A 50 cm^3 block of iron is removed from an 800 degrees Celsius furnance and immediately dropped into 200 mL of 20 degrees Celsius water. What percentage of the water boils away?

Answers

Answer 1

Answer:

 % of water boils away= 12.64 %

Explanation:

given,

volume of block  = 50 cm³ removed from temperature of furnace = 800°C

mass of water = 200 mL = 200 g

temperature of water  = 20° C

the density of iron = 7.874 g/cm³ ,

so the mass of iron(m₁)  = density × volume = 7.874 × 50 g = 393.7 g

the specific heat of iron C₁ = 0.450 J/g⁰C

the specific heat of water Cw= 4.18 J/g⁰C

latent heat of vaporization of water is L_v = 2260 k J/kg = 2260 J/g

loss of heat from iron is equal to the gain of heat for the water

[tex]m_1\times C_1\times \Delta T = M\times C_w\times \Delta T + m_2\times L_v[/tex]

[tex]393.7\times 0.45\times (800-100) = 200\times 4.18\times(100-20) + m_2\times 2260[/tex]

m₂ = 25.28 g

25.28 water will be vaporized

% of water boils away =[tex]\dfrac{25.28}{200}\times 100[/tex]

 % of water boils away= 12.64 %

Answer 2

The percentage of the water boils away when the iron block is placed into the water after furnace is 1264%.

What is heat transfer?

The heat transfer is the transfer of thermal energy due to the temperature difference.The heat flows from the higher temperature to the lower temperature.

The heat transfer of a closed system is the addition of change in internal energy and the total amount of work done by it.

As the initial volume of the iron block is 50 cm³ and the density of the iron is 7.874 g/cm³. Thus the mass of the iron block is,

[tex]m=50\times7.874\\m=393.7\rm g[/tex]

The temperature of the furnace is 800 degrees Celsius  and the specific heat of the iron block is 0.45 J/g-C.

As the boiling point of the water is 100 degree Celsius. Thus the heat loss by the block of iron is,

[tex]Q_L=393.7\times0.45\times(800-100)\\Q_L=124015.5[/tex]

The latent heat of the water is 2260 J/g. Thus the heat gain by vaporized water is,

[tex]Q_v=2260\times m_v\\[/tex]

Now the heat gain by the water is equal to the heat loss by the iron block.

As the specific heat of the water is 4.18 J/g-C and the temperature of the  water is 20 degrees and volume of water is 200 ml.

Thus heat gain by water can be given as,

[tex]Q_G=Q_L=200\times4.18(100-20)+2260m_v\\124015.5=200\times4.18(100-20)+2260m_w\\m_v=25.28\rm g[/tex]

Thus the total amount of the water boils away is 25.28 grams.

The percentage of the water boils away is,

[tex]p=\dfrac{25.25}{200}\times100\\p=12.64[/tex]

Thus the percentage of the water boils away when the iron block is placed into the water after furnace is 1264%.

Learn more about the heat transfer here;

https://brainly.com/question/12072129


Related Questions

A rigid adiabatic container is divided into two parts containing n1 and n2 mole of ideal gases respectively, by a movable and thermally conducting wall. Their pressure and volume are P1, V1 for part 1 and P2, V2 for part 2 respectively. Find the final pressure P and temperature T after the two gas reaches equilibrium. Assume the constant volume specific heats of the two gas are the same.

Answers

Answer:

Explanation:

Given

Pressure, Temperature, Volume of gases is

[tex]P_1, V_1, T_1 & P_2, V_2, T_2 [/tex]

Let P & T be the final Pressure and Temperature

as it is rigid adiabatic container  therefore Q=0 as heat loss by one gas is equal to heat gain by another gas

[tex]-Q=W+U_1----1[/tex]

[tex]Q=-W+U_2-----2[/tex]

where Q=heat loss or gain (- heat loss,+heat gain)

W=work done by gas

[tex]U_1 & U_2[/tex] change in internal Energy of gas

Thus from 1 & 2 we can say that

[tex]U_1+U_2=0[/tex]

[tex]n_1c_v(T-T_1)+n_2c_v(T-T_2)=0[/tex]

[tex]T(n_1+n_2)=n_1T_1+n_2T_2[/tex]

[tex]T=\frac{n_1+T_1+n_2T_2}{n_1+n_2}[/tex]

where [tex]n_1=\frac{P_1V_1}{RT_1}[/tex]

[tex]n_2=\frac{P_2V_2}{RT_2}[/tex]

[tex]T=\frac{\frac{P_1V_1}{RT_1}\times T_1+\frac{P_2V_2}{RT_2}\times T_2}{\frac{P_1V_1}{RT_1}+\frac{P_2V_2}{RT_2}}[/tex]

[tex]T=\frac{P_1V_1+P_2V_2}{\frac{P_1V_1}{T_1}+\frac{P_2V_2}{T_2}}[/tex]

and [tex]P=\frac{P_1V_1+P_2V_2}{V_1+V_2}[/tex]

Xylene (a common solvent in the petroleum industry) boils at 281.3°F at one atmosphere pressure. At what temperature does Xylene boil in °C, R and K?

Answers

Answer:

Xylene boils at 138.5 °C, 740.97 R and 411.65 K

Explanation:

To convert the temperature in Fahrenheit to Celsius you need to use this formula

[tex]T_{\°C}=(T_{\°F}-32)\cdot \frac{5}{9}[/tex]

We know that temperature is 281.3 °F so in °C is:

[tex]\°C=(281.3-32)\cdot \frac{5}{9}= 138.5 \°C[/tex]

To convert Fahrenheit to Rankine you need to use this formula

[tex]T_{R}=T_{\°F}+459.67\\T_{R}=281.3\°F+459.67=740.97 R[/tex]

To convert Fahrenheit to Kelvin you need to use this formula

[tex]T_{K}=(T_{\°F}+459.67)\cdot \frac{5}{9} \\T_{K}=(281.3 \°F+459.67)\cdot \frac{5}{9} \\T_{K}=411.65K[/tex]

A bicyclist pedals at a speed of 5.0 km/h. How far does he travel in 80 minutes? A. 0.08 km В. 300 m C. 400 m D. 6.7 km

Answers

Answer:d-6.7 km

Explanation:

Given

Bicyclist pedals at a speed of 5 km/h

so his speed in meter per second

[tex]5\times \frac{5}{18}=\frac{25}{18} m/s[/tex]

In 80 minutes he would travel

Distance traveled[tex]=\frac{25}{18}\times 80\times 60=6666.667 m\approx 6.67 km[/tex]

Does percent error give indication of accuracy or precision? Discuss.

Answers

Answer:

Accuracy

Explanation:

Percent error is the ratio of the difference of the measured and actual value to  the actual value multiplied by 100.

It gives the percent deviation of the value obtained from the actual value.

Accuracy is the measure of how close the readings are to the actual value or set standard and can be improved by increase the no. of readings in an experiment.

Precision is the measure of the closeness of the obtained values to one another.

Thus accuracy of the reading can be sensed by the percent error.

A 100 meter rope is 20 kg and is stretched with a tension of 20 newtons. If one end of the rope is vibrated with small amplitude at 10Hz, what would the velocity of waves traveling down it be? What would the velocity be if it rained and the rope soaked up 5 kg of water?

Answers

Answer:

The velocity waves before rain is 10 m/s

The velocity of wave after the rope soaked up 5 kg more is 8.944 m/s

Solution:

As per the question:

Length of the rope, l = 100 m

Mass of the rope, m = 20 kg

Force due to tension in the rope, [tex]T_{r} = 20 N[/tex]

Frequency of vibration in the rope, f = 10 Hz

Extra mass of the rope after being soaked in rain water, m' = 5 kg

Now,

In a rope, the wave velocity is given by:

[tex]v_{w} = \sqrt{\frac{T_{r}}{M_{d}}}[/tex]         (1)

where

[tex]M_{d}[/tex] = mass density

Mass density before soaking, [tex]M_{d} = \frac{m}{l} = \frac{20}{100} = 0.20[/tex]

Mass density after being soaked, [tex]M_{d} = \frac{m + m'}{l} = \frac{25}{100} = 0.25[/tex]

Initially, the velocity is given by using eqn (1):

[tex]v_{w} = \sqrt{\frac{20}{0.20}} = 10 m/s[/tex]

The velocity after being soaked in rain:

[tex]v_{w} = \sqrt{\frac{20}{0.25}} = 8.944 m/s[/tex]

You toss a ball straight up at 6.8 m/s ; it leaves your hand at 2.0 m above the floor. Suppose you had tossed a second ball straight down at 6.8 m/s (from the same place 2.0 m above the floor). When would the second ball hit the floor?

Answers

Answer:0.249 s

Explanation:

Given

Ball is tossed down with a velocity of 6.8 m/s downward

height from ground=2 m

therefore time to reach ground is

[tex]s=ut+\frac{gt^2}{2}[/tex]

[tex]2=6.8\times t+\frac{9.81\times t^2}{2}[/tex]

[tex]9.81t^2+13.6t-4=0[/tex]

[tex]t=\frac{-13.6\pm \sqrt{13.6^2+4\times 4\times 9.81}}{2\times 9.81}[/tex]

[tex]t=\frac{-13.6+18.49}{19.62}=0.249 s[/tex]

With each beat of your heart the aortic valve opens and closes. The valve opens and closes very rapidly, with a peak velocity as high as 4 m/s. If we image it with 7 MHz sound and the speed of sound is approximately 1500 m/s in human tissue, what is the frequency shift between the opening and closing of the valve?

Answers

Answer:

|Δf| = 37.3 kHz

Explanation:

given,

peak velocity = 4 m/s

speed of the sound = 1500 m/s

frequency = 7 MHz

[tex]v = C\dfrac{\pm \dlta f}{2 f_0}[/tex]

[tex]\delta f = \pm 2 f_0 (\dfrac{V}{C})[/tex]

[tex]\delta f = \pm 2\times 7 (\dfrac{4}{1500})[/tex]

           [tex]=\pm 0.0373 MHz[/tex]

           = 37.3 kHz

|Δf| = 37.3 kHz

hence, frequency shift between the opening and closing valve is 37.3 kHz

A 1100 kg car is traveling around a flat 82.3 m radius curve. The coefficient of static friction between the car tires and the road is .521. What is the maximum speed in m/s at which the car can take the curve?

Answers

Answer:

The maximum speed of car will be 20.5m/sec

Explanation:

We have given mass of car = 1100 kg

Radius of curve = 82.3 m

Static friction [tex]\mu _s=0.521[/tex]

We have to find the maximum speed of car

We know that at maximum speed centripetal force will be equal to frictional force [tex]m\frac{v^2}{r}=\mu _srg[/tex]

[tex]v=\sqrt{\mu _srg}=\sqrt{0.521\times 82.3\times 9.8}=20.5m/sec[/tex]

So the maximum speed of car will be 20.5m/sec

Answer:20.51 m/s

Explanation:

Given

Mass of car(m)=1100 kg

radius of curve =82.3 m

coefficient of static friction([tex]\mu [/tex])=0.521

here centripetal force is provided by Friction Force

[tex]F_c(centripetal\ force)=\frac{mv^2}{r}[/tex]

Friction Force[tex]=\mu N[/tex]

where N=Normal reaction

[tex]\frac{mv^2}{r}=\mu N[/tex]

[tex]\frac{1100\times v^2}{82.3}=0.521\times 1100\times 9.81[/tex]

[tex]v^2=0.521\times 9.81\times 82.3[/tex]

[tex]v=\sqrt{420.63}=20.51 m/s [/tex]

Charge g is distributed in a spherically symmetric ball of radius a. (a) Evaluate the average volume charge density p. (b) Now assume p(r) is directly proportional to r. (i) Derive the formula for p(r) in terms of r, Q, and a. At what value of r does p(r)= ? [Ans: 340] (ii) Find q(r), and graph it.

Answers

Answer:

Explanation:

The volume of a sphere is:

V = 4/3 * π * a^3

The volume charge density would then be:

p = Q/V

p = 3*Q/(4 * π * a^3)

If the charge density depends on the radius:

p = f(r) = k * r

I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.

[tex]Q = \int\limits^{2*\pi}_0\int\limits^\pi_0  \int\limits^r_0 {k * r} \, dr * r*d\theta* r*d\phi[/tex]

[tex]Q = k *\int\limits^{2*\pi}_0\int\limits^\pi_0  \int\limits^r_0 {r^3} \, dr * d\theta* d\phi[/tex]

[tex]Q = k *\int\limits^{2*\pi}_0\int\limits^\pi_0 {\frac{r^4}{4}} \, d\theta* d\phi[/tex]

[tex]Q = k *\int\limits^{2*\pi}_0 {\frac{\pi r^4}{4}} \,  d\phi[/tex]

[tex]Q = \frac{\pi^2 r^4}{2}}[/tex]

Since p = k*r

Q = p*π^2*r^3 / 2

Then:

p(r) = 2*Q / (π^2*r^3)

A fireworks shell is accelerated from rest to a velocity of 55.0 m/s over a distance of 0.210 m. (a) How long (in s) did the acceleration last? s
(b) Calculate the acceleration (in m/s2). (Enter the magnitude.) m/s^2

Answers

Answer:

a) The acceleration took 0.0076s

b) The aceleration was of 7202.4 m/s^2

Explanation:

We need to use the formulas for acceleration movement in straight line that are:

(1) [tex]a = \frac{V}{t}[/tex]    and  (2)[tex]x=x_{0} +V_{0}t + \frac{1}{2} at^2[/tex]

Where

a = acceleration

V = Velocity reached

Vo = Initial velocity

t = time

x = distance

xo = initial distance.

We have the following information:

a = We want to find      V = 55.0 m/s      

Vo = 0m/s because it starts from rest       t = we want to find      

x = 0.210 m         xo= 0 m we beging in the point zero.

We have to variables in two equations, so we are going to replace in the second equation (2) the aceleration of the first one(1):

[tex]x=x_{0} +V_{0}t + \frac{1}{2} ( \frac{V}{t})t^2[/tex] We can cancel time because it is mutiplying and dividing the same factor so we have

[tex]x=x_{0} +V_{0}t + \frac{1}{2} Vt[/tex]    

In this equation we just have one variable that we don't know that is time, so first we are going to replace the values and after that clear time.

[tex]0.210=0 +0*t + \frac{1}{2} 55t[/tex]

[tex]0.210=27.5t[/tex]

[tex]\frac{0.21}{27.5} = t\\[/tex]

t = 0.0076s

a) The acceleration took 0.0076s

Now we replace in the (1) equation the values of time and velocity

[tex]a = \frac{V}{t}[/tex]

[tex]a = \frac{55}{0.0076}[/tex]

a = 7202.4 m/s^2

b) The aceleration was of 7202.4 m/s^2

Calculate the speed of a proton that has moved in a uniform electric field of 180.0 N/C from rest over a distance of 12.5-cm. Assume it began at rest.

Answers

Answer:

Given:

Electric field = 180 N/C

[tex]Force\ on\ proton = 1.6\times10^{-19} C[/tex]

[tex]Force\ on\ proton = 180\times1.6\times10^{-19} =288\times10^{-19} N[/tex]

[tex]Mass\ of\ proton = 1.673\times10^{-27} kg[/tex]

[tex]Acceleration of proton = \frac{force}{mass}[/tex]

[tex]Acceleration\ of\ proton = \frac{288\times10^{-19}}{1.673*10^{-27}} =172\times108 m/s^{2}[/tex]

Let the speed of proton be "x"

x = [tex]\sqrt{Acceleration}[/tex]

[tex]x = \sqrt{(2\times172\times108\times0.125)}=65602.2 m/s[/tex]

Answer:

the velocity of the proton is 65574.38 m/s

Explanation:

given,

uniform electric field = 180 N/C

Distance = 12.5 cm = 0.125 m

charge of proton = 1.6 × 10⁻¹⁹ C

force = E × q

         =180 ×  1.6 × 10⁻¹⁹

        F= 2.88 × 10⁻¹⁷ N

mass of proton = 1.673 × 10⁻²⁷ kg

acceleration =[tex]\dfrac{force}{mass}[/tex]

                     =[tex]\dfrac{2.88 \times 10^{-17}}{1.673\times 10^{-27}}[/tex]

                     =1.72 × 10¹⁰ m/s²

velocity = [tex]\sqrt{2\times 0.125 \times 1.72 \times 10^{10}}[/tex]

             =65574.38 m/s

hence , the velocity of the proton is 65574.38 m/s

A hot-air balloon has just lifted off and is rising at the constant rate of 2.0m/s. Suddenly one of the passengers realizes she has left her camera on the ground. A friend picks it up and tosses it straight upward with an initial speed of 12m/s. If the passenger is 2.5m above her friend when the camera is tossed, how high is she when the camera reaches her?

Answers

Final answer:

To find out how high the passenger is when the camera reaches her, we use kinematic equations, taking into account the initial speed of the camera, the constant rise speed of the passenger, and gravity's acceleration. The solution requires equating the displacements of both camera and passenger to solve for time and therefore the height.

Explanation:

A hot-air balloon is rising at a constant rate of 2.0m/s when a passenger's camera is tossed straight upward with an initial speed of 12m/s from a position 2.5m below her. To determine how high the passenger is when the camera reaches her, we can apply kinematic equations of motion, incorporating the constant acceleration due to gravity (approximately 9.81m/s² downwards).

For the camera: Its initial upward velocity is 12 m/s, and it is subject to gravity's acceleration. For the passenger: Rising at a constant 2.0 m/s, not accelerating since the rate is constant. Since the initial distance between them is 2.5 m, we need to calculate when the camera, starting from a lower point but moving faster, reaches the vertically moving passenger.

Using the formula s = ut + 0.5at² for both camera and passenger, where s is the displacement, u is initial velocity, a is acceleration, and t is time, we can set the equations equal to solve for t, then determine the height by applying it to the passenger's motion equation.

Due to the mathematical complexity and potential for variability in solving these equations, the exact numerical solution isn't presented here. However, the approach involves determining the time it takes for the camera to reach the same height as the passenger and using that to find her height at that moment.

Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a large toy rocket to the back of a sled and take the modified sled to a large, flat, snowy field. You ignite the rocket and observe that the sled accelerates from rest in the forward direction at a rate of 13.513.5 m/s2 for a time period of 3.503.50 s. After this time period, the rocket engine abruptly shuts off, and the sled subsequently undergoes a constant backward acceleration due to friction of 5.155.15 m/s2. After the rocket turns off, how much time does it take for the sled to come to a stop?

By the time the sled finally comes to a rest, how far has it traveled from its starting point?

Answers

1) 9.18 s

In the first part of the motion, the rocket accelerates at a rate of

[tex]a_1=13.5 m/s^2[/tex]

For a time period of

[tex]t_1=3.50 s[/tex]

So we can calculate the velocity of the rocket after this time period by using the SUVAT equation:

[tex]v_1=u+a_1t_1[/tex]

where u = 0 is the initial velocity of the rocket. Substituting a1 and t1,

[tex]v_1=(13.5)(3.50)=47.3 m/s[/tex]

In the second part of the motion, the rocket decelerates with a constant acceleration of

[tex]a_2 = -5.15 m/s^2[/tex]

Until it comes to a stop, to reach a final velocity of

[tex]v_2 = 0[/tex]

So we can use again the same equation

[tex]v_2 = v_1 + a_2 t_2[/tex]

where [tex]v_1 = 47.3 m/s[/tex]. Solving for t2, we find after how much time the rocket comes to a stop:

[tex]t_2 = -\frac{v_1}{a_2}=-\frac{47.3}{5.15}=9.18 s[/tex]

2) 299.9 m

We have to calculate the distance travelled by the rocket in each part of the motion.

The distance travelled in the first part is given by:

[tex]d_1 = ut_1 + \frac{1}{2}a_1 t_1^2[/tex]

Using the numbers found in part a),

[tex]d_1 = 0 + \frac{1}{2}(13.5) (3.50)^2=82.7 m[/tex]

The distance travelled in the second part of the motion is

[tex]d_2= v_1 t_2 + \frac{1}{2}a_2 t_2^2[/tex]

Using the numbers found in part a),

[tex]d_2 = (47.3)(9.18) + \frac{1}{2}(-5.15) (9.18)^2=217.2 m[/tex]

So, the total distance travelled by the rocket is

d = 82.7 m + 217.2 m = 299.9 m

A skiy diver, with parachute unopened, falls 625 m in 15.0s.
Then she opens her parachute and falls another 356 m in142 s. What
is her average velocity (both magnitude anddirection) for the
entire fall?

Answers

Answer:

average velocity = 6.25m/sec

Explanation:

given data:

for unopened

height = 625 m

time  = 15 sec

for opened

height = 356 m

time =  142 sec

Unopened:

[tex]V1 = \frac{625\ m}{15\ sec} = 41.67m/sec[/tex]

Opened:

[tex]V2 = \frac{356\ m}{142\ sec} = 2.51m/sec[/tex]

we know that

Total Average Velocity[tex] = \frac{Total\ distance}{Total\ time}[/tex]

average velocity[tex] = \frac{981\ m}{157\ sec}[/tex]

average velocity = 6.25m/sec

downward direction.

One end of a horizontal spring with force constant 130.0 N/m is attached to a vertical wall. A 3.00 kg block sitting on the floor is placed against the spring. The coefficient of kinetic friction between the block and the floor is μk = 0.400. You apply a constant force F⃗ to the block. F⃗ has magnitude 88.0 N and is directed 3 toward the wall. The spring is compressed 80.0 cm. (a) What is the speed of the block? (b) What is the magnitude of the block’s acceleration? (c) What is the direction of the block’s acceleration?

Answers

Final answer:

The speed of the block is 4.08 m/s, the magnitude of the block’s acceleration is 25.41 m/s^2, and the direction of the block’s acceleration is toward the wall.

Explanation:

(a) To find the speed of the block, we can use the principle of conservation of mechanical energy. The potential energy stored in the spring when it is compressed is converted into the kinetic energy of the block when it is released. The potential energy stored in the spring is given by:

PE = 0.5 * k * x^2

where k is the force constant of the spring and x is the compression of the spring. Plugging in the values, we get:

PE = 0.5 * 130.0 N/m * 0.80 m * 0.80 m = 41.60 J

The kinetic energy of the block when it is released is given by:

KE = 0.5 * m * v^2

where m is the mass of the block and v is its speed. Equating the potential and kinetic energies, we have:

PE = KE

41.60 J = 0.5 * 3.00 kg * v^2

Solving for v, we get:

v = √(41.60 J / (0.5 * 3.00 kg)) = 4.08 m/s

(b) The magnitude of the block's acceleration can be calculated using Newton's second law, which states that the net force acting on an object is equal to its mass multiplied by its acceleration. In this case, the net force is the force applied to the block minus the force of friction. The force applied to the block is given by F = 88.0 N. The force of friction can be calculated using the equation:

f = μk * m * g

where μk is the coefficient of kinetic friction, m is the mass of the block, and g is the acceleration due to gravity. Plugging in the values, we get:

f = 0.400 * 3.00 kg * 9.8 m/s^2 = 11.76 N

The net force is therefore:

net force = F - f = 88.0 N - 11.76 N = 76.24 N

Using Newton's second law, we have:

76.24 N = 3.00 kg * a

Solving for a, we get:

a = 76.24 N / 3.00 kg = 25.41 m/s^2

(c) The direction of the block's acceleration can be determined by considering the net force acting on the block. In this case, the applied force and the force of friction are in opposite directions, resulting in a net force in the direction of the applied force. Therefore, the direction of the block's acceleration is toward the wall.

A heat pump has a coefficient of performance that is 60% of the Carnot heat pump coefficient of performance. The heat pump is used to heat a home to 24.0°C during the winter with the low temperature reservoir at the outdoor temperature. At which outdoor temperature would it be more efficient to add the energy directly to the interior of the home than use it to run the heat pump? -154°C -40.0°C -4.00°C -83.4°C -25.2°C

Answers

Answer:[tex]T_L=-154.2^{\circ}[/tex]

Explanation:

Given

COP= 60 % of carnot heat pump

[tex]COP=\frac{60}{100}\times \frac{T_H}{T_H-T_L}[/tex]

For heat added directly to be as efficient as via heat pump

[tex]Q_s=W[/tex]

[tex]COP=\frac{Q_s}{W}=\frac{60}{100}\times \frac{T_H}{T_H-T_L}[/tex]

[tex]1=\frac{60}{100}\times \frac{T_H}{T_H-T_L}[/tex]

[tex]1=\frac{60}{100}\times \frac{24+273}{24+273-T_L}[/tex]

[tex]T_L=118.8 K[/tex]

[tex]T_L=-154.2^{\circ}[/tex]

A perfectly flexible cable has length L, and initially it is at rest with a length Xo of it hanging over the table edge. Neglecting friction, compute the length hanging over the table edge after an elapsed time t, assuming cable sections remain straight during the subsequent motion.

Answers

Answer:

[tex]X=X_o+\dfrac{1}{2}gt^2[/tex]

Explanation:

Given that

Length = L

At initial over hanging length = Xo

Lets take the length =X after time t

The velocity of length will become V

Now by energy conservation

[tex]\dfrac{1}{2}mV^2=mg(X-X_o)[/tex]

So

[tex]V=\sqrt{2g(X-X_o)}[/tex]

We know that

[tex]\dfrac{dX}{dt}=V[/tex]

[tex]\dfrac{dX}{dt}=\sqrt{2g(X-X_o)}[/tex]

[tex]\sqrt{2g}\ dt=(X-X_o)^{-\frac{1}{2}}dX[/tex]

At t= 0 ,X=Xo

So we can say that

[tex]X=X_o+\dfrac{1}{2}gt^2[/tex]

So the length of cable after time t

[tex]X=X_o+\dfrac{1}{2}gt^2[/tex]

A large asteroid of mass 33900 kg is at rest far away from any planets or stars. A much smaller asteroid, of mass 610 kg, is in a circular orbit about the first at a distance of 146 meters as a result of their mutual gravitational attraction. What is the speed of the second asteroid? Now suppose that the first and second asteroids carry charges of 1.18 C and -1.18 C, respectively. How fast would the second asteroid have to be moving in order to occupy the same circular orbit as before?

Answers

Answer:

a) 1.2*10^-4 m/s

b) 375 m/s

Explanation:

I assume the large asteroid doesn't move.

The smaller asteroid is affected by an acceleration determined by the universal gravitation law:

a = G * M / d^2

Where

G: universal gravitation constant (6.67*10^-11 m^3/(kg*s^2))

M: mass of the large asteroid (33900 kg)

d: distance between them (146 m)

Then:

a = 6.67*10^-11 * 33900 / 146^2 = 10^-10 m/s^2

I assume the asteroid in a circular orbit, in this case the centripetal acceleration is:

a = v^2/r

Rearranging:

v^2 = a * r

[tex]v = \sqrt{a * r}[/tex]

v = \sqrt{10^-10 * 146} = 1.2*10^-4 m/s

If the asteroids have electric charges of 1.18 C and -1.18 C there will be an electric force of:

F = 1/(4π*e0)*(q1*q2)/d^2

Where e0 is the electrical constant (8.85*10^-12 F/m)

F = 1/(4π*8.85*10^-12) (-1.18*1.18)/ 146^2 = -587 kN

On an asteroid witha mass of 610 kg this force causes an acceleration of:

F = m * a

a = F / m

a = 587000 / 610 = 962 m/s^2

With the electric acceleration, the gravitational one is negligible.

The speed is then:

v = \sqrt{962 * 146} = 375 m/s

A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of 5.70 x 10^5 m/s^2 for 9.60 x 10^−4 s. What is its muzzle velocity (in m/s) (that is, its final velocity)? (Enter the magnitude.)

Answers

Final answer:

To calculate the muzzle velocity, we use the equation for constant acceleration (v = u + at) with an initial velocity (u) of 0, the given acceleration (a) of 5.70 x 10^5 m/s^2, and the time (t) of 9.60 x 10^-4 s to find the final velocity (v), which is approximately 547 m/s.

Explanation:

The question concerns calculating the muzzle velocity of a bullet as it's accelerated from the firing chamber to the end of the barrel of a gun.

Using the formula v = u + at, where v is the final velocity, u is the initial velocity (which is zero before the gun is fired), a is the acceleration, and t is the time for which the acceleration is applied, we can find the muzzle velocity. The bullet experiences an acceleration (a) of 5.70 x 105 m/s2 for a time (t) of 9.60 x 10−4 seconds.

Plugging the values into the formula, we get:

v = 0 + (5.70 x 105 m/s2)(9.60 x 10−4 s)

v = 5.47 x 102 m/s

Therefore, the final muzzle velocity of the bullet as it leaves the barrel is approximately 547 m/s.

(a) With what speed must a ball be thrown vertically from ground level to rise to a maximum height of 52 m? (b) How long will it be in the air?

Answers

Explanation:

Maximum height reached by the ball, s = 52 m

Let u is the initial speed of the ball and v is the final speed of the ball, v = 0 because at maximum height the final speed goes to 0. We need to find u.

(a) The third equation of motion as :

[tex]v^2-u^2=2as[/tex]

Here, a = -g

[tex]0-u^2=-2gs[/tex]

[tex]u^2=2\times 9.8\times 52[/tex]

u = 31.92 m/s

(b) Let t is the time when the ball is in air. It is given by :

[tex]v=u+at[/tex]

[tex]u=gt[/tex]

[tex]t=\dfrac{31.92\ m/s}{9.8\ ms/^2}[/tex]

t = 3.25 seconds

Hence, this is the required solution.                                                                  

A muon has a kinetic energy equal to 4 times its rest energy of 105 MeV. (a) What is its velocity, in units of c?
(b) What is its momentum in energy units (i.e., units of MeV/c)?

Answers

Answer:

v = 0.9798*c

Explanation:

E0 = 105 MeV

The mass of a muon is

m = 1.78 * 10^-30 kg

The kinetic energy is:

[tex]Ek = \frac{E0}{\sqrt{1 - \frac{v^2}{c^2}}}-E0[/tex]

The kinetic energy is 4 times the rest energy.

[tex]4*E0 = \frac{E0}{\sqrt{1 - \frac{v^2}{c^2}}}-E0[/tex]

[tex]4 = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}-1[/tex]

[tex]5 = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}[/tex]

[tex]\sqrt{1 - \frac{v^2}{c^2}} = \frac{1}{5}[/tex]

[tex]1 - \frac{v^2}{c^2} = \frac{1}{25}[/tex]

v^2 / c^2 = 1 - 1/25

v^2 / c^2 = 24/25

v^2 = 24/25 * c^2

v = 0.9798*c

Leady oxide is a material that?s usually composed of A. 25% free lead and 75% lead oxide. B. 10% free lead and 90% lead oxide. C. 60% free lead and 40% lead oxide. D. 50% free lead and 50% lead oxide.

Answers

Answer:

option A is correct

25% free lead and 75% lead oxide

Explanation:

we have given free lead and lead oxide %

so here we know lead oxide material usually composed in the range of for free lead and lead oxide as

       

lead oxide material contain free lead range is 22 % to 38 %

so here we have only option 1 which contain in free lead in the range of 22 % to 38 % i.e 25 % free lead

so    

option A is correct

25% free lead and 75% lead oxide

Light is incident normally on two narrow parallel slits a distance of 1.00 mm apart. A screen is placed a distance of 1.2 m from the slits. The distance on the screen between the central maximum and the centre of the n=4 bright spot is measured to be 3.1 mm. a Determine the wavelength of light. b This experiment is repeated in water (of refractive index 1.33). Suggest how the distance of 3.1 mm would change, if at all.

Answers

Answer:

Explanation:

distance between slits d = 1 x 10⁻³ m

Screen distance D = 1.2 m

Wave length of light   = λ

Distance of n th bright fringe fro centre

= n λ D / d where n is order of bright fringe . Here n = 4

Given

3.1 x 10⁻³ = (4 x λ x 1.2) / 1 x 10⁻³

λ = 3.1 x 10⁻⁶ / 4.8

= .6458 x 10⁻⁶

6458 x 10⁻¹⁰m

λ= 6458 A.

The distance will reduce 1.33 times

New distance = 3.1 /1.33

= 2.33 mm.

A piano wire of length 2.5 m vibrates so that one-half wavelength is contained on the string. If the frequency of vibration is 35 Hz, the amplitude of vibration is 3.0 mm, and the density is 20 g/m, how much energy is transmitted per second down the wire?

Answers

Answer:

The energy transmitted per second down the wire is 0.761 watt.

Explanation:

Given that,

Length = 2.5 m

Amplitude = 3.0 mm

Density = 20 g/m

Frequency = 35 Hz

We need to calculate the wavelength

Using formula of wavelength

[tex]L = \dfrac{\lambda}{2}[/tex]

[tex]\lambda=2L[/tex]

Put the value into the formula

[tex]\lambda=2\times2.5[/tex]

[tex]\lambda=5\ m[/tex]

We need to calculate the speed

Using formula of speed

[tex]v = f\lambda[/tex]

Put the value into the formula

[tex]v =35\times5[/tex]

[tex]v =175\ m/s[/tex]

We need to calculate the energy is transmitted per second down the wire

Using formula of the energy is transmitted per second

[tex]P=\dfrac{1}{2}\mu A^2\omega^2\times v[/tex]

[tex]P=\dfrac{1}{2}\mu\times A^2\times(2\pi f)^2\times v[/tex]

Put the value into the formula

[tex]P=\dfrac{1}{2}\times20\times10^{-3}\times(3.0\times10^{-3})^2\times4\times\pi^2\times(35)^2\times175[/tex]

[tex]P=0.761\ watt[/tex]

Hence, The energy transmitted per second down the wire is 0.761 watt.

Hot air enters a rectangular duct (20cm wide, 25cm high, and 5m long) at 100 kPa and 60 degrees C at an average velocity of 5 m/s. While air flows the duct, it gets cool down (loses energy) so that air leave the duct at 54 degrees C. Determine the rate of heat loss from the air under steady condition

Answers

Answer:

1.57 kW

Explanation:

The rate of heat loss is given by:

q = Gm * Cp * (tfin - ti)

Where

q: rate of heat loss

Gm: mass flow

Cp: specific heat at constant pressure

The Cp of air is:

Cp = 1 kJ/(kg*K)

The mass flow is the volumetric flow divided by the specific volume

Gm = Gv / v

The volumetric flow is the air speed multiplied by the cruss section of the duct.

Gv = s * h * w (I name speed s because I have already used v)

The specific volume is obtained from the gas state equation:

p * v = R * T

60 C is 333 K

The gas constant for air is 287 J/(kg*K)

Then:

v = (R * T)/p

v = (287 * 333) / 100000 = 0.955 m^3/kg

Then, the mass flow is

Gm = s * h * w / v

And rthe heat loss is of:

q = s * h * w * Cp * (tfin - ti) / v

q = 5 * 0.25 * 0.2 * 1 * (54 - 60) / 0.955 = -1.57 kW (negative because it is a loss)

A monument has a height of 348 ft, 8 in. Express this height in meters. Answer in units of m.

Answers

Answer:

The height of mountain in meter will be 106.2732 m

Explanation:

We have given height of mountain = 348 ft,8 in

We know that 1 feet = 0.3048 meter

So 348 feet [tex]=348\times 0.3048=106.07meter[/tex]

And we know that 1 inch = 0.0254 meter

So 8 inch [tex]8\times 0.0254=0.2032m[/tex]

So the total height of mountain in meter = 106.07+0.2032 = 106.2732 m

The height of mountain in meter will be 106.2732 m

A 5.0 A current is set up in a circuit for 6.0 min by a rechargeable battery with a 6.0 V emf. By how much is the chemical energy of the battery reduced?

Answers

Answer:

The chemical energy of the battery was reduced in 10800J

Explanation:

The first thing to take into account is that the stored energy in a battery is in Watts per second or Joules ([tex]W\cdot s=J[/tex]). It means that the battery provides a power for a certain time.

The idea is to know how much [tex]W\cdot s[/tex] has been consumed by the circuit.

The first step is to know the power that is consumed by the circuit. It is [tex]P=V\cdot I[/tex]. The problem says that the circuit consumes a current of 5.0A with a voltage of 6.0V. It means that the power consumed is:

[tex]P=V\cdot I=(6.0V)\cdot (5.0A)=30W[/tex]

The previous value (30W) is the power that the circuit consumes.

Now, you must find the total amount of power that is consumed by the circuit in 6.0 minutes. You just have to multiply the power that the circuit consumed by the time it worked, it means, 6.0 minutes.

[tex]energy=P\cdot t=(30W)\cdot (6.0min)=180W\cdot min[/tex]

You must convert the minutes unit to seconds. Remember that 1 minute has 60 seconds.

[tex]energy=P\cdot t=(30W)\cdot (6.0min) \cdot \frac{60s}{1min}=10800W\cdot s=10800J[/tex]

Thus, the chemical energy of the battery was reduced in 10800J

A particle of charge Q is fixed at the origin of an xy coordinate system. At t = 0 a particle (m = 0.923 g, q = 4.52 µC is located on the x axis at x = 22.6 cm, moving with a speed of 45.7 m/s in the positive y direction. For what value of Q will the moving particle execute circular motion? (Neglect the gravitational force on the particle.)

Answers

Answer:

[tex]Q = -1.43\times 10^[-5} coulomb[/tex]

Explanation:

Given data:

particle mass =  0.923 g

particle charge is 4.52 micro C

speed of particle 45.7 m/s

In this particular case, coulomb attraction will cause centrifugal force and taken as +ve and Q is taken as -ve

[tex]-\frac{Qq}{4\pi \epsilon r^2} = \frac{mv^2}{r}[/tex]

solving for Q WE GET

[tex]Q = -\frac{mv^2}{r} \times r^2 \frac{4\pi \epsilon}{q}[/tex]

[tex]Q = -mv^2\times r \frac{4\pi \epsilon}{q}[/tex]

[tex]Q = - \frac{0.923\times 10^{-3} \times 45.7^2\times (22.6\times 10^{-2})} {4.52\times 10^{-6} \times 9\times 10^9}[/tex]

where[tex] \frac{1}{4\pi \epsilon} = 9\times 10^9[/tex]

[tex]Q = -1.43\times 10^[-5} coulomb[/tex]

Final answer:

To find the charge Q for circular motion, equate centripetal force m * v^2 / r with Coulomb's force k * |Q * q| / r^2, and solve for Q. Use m = 0.923 g, v = 45.7 m/s, q = 4.52 µC, and convert units accordingly.

Explanation:

To determine the value of charge Q that will allow the moving particle to execute circular motion, we use the concept of centripetal force. Centripetal force is the net force required to keep an object moving in a circle at a constant speed and is directed towards the center of the circle. For a charged particle moving in a circular path due to an electric force, the centripetal force is provided by the electric force between the charges.

The centripetal force (Fc) is equal to the mass (m) of the particle times the square of its speed (v) divided by the radius (r) of the circle:
Fc = m * v2 / r.
The electric force (Fe) acting on the particle is given by Coulomb's law:
Fe = k * |Q * q| / r2,
where k is Coulomb's constant (8.99 x 109 Nm2/C2), Q is the charge at the origin, q is the charge of the moving particle, and r is the separation between the charges.

Setting the centripetal force equal to the electric force yields:
m * v2 / r = k * |Q * q| / r2,
Solving for Q gives us:
Q = m * v2 / (k * q).

Plugging in the values:
Q = (0.923 g * 45.7 m/s2) / (8.99 x 109 Nm2/C2 * 4.52 µC)
Remembering to convert grams to kilograms and microcoulombs to coulombs, the final calculation will yield the required charge Q for circular motion.

Q = 1.03 mC

When a honeybee flies through the air, it develops a charge of +20 pC . Part A How many electrons did it lose in the process of acquiring this charge? Express your answer as a number of electrons.

Answers

The number of electrons lost by the by the honeybee in acquiring the charge of +20 pC is;

n = 1.25 × 10^(8) electrons

We are given;

Charge of honeybee; Q = 20 pC = 20 × 10^(-12) C

Now, formula for number of electrons is;

n = Q/e

Where;

e is charge on electron = 1.6 × 10^(-19) C

Thus;

n = (20 × 10^(-12))/(1.6 × 10^(-19))

n = 1.25 × 10^(8) electrons

Read more at; https://brainly.com/question/14653647

Two 3.5-cm-diameter disks face each other, 2.0 mm apart. They are charged to ± 11 nC . a) What is the electric field strength between the disks?
Express your answer in newtons per coulomb.

b) A proton is shot from the negative disk toward the positive disk. What launch speed must the proton have to just barely reach the positive disk?
Express your answer in meters per second.

Answers

Answer:

a) 1.29*10^6 N/C

b) 0.703 *10^6 m/s

Explanation:

This is a parallel plates capacitor. In a parallel plates capacitor the electric field depends on the charge of the disks, its area and the vacuum permisivity (Assuming there is no dielectric) and can be found using the expression:

[tex]E = \frac{Q}{A*e_0} =\frac{11*10^{-9}C}{(\frac{1}{4}\pi*(0.035m)^2)*8.85*10^{-12}C^2/Nm^2} = 1.29 *10^6 N/C[/tex]

For the second part, we use conservation of energy. The change in kinetic energy must be equal to the change in potential energy. The potential energy is given by:

[tex]PE = V*q[/tex]

V is the electric potential or voltage, q is the charge of the proton. The electric potential is equal to:

[tex]V = -E*d[/tex]

Where d is the distance to the positive disk. Then:

[tex]\frac{1}{2}mv_1^2 +V_1q = \frac{1}{2}mv_2^2 +V_2q\\\frac{1}{2}m(v_1^2 - v_2^2)=(V_2-V_1)q = (r_1-r_2)Eq|r_2 = 0m, v_2=0m/s\\v_1 = \sqrt{2\frac{(0.002m)*1.29*10^6 N/C*1.6*10^{-19}C}{1.67*10^{-27}kg}}= 0.703 *10^6 m/s[/tex]

Other Questions
Which statements below are an appropriate hypothesis in response to this question? Check all that apply. If a substance changes state of matter (e.g., liquid to gas), then this is a physical change because the original properties of the substance have not changed. If a substance undergoes a physical change, then it will retain most of its original properties because no new substance is formed. If a substance undergoes a chemical change, then it will not retain its original properties because a new substance is formed. If a precipitate is formed when two substances are mixed, then a chemical change has taken place because precipitates are new substances. The state of Texas used to experience large-scale booms and busts related to price fluctuations within the petrochemical industry. Recently, however, the business climate has attracted many different types of companies to the state, and, as a result, the state has experienced _________ that has allowed other industries to take a more prominent role in Texas's economy. What is sound advice for people becoming better listeners?People should show appreciation for what the speaker is saying.People should pay attention to what the person is actually saying, not to what his or her actions and voice are implying.People should offer advice only when it is actionable and applicable.People should use their own words when restating the speakers message for understanding. Chemical digestion of carbohydrates and lipids begins in the ____________, while chemical digestion of proteins begins in the _____________. What's the difference between blocked and partially blocked choking? How do you care for each? What is a theme of the story "Charles"?A : Facing the truth can sometimes be hard to accept.B : Lessons learned can lead to transformation.C : Parents don't always see who their children truly are.D : Parents are often the first to recognize their children's flaws. find the area of a circle with a circumference of 37.68 units A number of b divided by -3 is greater than or equal to 6 What is the wavelength of radiation that has a frequencyof6.912 x 10-14 s-1? Soil pollution can result in dangerous levels of silver.Please select the best answer from the choices provided.TF Who was Justinian I? Calculate: 3 pounds (lbs) =grams (g) Which is the limiting reagent in the following reaction given that you start with 15.5 g of Na2S and 12.1 g CuSO4? Reaction: Na2S + CuSO4 Na2SO4 + CuS A) Na2S B) CuSO4 C) Na2SO4 D) CuS E) not enough information a certain fish can swim 6 1/2 times faster than a person. if a person can swim 5 4/7 miles per hour, how fast can the fish swim? least to greatest 2/3, 3/5, 13/15, 2/5 explain the events of the Restoration and their effect on the American colonies. I just need enough info to write my answer Draw a diagram that shows 0.27+0.23= 1/2 Write the correct present perfect verb form in the following sentences:1. We?______(study) for the exam for a week.2. Since last week, he _____(write) five pages of his novel.3. She_____(fall) many times since she started Rollerblading.4. For many weeks, the jury_____(hear) testimony.5. Since last year, Carl______. (feel) happy at work.6. Michelle______- (sleep) late since she was a teenager. Ken Young and Kim Sherwood organized Reader Direct as a corporation; each contributed $55,000 cash to start the business and received 4,000 shares of stock. The store completed its first year of operations on December 31, 2017. On that date, the following financial items for the year were determined: cash on hand and in the bank, $50,500; amounts due from customers from sales of books, $28,500; equipment, $54,000; amounts owed to publishers for books purchased, $9,000; one-year notes payable to a local bank for $5,250. No dividends were declared or paid to the stockholders during the year. Assuming that Reader Direct generates net income of $6,000 and pays dividends of $3,600 in 2018, what would be the ending Retained Earnings balance at December 31, 2018? This is the problem I have been given, and I've gotten to this point. I am just very confused on the Ending RE and Beginning RE. So far I have ENDING RE = BEG RE + Net Income- Dividends ________ = _______ + 6,000 - 3,600 Which groups provided most of the labor for the construction of the transcontinental railroad? plz ANWSER QUICK PLZ Factory workers and homesteadersNative Americans and TexansFreemasons and Union veteransImmigrants and African AmericansPrevious