858=0.9833619\approx0.9834[/tex]

Hence, the probability that a given score is between negative 2.13 and 3.88 = 0.9834

The number of measles cases increased 13.6 % to 57 cases this year, what was the number of cases prior to the increase? (Express your answer rounded correctly to the nearest whole number)

Answers

Answer:

The number of cases prior to the increase is 50.

Step-by-step explanation:

It is given that the number of measles cases increased by 13.6% and the number of cases after increase is 57.

We need to find the number of cases prior to the increase.

Let x be the number of cases prior to the increase.

x + 13.6% of x = 57

[tex]x+x\times \frac{13.6}{100}=57[/tex]

[tex]x+0.136x=57[/tex]

[tex]1.136x=57[/tex]

Divide both the sides by 1.136.

[tex]\frac{1.136x}{1.136}=\frac{57}{1.136}[/tex]

[tex]x=50.176[/tex]

[tex]x\approx 50[/tex]

Therefore the number of cases prior to the increase is 50.

find lim ?x approaches 0 f(x+?x)-f(x)/?x where f(x) = 4x-3

Answers

If [tex]f(x)=4x-3[/tex]:

[tex]\displaystyle\lim_{\Delta x\to0}\frac{(4(x+\Delta x)-3)-(4x-3)}{\Delta x}=\lim_{\Delta x\to0}\frac{4\Delta x}{\Delta x}=4[/tex]

If [tex]f(x)=4x^{-3}[/tex]:

[tex]\displaystyle\lim_{\Delta x\to0}\frac{\frac4{(x+\Delta x)^3}-\frac4{x^3}}{\Delta x}=\lim_{\Delta x\to0}\frac{\frac{4x^3-4(x+\Delta x)^3}{x^3(x+\Delta x)^3}}{\Delta x}[/tex]

[tex]\displaystyle=\lim_{\Delta x\to0}\frac{4x^3-4(x^3+3x^2\Delta x+3x(\Delta x)^2+(\Delta x)^3)}{x^3\Delta x(x+\Delta x)^3}[/tex]

[tex]\displaystyle=\lim_{\Delta x\to0}\frac{-12x^2\Delta x-12x(\Delta x)^2-4(\Delta x)^3}{x^3\Delta x(x+\Delta x)^3}=-\frac{12}{x^4}[/tex]

The linear correlation between violent crime rate and percentage of the population that has a cell phone is minus 0.918 for years since 1995. Do you believe that increasing the percentage of the population that has a cell phone will decrease the violent crime​ rate? What might be a lurking variable between percentage of the population with a cell phone and violent crime​ rate? Will increasing the percentage of the population that has a cell phone decrease the violent crime​ rate? Choose the best option below. No Yes

Answers

Answer:

The correct option is No and lurking variable is "Economy".

Step-by-step explanation:

Consider the provided information.

It is given that the linear correlation between violent crime rate and percentage of the population that has a cell phone is minus 0.918 for years since 1995.

There is a lurking variable between the proportion of the cell phone population and the rate of violent crime, the correlation between the two factors does not indicate causation.

Once the economy become stronger, crime rate tends to decrease.

Thus the correct option is NO.

Now, we need to identify the lurking variable between percentage of the population with a cell phone and violent crime​ rate.

Lurking variable is the variable which is unknown and not controlled.

Here, if we observe we can identify that economy plays a vital role. If economy become stronger, crime rate tends to decrease and population are better to buy phones. Also it is difficult to controlled over it.

Thus, the lurking variable is "Economy".

Suppose a random sample of 90 companies taken in 2006 showed that 14 offered​ high-deductible health insurance plans to their workers. A separate random sample of 120 firms taken in 2007 showed that 30 offered​ high-deductible health insurance plans to their workers. Based on the sample​ results, can you conclude that there is a higher proportion of companies offering​ high-deductible health insurance plans to their workers in 2007 than in 2006​? Conduct your hypothesis test at a level of significance alphaequals0.01.

Answers

Answer:

Step-by-step explanation:

Given that a random sample of 90 companies taken in 2006 showed that 14 offered​ high-deductible health insurance plans to their workers. A separate random sample of 120 firms taken in 2007 showed that 30 offered​ high-deductible health insurance plans to their workers.

H0: p1=p2

Ha: p1 <p2

(Two tailed test at99%)

Difference 14.44 %

Chi-squared 5.883

DF  1

Significance level P = 0.0153

Since p >0.01, our alpha reject null hypothesis.

NO. Based on the sample​ results, you can not  conclude that there is a higher proportion of companies offering​ high-deductible health insurance plans to their workers in 2007 than in 2006

Use the alternative curvature formula K=|a x v|/|v|^3 to find the curvature of the following parameterized curves. to find the curvature of the following parameterized curve. r(t)=<6+5t^2, t, 0>

Answers

Answer:

[tex]k=\frac{10}{(100t^2+1)^{\frac{3}{2}}}[/tex]

Or

[tex]k=\frac{10\sqrt{100t^2+1}}{(100t^2+1)^{2}}[/tex]

Step-by-step explanation:

We want to compute the curvature of the parameterized curve, [tex]r(t)=\:<\:6+5t^2,t,0)\:>\:[/tex] using the alternative formula:

[tex]k=\frac{|a\times v|}{|v|^3}[/tex].

We first compute the required ingredients.

The velocity vector is [tex]v=r'(t)=<\:10t,1,0\:>[/tex]

The acceleration vector is given by [tex]a=r''(t)=<\:10,0,0\:>[/tex]

The magnitude of the velocity vector is [tex]|v|=\sqrt{(10t)^2+1^2+0^2}=\sqrt{100t^2+1}[/tex]

The cross product of the velocity vector and the acceleration vector is

[tex]a\times v=\left|\begin{array}{ccc}i&j&k\\10&0&0\\10t&1&0\end{array}\right|=10k[/tex]

We now substitute ingredients into the formula to get:

[tex]k=\frac{|10k|}{(\sqrt{100t^2+1})^3}[/tex].

[tex]k=\frac{10}{(100t^2+1)^{\frac{3}{2}}}[/tex]

Or

[tex]k=\frac{10\sqrt{100t^2+1}}{(100t^2+1)^{2}}[/tex]

Draw fraction rectangles on dot paper to solve the problems.

1) Subtract: 3/5 - 1/4

2) Add: 5/6 + 1/4

3) Manny and Frank ordered pizza. Manny ate 1/4 of the pizza and Frank ate 5/8 of the pizza. How much of the whole pizza was eaten?

Answers

Answer:

1) [tex]\frac{7}{20}[/tex]

2) [tex]1\frac{1}{12}[/tex]

3) [tex]\frac{7}{8}[/tex]

Step-by-step explanation:

1) Given problem,

[tex]\frac{3}{5}-\frac{1}{4}[/tex]

LCM(5,4) = 20,

[tex]\frac{3}{5}=\frac{3\times 4}{5\times 4}=\frac{12}{20}[/tex]

[tex]\frac{1}{4}=\frac{1\times 5}{4\times 5}=\frac{5}{20}[/tex]

[tex]\implies \frac{3}{5}-\frac{1}{4}=\frac{12}{20}-\frac{5}{20}=\frac{7}{20}[/tex]

2) Given problem,

[tex]\frac{5}{6}+\frac{1}{4}[/tex]

LCM(6, 4) = 12,

[tex]\frac{5}{6}=\frac{5\times 2}{6\times 2}=\frac{10}{12}[/tex]

[tex]\frac{1}{4}=\frac{1\times 3}{4\times 3}=\frac{3}{12}[/tex]

[tex]\implies \frac{5}{6}+\frac{1}{4}=\frac{10}{12}+\frac{3}{12}=\frac{13}{12}=1\frac{1}{12}[/tex]

3) ∵ Pizza ate by Manny = [tex]\frac{1}{4}[/tex]

Pizza ate by Frank = [tex]\farc{5}{8}[/tex]

∴ Total pizza eaten = [tex]\frac{1}{4}+\frac{5}{8}[/tex]

LCM(4, 8) = 8,

[tex]\frac{1}{4}=\frac{2}{8}[/tex]

Thus, total pizza eaten =  [tex]\frac{2}{8}+\frac{5}{8}=\frac{7}{8}[/tex]

Please help me with this

Answers

Answer: first option.

Step-by-step explanation:

By definition, the measure of any interior angle of an equilateral triangle is 60 degrees.

Then, we can find the value of "y". This is:

[tex]2y+6=60\\\\y=\frac{54}{2}\\\\y=27[/tex]

Since the three sides of an equilateral triangle have the same length, we can find the value of "x". This is:

[tex]x+4=2x-3\\\\4+3=2x-x\\\\x=7[/tex]

To fill out a function's ___ ___, you will need to use test numbers before and after each of the function's ___ and asymtopes
A). Sign chart; Values
B). rational equation; values
C). sign chart; zeroes
D). rational equation; zeroes

Answers

Answer:

  C).  sign chart; zeroes

Step-by-step explanation:

A function potentially changes sign at each of its zeros and vertical asymptotes. So, to fill out a sign chart, you need to determine what the sign is on either side of each of these points. You can do that using test numbers, or you can do it by understanding the nature of the zero or asymptote.

Examples:

f1(x) = (x -3) . . . . changes sign at the zero x=3. Is positive for x > 3, negative for x < 3.

f2(x) = (x -4)^2 . . . . does not change sign at the zero x=4. It is positive for any x ≠ 4. This will be true for any even-degree binomial factor.

f3(x) = 1/(x+2) . . . . has a vertical asymptote at x=-2. It changes sign there because the denominator changes sign there.

f4(x) = 1/(x+3)^2 . . . . has a vertical asymptote at x=-3. It does not change sign there because the denominator is of even degree and does not change sign there.

what is the LCM of 8 and 10 .

Answers

Answer:

40

Step-by-step explanation:

8: 8, 16, 24, 32, 40

10: 10 20 30 40

Answer:

The least common multiple of 8 and 10 is 40.

Step-by-step explanation:

8: 8*1=8, 8*2=16, 8*3=24, 8*4=32, 8*5=40

10: 10*1=10, 10*2=20, 10*3=30, 10*4=40

The least common factor of 8 and 10 is 40.

Let Z be a standard normal random variable and calculate the following probabilities, drawing pictures wherever appropriate. (Round your answers to four decimal places.) (a) P(0 ≤ Z ≤ 2.38) .4913 (b) P(0 ≤ Z ≤ 1) .3413 (c) P(−2.70 ≤ Z ≤ 0) .4965 (d) P(−2.70 ≤ Z ≤ 2.70) .9931 (e) P(Z ≤ 1.62) .9474 (f) P(−1.55 ≤ Z) .9394 (g) P(−1.70 ≤ Z ≤ 2.00) .9327 (h) P(1.62 ≤ Z ≤ 2.50) .0464 (i) P(1.70 ≤ Z) .0445 (j) P(|Z| ≤ 2.50) .9876

Answers

The correct answers are:

(a) [tex]P(0\leq Z\leq 2.38)=0.4913[/tex]

(b)  [tex]P(0\leq Z\leq 1)=0.3413[/tex]

(c)  [tex]P(-2.70\leq Z\leq 0)=0.4965[/tex]

(d)  [tex]P(-2.70\leq Z\leq 2.70)=0.9926[/tex]

(e)  [tex]P(Z\leq 1.62)=0.9474[/tex]

(f)  [tex]P(-1.55\leq Z)=0.9394[/tex]

(g)  [tex]P(-1.70\leq Z\leq 2.00)=0.9326[/tex]

(h)  [tex]P(1.62\leq Z\leq 2.50)=0.0457[/tex]

(i) [tex]P(1.70\leq Z)=0.0446[/tex]

(j) [tex]P(|Z|\leq 2.50)=1.9862[/tex]

Let's calculate these probabilities step by step using the standard normal distribution table (also known as the z-table).

For reference, the standard normal distribution table provides the probabilities associated with the standard normal random variable (Z), which has a mean of [tex]0[/tex] and a standard deviation of [tex]1[/tex].

We'll use the standard normal distribution table to find the probabilities corresponding to the given Z-values.

(a [tex]P(0\leq Z\leq 2.38)[/tex] From the z-table,  [tex]P(Z\leq 2.38)=0.9913 P(0\leq Z\leq 2.38)=0.9913-0.5=0.4913[/tex] (subtracting the cumulative probability up to [tex]0[/tex] from the cumulative probability up to [tex]2.38[/tex])

(b) [tex]P(0\leq Z\leq 1)[/tex] From the z-table,  [tex]P(Z\leq 1)=0.8413 P(0\leq Z\leq 1)=0.8413-0.5=0.3413[/tex]

(c) [tex]P(-2.70\leq Z\leq 0)[/tex] From the z-table,  [tex]P(Z\leq 0)=0.5[/tex] and  [tex]P(Z\leq -2.70)=0.0035 P(-2.70\leq Z\leq 0)=0.5-0.0035=0.4965[/tex]

(d)  [tex]P(-2.70\leq Z\leq 2.70)[/tex] From the z-table,  [tex]P(Z\leq 2.70)=0.9961[/tex] and  [tex]P(Z\leq -2.70)=0.0035 P(-2.70\leq Z\leq 2.70)=0.9961-0.0035=0.9926[/tex]

(e)  [tex]P(Z\leq 1.62)[/tex] From the z-table,  [tex]P(Z\leq 1.62)=0.9474[/tex]

(f)  [tex]P(-1.55\leq Z)[/tex] From the z-table,  [tex]P(Z\leq -1.55)=0.0606 P(-1.55\leq Z)=1-0.0606=0.9394[/tex] (subtracting the cumulative probability up to [tex]-1.55[/tex] from [tex]1[/tex])

(g [tex]P(-1.70\leq Z\leq 2.00)[/tex] From the z-table,  [tex]P(Z\leq 2.00)=0.9772[/tex] and  [tex]P(Z\leq -1.70)=0.0446 P(-1.70\leq Z\leq 2.00)=0.9772-0.0446=0.9326[/tex]

(h)   [tex]P(1.62\leq Z\leq 2.50)[/tex] From the z-table,   [tex]P(Z2.50)=0.9931[/tex] and  [tex]P(Z\leq 1.62)=0.9474 P(1.62\leq Z\leq 2.50)=0.9931-0.9474=0.0457[/tex]

(i) [tex]P(1.70\leq Z)[/tex][tex]From the z-table, P(Z\leq 1.70)=0.9554 , P(1.70\leq Z)=1-0.9554=0.0446[/tex] (subtracting the cumulative probability up to [tex]1.70[/tex] from [tex]1[/tex])

(j) [tex]P(|Z|\leq 2.50)[/tex] Since the standard normal distribution is symmetric,   [tex]P(|Z|\leq 2.50)=2*P(0\leq Z\leq 2.50)=2*0.9931=1.9862[/tex] (multiply by [tex]2[/tex] because the probability of Z being between [tex]-2.50[/tex] and [tex]2.50[/tex] is twice the probability of Z being between [tex]0[/tex] and [tex]2.50[/tex] )

Let Z be a standard normal random variable and calculate the following probabilities, drawing pictures wherever appropriate. (Round your answers to four decimal places.)

(a) [tex]P(0 \leq Z \leq 2.38) .4913[/tex]

(b) [tex]P(0 \leq Z\leq 1) .3413[/tex]

(c) [tex]P(-2.70 \leq Z \leq 0) .4965[/tex]

(d) [tex]P(-2.70 \leq Z \leq 2.70) .9931[/tex]

(e) [tex]P(Z \leq 1.62) .9474[/tex]

(f) [tex]P(-1.55 \leq Z) .9394[/tex]

(g) [tex]P(-1.70 \leq Z \leq 2.00) .9327[/tex]

(h) [tex]P(1.62 \leq Z \leq 2.50) .0464[/tex]

(i) [tex]P(1.70 \leq Z) .0445[/tex]

(j) [tex]P(|Z| \leq 2.50) .9876[/tex]

Find the decimal form of 2/4

Answers

Answer:

Step-by-step explanation:

.5

Answer is provided in image attached.

For the following functions from R -> R, determine if function is one to one, onto, or both. Explain.

a) f(x)=3x-4

b)g(x)=(x^2)-2

c) h(x)=2/x

d) k(x)=ln(x)

e) l(x) = e^x

Answers

Answer with explanation:

a. f(x)=3x-4

Let [tex]f(x_1)=f(x_2)[/tex]

[tex]3x_1-4=3x_2-4[/tex]

[tex]3x_1=3x_2-4+4[/tex]

[tex]3x_1=3x_2[/tex]

[tex]x_1=x_2[/tex]

Hence, the function one-one.

Let f(x)=y  

[tex]y=3x-4[/tex]

[tex]3x=y+4[/tex]

[tex]x=\frac{y+4}{3}[/tex]

We can find pre image in domain R for every y in range R.

Hence, the function onto.

b.g(x)=[tex]x^2-2[/tex]

Substiute x=1

Then [tex]g(x)=1-2=-1[/tex]

Substitute x=-1

Then g(x)=1-2=-1

Hence, the image of 1 and -1 are same . Therefore, the given function g(x) is not one-one.

The given function g(x) is not onto because there is no pre image of -2, -3,-4......  R.

Hence, the function neither one-one nor onto on given  R.

c.[tex]h(x)=\frac{2}{x}[/tex]

The function is not defined for x=0 .Therefore , it is not a function on domain R.

Let [tex]h(x_1)=h(x_2)[/tex]

[tex] \frac{2}{x_1}=\frac{2}{x_2}[/tex]

By cross mulitiply

[tex]x_1= \frac{2\times x_2}{2}[/tex]

[tex]x_1=x_2[/tex]

Hence, h(x) is a one-one function on R-{0}.

We can find pre image for every value of y except zero .Hence, the function

h(x) is onto on R-{0}.

Therefore, the given function h(x) is both one- one and onto on R-{0} but not on R.

d.k(x)= ln(x)

We know that logarithmic function not defined for negative values of x. Therefore, logarithmic is not a function R.Hence, the given function K(x) is not a function on R.But it is define for positive R.

Let[tex]k(x_1)=k(x_2)[/tex]

[tex] ln(x_1)=ln(x_2)[/tex]

Cancel both side log then

[tex]x_1=x_2[/tex]

Hence, the given function one- one on positive R.

We can find pre image in positive R for every value of [tex]y\in R^+[/tex].

Therefore, the function k(x) is one-one and onto on [tex]R^+[/tex] but not on R.

e.l(x)=[tex]e^x[/tex]

Using horizontal line test if we draw a line y=-1 then it does not cut the graph at any point .If the horizontal line cut the graph atmost one point the function is one-one.Hence, the horizontal line does not cut the graph at any point .Therefore, the function is one-one on R.

If a horizontal line cut the graph atleast one point then the function is onto on a given domain and codomain.

If we draw a horizontal line y=-1 then it does not cut the graph at any point .Therefore, the given function is not onto on R.

Given P(A and B) 0.20, P(A) 0.49, and P(B) = 0.41 are events A and B independent or dependent? 1) Dependent 2) Independent

Answers

Answer:  The correct option is (1) Dependent.

Step-by-step explanation:  For two events, we are given the following values of the probabilities :

P(A ∩ B) = 0.20,   P(A) = 0.49   and    P(B) = 0.41.

We are to check whether the events A and B are independent or dependent.

We know that

the two events C and D are said to be independent if the probabilities of their intersection is equal to the product of their probabilities.

That is,  P(C ∩ D) = P(C) × P(D).

For the given two events A and B, we have

[tex]P(A)\times P(B)=0.49\times0.41=0.2009\neq P(A\cap B)=0.20\\\\\Rightarrow P(A\cap B)\neq P(A)\times P(B).[/tex]

Therefore, the probabilities of the intersection of two events A and B is NOT equal to the product of the probabilities of the two events.

Thus, the events A and B are NOT independent. They are dependent events.

Option (1) is CORRECT.

Solve the inhomogeneius linear ode by undetermined coefficients
Y"+4y=3sin2x

Answers

Answer with explanation:

The given non Homogeneous linear differential equation is:

   y" +4 y'=3 Sin 2 x-------(1)

Put , u=y'

Differentiating once

u'=y"

Substituting the value of , y' and y" in equation (1)

⇒u' +4u =3 Sin 2x

This is a type of linear differential equation.

Integrating factor [tex]=e^{4t}[/tex]

Multiplying both sides of equation by Integrating factor

[tex]e^{4 x}(u'+4u)=e^{4x}3 \sin 2x\\\\ \text{Integrating both sides}\\\\ue^{4x}=\int {3 \sin 2x \times e^{4x}} \, dx \\\\ue^{4x}=\frac{3e^{4x}}{2^2+4^2}\times (4\sin 2x -2 \cos 2x)\\\\ue^{4x}=\frac{3e^{4x}}{20}\times (4\sin 2x -2 \cos 2x)+C_{1}\\\\ \text{Using the formula of}\\\\\int{e^{ax}\sin bx } \, dx=\frac{e^{ax}}{a^2+b^2}\times (a \sin bx-b \cos bx)+C[/tex]

where C and [tex]C_{1}[/tex] are constant of integration.

Replacing , u by , y' in above equation we get the solution of above non homogeneous differential equation

  [tex]y'(x)=\frac{3}{20}\times (4\sin 2x -2 \cos 2x)+C_{1}e^{-4 x}[/tex]

Other Questions
Identify the accurate statement about alcoholism: Alcoholism is entirely a genetic disorder. Alcoholism is genetic for men, but not for women. Alcoholism is entirely determined by your upbringing. Alcoholism is determined by both genetics and environment. Toms se - todas las maanas.OA. peinarB. peinas0C. peinoD. peina You are performing an experiment in a lab to attempt a new method of producing pure elements from compounds. The only problem is that you do not know what element will form. By your previous calculations you know that you will have 3 moles of product. When it is complete, you weigh it and determine you have 209.1 grams. What element have you produced? For f(x)=3x+1 and g(x)=xx-6,find (f - g)(x) What scheme is usually used today for encoding signed integers? Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.3 kg m2 and an angular velocity of +6.6 rad/s. Disk B is rotating with an angular velocity of -9.3 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.1 rad/s. The axis of rotation for this unit is the same as that for the separate disks. What is the moment of inertia of disk B? A magnetic field has a magnitude of 1.2 103 T, and an electric field has a magnitude of 4.6 103 N/C. Both fields point in the same direction. A positive 1.8 C charge moves at a speed of 3.1 106 m/s in a direction that is perpendicular to both fields. Determine the magnitude of the net force that acts on the charge. M1Q5.) Enter your answer as a fully reduced fraction. find the area of a sector with a central angle of 170 with the radius of 17 mm. Round to the nearest 10th. Translate the following into algebraic expressions:Divide the product of a and b by the quotient of c and d. Due to its system of nine air sacs connected to the lungs, the respiratory system of birds is arguably the most effective respiratory system of all air-breathers. Upon inhalation, air first flows into posterior air sacs, then into the lungs, and then into anterior air sacs on the way to being exhaled. Thus, there is one-way flow of air through the lungs, along thousands of tubules called parabronchi. If Archaeopteryx had air sacs, then which of its features would have had the opposite effect on enabling Archaeopteryx to fly long distances from that provided by air sacs? What information is included on a works cited page?a)the books that you recorded during your first source searchb)the periodicals that you used in your research paperc)the internet articles that you skimmedd)the articles that you read Loss of lung tissue elasticity is characteristic of Which of the following would be defined as a role model who takes a special interest in anothers goal and personal and professional development A. Academic Advisor B. Professor C. Mentor D. Good Friend Kiemanh is solving the equation 15r- 6r=36. What is the value of r? How can one tell if a reaction has reached equilibrium?OA. The reaction starts to go in the reverse direction.B. The concentrations of products and reactants stop changing.OC. The concentrations of products and reactants are equal.OD. The reaction stops once the reactants have been used up. The product of a rational and irrational number is rational A small insect is placed 3.75 cm from a +4.00 cm -focal-length lens. Calculate the angular magnification. After eating lunch together, Jay and Paul start walking in opposite directions. Jay walks 0.75 miles every 15 minutes and Paul power walks 2.5 miles every 30 minutes. In miles, how far apart are they after 1.5 hours? Which of these might be considered benefits of climate change? Select thetwo correct responses.OA. Fewer business opportunitiesOB. Increased demand for building constructionOC. Increased ocean acidityOD. The spread of invasive speciesOE. Increased crop growthSUBMIT