A 50-lbm iron casting, initially at 700o F, is quenched in a tank filled with 2121 lbm of oil, initially at 80o F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lbm o R, and 0.45 Btu/lbm o R, respectively. For the iron casting and oil as the system, determine: a) The final equilibrium temperature (o F) b) The total entropy change for this process (Btu/ o R) (Hint: Total entropy change is the sum of entropy change of iron casting and oil.)

Answers

Answer 1

Answer:

a) The final equilibrium temperature is 83.23°F

b) The entropy production within the system is 1.9 Btu/°R

Explanation:

See attached workings

A 50-lbm Iron Casting, Initially At 700o F, Is Quenched In A Tank Filled With 2121 Lbm Of Oil, Initially
A 50-lbm Iron Casting, Initially At 700o F, Is Quenched In A Tank Filled With 2121 Lbm Of Oil, Initially
Answer 2

a) Equilibrium temp. ≈ 77.01°F.

b) Total entropy change ≈ 104.58 Btu/°R.

To solve this problem, we can apply the principle of energy conservation and the definition of entropy change.

a) The final equilibrium temperature can be found using the principle of energy conservation, which states that the heat lost by the hot object (iron casting) equals the heat gained by the cold object (oil) during the process.

The equation for energy conservation is:

[tex]\[ m_{\text{iron}} \times C_{\text{iron}} \times (T_{\text{final}} - T_{\text{initial, iron}}) = m_{\text{oil}} \times C_{\text{oil}} \times (T_{\text{final}} - T_{\text{initial, oil}}) \][/tex]

Where:

- [tex]\( m_{\text{iron}} \)[/tex] = mass of iron casting = 50 lbm

- [tex]\( C_{\text{iron}} \)[/tex] = specific heat of iron casting = 0.10 Btu/lbm °R

- [tex]\( T_{\text{initial, iron}} \)[/tex] = initial temperature of iron casting = 700 °F

- [tex]\( m_{\text{oil}} \)[/tex] = mass of oil = 2121 lbm

- [tex]\( C_{\text{oil}} \)[/tex] = specific heat of oil = 0.45 Btu/lbm °R

- [tex]\( T_{\text{initial, oil}} \)[/tex] = initial temperature of oil = 80 °F

- [tex]\( T_{\text{final}} \)[/tex] = final equilibrium temperature (unknown)

Now, let's solve for [tex]\( T_{\text{final}} \)[/tex]:

[tex]\[ 50 \times 0.10 \times (T_{\text{final}} - 700) = 2121 \times 0.45 \times (T_{\text{final}} - 80) \][/tex]

[tex]\[ 5(T_{\text{final}} - 700) = 954.45(T_{\text{final}} - 80) \][/tex]

[tex]\[ 5T_{\text{final}} - 3500 = 954.45T_{\text{final}} - 76356 \][/tex]

[tex]\[ 0 = 949.45T_{\text{final}} - 72856 \][/tex]

[tex]\[ T_{\text{final}} = \frac{72856}{949.45} \][/tex]

[tex]\[ T_{\text{final}} \approx 77.01 \, ^\circ F \][/tex]

So, the final equilibrium temperature is approximately [tex]\( 77.01 \, ^\circ F \).[/tex]

b) The total entropy change for the process can be calculated using the formula:

[tex]\[ \Delta S = \Delta S_{\text{iron}} + \Delta S_{\text{oil}} \][/tex]

Where:

- [tex]\( \Delta S_{\text{iron}} = \frac{Q_{\text{iron}}}{T_{\text{initial, iron}}} \)[/tex]

- [tex]\( \Delta S_{\text{oil}} = \frac{Q_{\text{oil}}}{T_{\text{initial, oil}}} \)[/tex]

- [tex]\( Q_{\text{iron}} \) = heat lost by the iron casting[/tex]

- [tex]\( Q_{\text{oil}} \) = heat gained by the oil[/tex]

Let's calculate:

[tex]\[ Q_{\text{iron}} = m_{\text{iron}} \times C_{\text{iron}} \times (T_{\text{final}} - T_{\text{initial, iron}}) \][/tex]

[tex]\[ Q_{\text{iron}} = 50 \times 0.10 \times (77.01 - 700) \][/tex]

[tex]\[ Q_{\text{iron}} \approx -3175.495 \, \text{Btu} \][/tex]

[tex]\[ Q_{\text{oil}} = m_{\text{oil}} \times C_{\text{oil}} \times (T_{\text{final}} - T_{\text{initial, oil}}) \][/tex]

[tex]\[ Q_{\text{oil}} = 2121 \times 0.45 \times (77.01 - 80) \][/tex]

[tex]\[ Q_{\text{oil}} \approx 8729.535 \, \text{Btu} \][/tex]

Now, calculate entropy changes:

[tex]\[ \Delta S_{\text{iron}} = \frac{-3175.495}{700} \][/tex]

[tex]\[ \Delta S_{\text{iron}} \approx -4.5364 \, \text{Btu/°R} \][/tex]

[tex]\[ \Delta S_{\text{oil}} = \frac{8729.535}{80} \][/tex]

[tex]\[ \Delta S_{\text{oil}} \approx 109.118 \, \text{Btu/°R} \][/tex]

[tex]\[ \Delta S = -4.5364 + 109.118 \][/tex]

[tex]\[ \Delta S \approx 104.5816 \, \text{Btu/°R} \][/tex]

So, the total entropy change for this process is approximately [tex]\( 104.5816 \, \text{Btu/°R} \).[/tex]


Related Questions

A pump is used to deliver water from a lake to an elevated storage tank. The pipe network consists of 1,800 ft (equivalent length) of 8-in. pipe (Hazen-Williams roughness coefficient = 120). Ignore minor losses. The pump discharge rate is 600 gpm. The friction loss (ft) is most nearly Group of answer choicesA. 15
B. 33
C. 106
D. 135

Answers

Answer:

h_f = 15 ft, so option A is correct

Explanation:

The formula for head loss is given by;

h_f = [10.44•L•Q^(1.85)]/(C^(1.85))•D^(4.8655))

Where;

h_f is head loss due to friction in ft

L is length of pipe in ft

Q is flow rate of water in gpm

C is hazen Williams constant

D is diameter of pipe in inches

We are given;

L = 1,800 ft

Q = 600 gpm

C = 120

D = 8 inches

So, plugging in these values into the equation, we have;

h_f = [10.44*1800*600^(1.85)]/(120^(1.85))*8^(4.8655))

h_f = 14.896 ft.

So, h_f is approximately 15 ft

Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.5 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30°C and exits at 60°C. The ideal gas model with 1.005 kJ/kg · K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of the entering steam, in °C, and for the overall heat exchanger as the control volume, what is the rate of heat transfer, in kW.

Answers

Answer:

1.12kw is the heat transfer

Explanation:

Kinetic energy is the energy an object has because of its motion. If we want to accelerate an object, then we must apply a force.

Potential energy, stored energy that depends upon the relative position of various parts of a system.

See attachment for the step by step solution.

Five Kilograms of continuous boron fibers are introduced in a unidirectional orientation into of an 8kg aluminum matrix. Calculate:

a. the density of the composite.
b. the modulus of elasticity parallel to the fibers.
c. the modulus of elasticity perpendicular to the fibers.

Answers

Answer:

Explanation:

Given that,

Mass of boron fiber in unidirectional orientation

Mb = 5kg = 5000g

Mass of aluminum fiber in unidirectional orientation

Ma = 8kg = 8000g

A. Density of the composite

Applying rule of mixing

ρc = 1•ρ1 + 2•ρ2

Where

ρc = density of composite

1 = Volume fraction of Boron

ρ1 = density composite of Boron

2 = Volume fraction of Aluminum

ρ2 = density composite of Aluminum

ρ1 = 2.36 g/cm³ constant

ρ2 = 2.7 g/cm³ constant

To Calculate fractional volume of Boron

1 = Vb / ( Vb + Va)

Vb = Volume of boron

Va = Volume of aluminium

Also

To Calculate fraction volume of aluminum

2= Va / ( Vb + Va)

So, we need to get Va and Vb

From density formula

density = mass / Volume

ρ1 = Mb / Vb

Vb = Mb / ρ1

Vb = 5000 / 2.36

Vb = 2118.64 cm³

Also ρ2 = Ma / Va

Va = Ma / ρ2

Va = 8000 / 2.7

Va = 2962.96 cm³

So,

1 = Vb / ( Vb + Va)

1 = 2118.64 / ( 2118.64 + 2962.96)

1 = 0.417

Also,

2= Va / ( Vb + Va)

2 = 2962.96 / ( 2118.64 + 2962.96)

2 = 0.583

Then, we have all the data needed

ρc = 1•ρ1 + 2•ρ2

ρc = 0.417 × 2.36 + 0.583 × 2.7

ρc = 2.56 g/cm³

The density of the composite is 2.56g/cm³

B. Modulus of elasticity parallel to the fibers

Modulus of elasticity is defined at the ratio of shear stress to shear strain

The relation for modulus of elasticity is given as

Ec = = 1•Eb+ 2•Ea

Ea = Elasticity of aluminium

Eb = Elasticity of Boron

Ec = Modulus of elasticity parallel to the fiber

Where modulus of elastic of aluminum is

Ea = 69 × 10³ MPa

Modulus of elastic of boron is

Eb = 450 × 10³ Mpa

Then,

Ec = = 1•Eb+ 2•Ea

Ec = 0.417 × 450 × 10³ + 0.583 × 69 × 10³

Ec = 227.877 × 10³ MPa

Ec ≈ 228 × 10³ MPa

The Modulus of elasticity parallel to the fiber is 227.877 × 10³MPa

OR Ec = 227.877 GPa

Ec ≈ 228GPa

C. modulus of elasticity perpendicular to the fibers?

The relation of modulus of elasticity perpendicular to the fibers is

1 / Ec = 1 / Eb+ 2 / Ea

1 / Ec = 0.417 / 450 × 10³ + 0.583 / 69 × 10³

1 / Ec = 9.267 × 10^-7 + 8.449 ×10^-6

1 / Ec = 9.376 × 10^-6

Taking reciprocal

Ec = 106.66 × 10^3 Mpa

Ec ≈ 107 × 10^3 MPa

Note that the unit of Modulus has been in MPa,

10. Develop a logic circuit called "Simple Multiples." This circuit accepts 4 bits that represent a BCD number. It has three outputs:

• A HIGH on output X indicates that the number is a multiple of 2
• A HIGH on output Y indicates that the number is a multiple of 3
• A HIGH on output Z indicates that the number is a multiple of both 2 and 3 *0 counts as a multiple for all of these

Create a truth table for this circuit

Answers

Answer:

Explanation:

"Simple Multiples Logic Circuit Development"

From the attached file below;

The first diagram illustrate the truth table. The input consist of binary coded decimal with  its 16  possible output. As stated in the input, assuming we have 0010 which the value is 2, thus ; it is said to be divisible by 2 , then we enter the output of x  to be 1 and the remaining as zeros

The second diagram talks about the output x; the representation of x is 1 there and it was added up. The use case employed is  [tex]x + \bar {x} =1[/tex] which in turn yield output [tex]\bar {A3}[/tex]

The second to the last diagram represents output Y and Z.

As output Y can be further disintegrated ; we insert XNOR gate for the expressions. The expression is  [tex]a.b+(\bar{a}. \bar{b})[/tex]

The last diagram is the logic diagram.

16.44 Lab 13D: Student Scores with Files and Functions Overview Create a program that reads from multiple input files and calls a user-defined function. Objectives Gain familiarity with CSV files Perform calculations with data from CSV files Create a user-defined function Read from multiple files in the same program

Answers

Answer:

See Explaination

Explanation:

# copy the function you have this is just for my convenniece

def finalGrade(scoresList):

weights = [0.05, 0.05, 0.40, 0.50]

grade = 0

for i in range(len(scoresList)):

grade += float(scoresList[i]) * weights[i]

return grade

import csv

def main():

with open('something.csv', newline='') as csvfile:

spamreader = csv.reader(csvfile, delimiter=',', quotechar='|')

file = open('something.txt')

for row in spamreader:

student = file.readline().strip()

scores = row

print(student, finalGrade(scores))

if __name__ == "__main__":

main()

More discussion about seriesConnect(Ohm) function In your main(), first, construct the first circuit object, called ckt1, using the class defined above. Use a loop to call setOneResistance() function to populate several resistors. Repeat the process for another circuit called ckt2. Develop a member function called seriesConnect() such that ckt2 can be connected to ckt1 using instruction ckt1.seriesConnect(ckt2).

Answers

Answer:

resistor.h

//circuit class template

#ifndef TEST_H

#define TEST_H

#include<iostream>

#include<string>

#include<vector>

#include<cstdlib>

#include<ctime>

#include<cmath>

using namespace std;

//Node for a resistor

struct node {

  string name;

  double resistance;

  double voltage_across;

  double power_across;

};

//Create a class Ohms

class Ohms {

//Attributes of class

private:

  vector<node> resistors;

  double voltage;

  double current;

//Member functions

public:

  //Default constructor

  Ohms();

  //Parameterized constructor

  Ohms(double);

  //Mutator for volatage

  void setVoltage(double);

  //Set a resistance

  bool setOneResistance(string, double);

  //Accessor for voltage

  double getVoltage();

  //Accessor for current

  double getCurrent();

  //Accessor for a resistor

  vector<node> getNode();

  //Sum of resistance

  double sumResist();

  //Calculate current

  bool calcCurrent();

  //Calculate voltage across

  bool calcVoltageAcross();

  //Calculate power across

  bool calcPowerAcross();

  //Calculate total power

  double calcTotalPower();

  //Display total

  void displayTotal();

  //Series connect check

  bool seriesConnect(Ohms);

  //Series connect check

  bool seriesConnect(vector<Ohms>&);

  //Overload operator

  bool operator<(Ohms);

};

#endif // !TEST_H

resistor.cpp

//Implementation of resistor.h

#include "resistor.h"

//Default constructor,set voltage 0

Ohms::Ohms() {

  voltage = 0;

}

//Parameterized constructor, set voltage as passed voltage

Ohms::Ohms(double volt) {

  voltage = volt;

}

//Mutator for volatage,set voltage as passed voltage

void Ohms::setVoltage(double volt) {

  voltage = volt;

}

//Set a resistance

bool Ohms::setOneResistance(string name, double resistance) {

  if (resistance <= 0){

      return false;

  }

  node n;

  n.name = name;

  n.resistance = resistance;

  resistors.push_back(n);

  return true;

}

//Accessor for voltage

double Ohms::getVoltage() {

  return voltage;

}

//Accessor for current

double Ohms::getCurrent() {

  return current;

}

//Accessor for a resistor

vector<node> Ohms::getNode() {

  return resistors;

}

//Sum of resistance

double Ohms::sumResist() {

  double total = 0;

  for (int i = 0; i < resistors.size(); i++) {

      total += resistors[i].resistance;

  }

  return total;

}

//Calculate current

bool Ohms::calcCurrent() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  current = voltage / sumResist();

  return true;

}

//Calculate voltage across

bool Ohms::calcVoltageAcross() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  double voltAcross = 0;

  for (int i = 0; i < resistors.size(); i++) {

      voltAcross += resistors[i].voltage_across;

  }

  return true;

}

//Calculate power across

bool Ohms::calcPowerAcross() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  double powerAcross = 0;

  for (int i = 0; i < resistors.size(); i++) {

      powerAcross += resistors[i].power_across;

  }

  return true;

}

//Calculate total power

double Ohms::calcTotalPower() {

  calcCurrent();

  return voltage * current;

}

//Display total

void Ohms::displayTotal() {

  for (int i = 0; i < resistors.size(); i++) {

      cout << "ResistorName: " << resistors[i].name << ", Resistance: " << resistors[i].resistance

          << ", Voltage_Across: " << resistors[i].voltage_across << ", Power_Across: " << resistors[i].power_across << endl;

  }

}

//Series connect check

bool Ohms::seriesConnect(Ohms ohms) {

  if (ohms.getNode().size() == 0) {

      return false;

  }

  vector<node> temp = ohms.getNode();

  for (int i = 0; i < temp.size(); i++) {

      this->resistors.push_back(temp[i]);

  }

  return true;

}

//Series connect check

bool Ohms::seriesConnect(vector<Ohms>&ohms) {

  if (ohms.size() == 0) {

      return false;

  }

  for (int i = 0; i < ohms.size(); i++) {

      this->seriesConnect(ohms[i]);

  }

  return true;

}

//Overload operator

bool Ohms::operator<(Ohms ohms) {

  if (ohms.getNode().size() == 0) {

      return false;

  }

  if (this->sumResist() < ohms.sumResist()) {

      return true;

  }

  return false;

}

main.cpp

#include "resistor.h"

int main()

{

   //Set circuit voltage

  Ohms ckt1(100);

  //Loop to set resistors in circuit

  int i = 0;

  string name;

  double resistance;

  while (i < 3) {

      cout << "Enter resistor name: ";

      cin >> name;

      cout << "Enter resistance of circuit: ";

      cin >> resistance;

      //Set one resistance

      ckt1.setOneResistance(name, resistance);

      cin.ignore();

      i++;

  }

  //calculate totalpower and power consumption

  cout << "Total power consumption = " << ckt1.calcTotalPower() << endl;

  return 0;

}

Output

Enter resistor name: R1

Enter resistance of circuit: 2.5

Enter resistor name: R2

Enter resistance of circuit: 1.6

Enter resistor name: R3

Enter resistance of circuit: 1.2

Total power consumption = 1886.79

Explanation:

Note

Please add all member function details.Its difficult to figure out what each function meant to be.

I have a signal that is experiencing 60 Hz line noise from a nearby piece of equipment, and I want to make sure that the noise is filtered out. I expect that there might be useful information at frequencies higher and lower than 60 Hz. Which would be the best type of filter for this purpose?

a. BandStop filter
b. Low-pass filter
c. Bandpass filter
d. High-pass filter

Answers

Answer:

a. BandStop filter

Explanation:

A band-stop filter or band-rejection filter is a filter that eliminates at its output all the signals that have a frequency between a lower cutoff frequency and a higher cutoff frequency. They can be implemented in various ways.  One of them is to implement a notch filter, which is characterized by rejecting a certain frequency that is interfering with a circuit. The transfer function of this filter is given by:

[tex]H(s)=\frac{s^2+\omega_o^2}{s^2+\omega_cs+\omega_o^2} \\\\Where:\\\\\omega_o=Central\hspace{3} rejected\hspace{3} frequency\\\omega_c=Width\hspace{3} of\hspace{3} the\hspace{3} rejected\hspace{3} band[/tex]

I attached you a graph in which you can see how the filter works.

Water flows at a rate of 0.040 m3 /s in a horizontal pipe whose diameter is reduced from 15 cm to 8 cm by a reducer. If the pressure at the centerline is measured to be 480 kPa and 440 kPa before and after the reducer, respectively, determine the irreversible head loss in the reducer. Take the kinetic energy correction factors to be 1.05. Answer: 0.963 m

Answers

Answer:

hL = 0.9627 m

Explanation:

Given

Q = 0.040 m³/s (constant value)

D₁ = 15 cm = 0.15 m  ⇒  R₁ = D₁/2 = 0.15 m/2 = 0.075 m

D₂ = 8 cm = 0.08 m  ⇒  R₂ = D₂/2 = 0.08 m/2 = 0.04 m

P₁ = 480 kPa = 480*10³Pa

P₂ = 440 kPa = 440*10³Pa

α = 1.05

ρ = 1000 Kg/m³

g = 9.81 m/s²

h₁ = h₂

hL = ?  (the irreversible head loss in the reducer)

Using the formula Q = v*A   ⇒  v = Q/A

we can find the velocities v₁ and v₂ as follows

v₁ = Q/A₁ = Q/(π*R₁²) = (0.040 m³/s)/(π*(0.075 m)²) = 2.2635 m/s

v₂ = Q/A₂ = Q/(π*R₂²) = (0.040 m³/s)/(π*(0.04 m)²) = 7.9577 m/s

Then we apply the Bernoulli law (for an incompressible flow)

(P₂/(ρ*g)) + (α*v₂²/(2*g)) + h₂ = (P₁/(ρ*g)) + (α*v₁²/(2*g)) + h₁ - hL

Since h₁ = h₂ we obtain

(P₂/(ρ*g)) + (α*v₂²/(2*g)) = (P₁/(ρ*g)) + (α*v₁²/(2*g)) - hL

⇒  hL = ((P₁-P₂)/(ρ*g)) + (α/(2*g))*(v₁²-v₂²)

⇒  hL = ((480*10³Pa-440*10³Pa)/(1000 Kg/m³*9.81 m/s²)) + (1.05/(2*9.81 m/s²))*((2.2635 m/s)²-(7.9577 m/s)²)

⇒  hL = 0.9627 m

Consider a drainage basin having 60% soil group A and 40% soil group B. Five years ago the land use pattern in the basin was ½ wooded area with poor cover and ½ cultivated land (row crops/contoured and terraces) with good conservation treatment. Now the land use has been changed to 1/3 wooded area with poor cover, 1/3 cultivated land (row crops/contoured and terraces) with good conservation treatment, and 1/3 commercial and business area.

(a) Estimate the increased runoff volume during the dormant season due to the land use change over the past 5-year period for a storm of 35 cm total depth under the dry antecedent moisture condition (AMC I). This storm depth corresponds to a duration of 6-hr and 100-year return period. The total 5-day antecedent rainfall amount is 30 mm. (Note: 1 in = 25.4 mm.)
(b) Under the present watershed land use pattern, find the effective rainfall hyetograph (in cm/hr) for the following storm event using SCS method under the dry antecedent moisture condition (AMC I).

Answers

Answer:

Please see the attached file for the complete answer.

Explanation:

A turbojet aircraft is flying with a velocity of 280 m/s at an altitude of 9150 m, where the ambient conditions are 32 kPa and -32C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1100 K. Air enters the compressor at a rate of 50 kg/s, and the jet fuel has a heating value of 42,700 kJ/kg. Assume constant specific heats for air at room temperature. Efficiency of the compressor is 80%, efficiency of the turbine is 85%. Assume air leaves diffuser with negligibly small velocity.
determine
(a) The velocity of the exhaust gases.
(b) The rate of fuel consumption.

Answers

Answer:

(a) The velocity of the exhaust gases. is 832.7 m/s

(b) The rate of fuel consumption is 0.6243 kg/s

Explanation:

For the given turbojet engine operating on an ideal cycle, the pressure ,temperature, velocity, and specific enthalpy of air at [tex]i^{th}[/tex] state are [tex]P_i[/tex] , [tex]T_i[/tex] , [tex]V_i[/tex] , and [tex]h_i[/tex] , respectively.

Use "ideal-gas specific heats of various common gases" to find the properties of air at room temperature.

Specific heat at constant pressure, [tex]c_p[/tex] = 1.005 kJ/kg.K

Specific heat ratio, k = 1.4

A PMDC machine is measured to va120Vdc, ia 5.5A at the electrical terminals and the shaft is measured to have Tmech 5.5Nm, ns1200RPM. State whether the machine acting as a motor or a generator and state the efficiency of the system. Q11. Motor, 89.4 %(a) Generator, 89.4%(b) Motor, 95.5%(c) Generator, 95.5 %(d) none of the abov

Answers

Answer:

(c) Generator, 95.5 %

Explanation:

given data

voltage va = 120V

current Ia = - 5.5 A

Tmech =  5.5Nm

ns = 1200 RPM

solution

first we get here electric input power that is express as

electric input power = va × Ia    ......1

put here value and we get

electric input power = 120 × -5-5

electric input power -660 W

here negative mean it generate power

and here

Pin ( mech) will be

Pin ( mech) = Tl × ω   .........2

Pin ( mech) = 5.5 × [tex]\frac{2\pi N}{60}[/tex]    

Pin ( mech) =  5.5 × [tex]\frac{2\pi 1200}{60}[/tex]  

Pin ( mech) = 691.150 W

and

efficiency will be here as

efficiency = [tex]\frac{660}{691.150}[/tex]    

efficiency = 95.5 %

so correct option is (c) Generator, 95.5 %

A preheater involves the use of condensing steam at 100o C on the inside of a bank of tubes to heat air that enters at I atm and 25o C. The air moves at 5 m/s in cross flow over the tubes. Each tube is 1 m long and has an outside diameter of 10 mm. The bank consists of 196 tubes in a square, aligned array for which ST = SL = 15 mm. What is the total rate of heat transfer to the air? What is the pressure drop associated with the airflow?

(b) Repeat the analysis of part (a), but assume that the tubes have a staggered arrangement with ST = 15 mm and SL = 10 mm.

Answers

Answer:

Please see the attached file for the complete answer.

Explanation:

8 A static load test has been conducted on a 60 ft long, 16 in square reinforced concrete pile which has been driven from a barge through 20 ft of water, then 31 ft into the underlying soil. Telltale rods A and B have been embedded at points 30 ft and 59 ft from the top of the pile, respectively. The data recorded at failure was as follows: Load at head = 139,220 lb, settlement at head = 1.211 in, settlement of telltale rod A = 1.166 in,settlement of telltale rod B = 1.141 in. Use the data from telltale rod A to compute the modulus of elasticity of the pile, then use this value and the remaining data to compute q′n and the average fn value.

Answers

Answer:

Modulus of Elasticity = 4.350×10⁶ lb/in²

q'n = 60.33 lb/in²

Side friction = 6.372 lb/in²

Explanation:

See workings in picture below.

A system executes a power cycle while receiving 1000 kJ by heat transfer at a temperature of 500 K and discharging 700 kJ by heat transfer at a temperature of 300 K. There are no other heat transfers. Determine the cycle efficiency. Use the Clausius Inequality to determine , in kJ/K. Determine if this cycle is internally reversible, irreversible, or impossible.

Answers

Answer:

[tex]\eta_{th} = 30\,\%[/tex], [tex]\eta_{th,max} = 40\,\%[/tex], [tex]\Delta S = \frac{1}{3}\,\frac{kJ}{K}[/tex], The cycle is irreversible.

Explanation:

The real cycle efficiency is:

[tex]\eta_{th} = \frac{1000\,kJ-700\,kJ}{1000\,kJ} \times 100\,\%[/tex]

[tex]\eta_{th} = 30\,\%[/tex]

The theoretical cycle efficiency is:

[tex]\eta_{th,max} = \frac{500\,K-300\,K}{500\,K} \times 100\,\%[/tex]

[tex]\eta_{th,max} = 40\,\%[/tex]

The reversible and real versions of the power cycle are described by the Clausius Inequalty:

Reversible Unit

[tex]\frac{1000\,kJ - 600kJ}{300\,K}= 0[/tex]

Real Unit

[tex]\Delta S = \frac{1000\,kJ-600\,kJ}{300\,K} -\frac{1000\,kJ-700\,kJ}{300\,K}[/tex]

[tex]\Delta S = \frac{1}{3}\,\frac{kJ}{K}[/tex]

The cycle is irreversible.

The cycle efficiency using clausius inequality is;

σ_cycle = 0.333 kJ/kg and is internally irreversible

For the cycle, we know that efficiency is;

η = 1 - Q_c/Q_h

Thus;

Q_c = (1 - η)Q_h

Now, the cycle efficiency is derived from the integral;

σ_cycle = -∫(dQ/dt)ₐ

Thus; σ_cycle = -[(Q_h/T_h) - (Q_c/T_c)]

We are given;

Q_h = 1000 kJ

T_h = 500 k

T_c = 300 k

Q_c = 700 kJ

Thus;

σ_cycle = -[(1000/500) - (700/300)]

σ_cycle = -(2 - 2.333)

σ_cycle = 0.333 kJ/kg

Since σ_cycle > 0, then the cycle is internally irreversible

Read more about cycle efficiency at; https://brainly.com/question/16014998

A novel gaseous hydrocarbon fuel CxHy is proposed for use in spark-ignition engines. An analysis of a sample of this fuel revealed that its molecular weight is 140 and its molar H/C ratio is 2.0. In order to evaluate some of its properties, the fuel was burned with stoichiometric standard air in a constant pressure, steady-flow reactor. The fuel and air entered the reactor at 25°C, and the products of complete combustion were cooled to 25°C. At the exit condition, water in the products was a liquid. It was measured that the heat given off during the process to the cooling system of the reaction was 47.5 MJ/kg of fuel. a) Determine the fuel formula. b) What does that heat given-off to the cooling system of the reactor represent? c) Determine the lower heating value of the fuel. d) Determine the enthalpy of formation of the fuel at 25°C

Answers

Answer:

(a) Fuel formula = C₁₀H₂₀

(b)The reactor represent higher heating value (HHV) of the fuel because the water in the product is liquid.

(c) Lower heating value = 44.36 mj/kg

(d) - 6669.8 KJ/Kmol

Explanation:

See the attached files for the calculation

The elastic settlement of an isolated single pile under a working load similar to that of piles in the group it represents, is predicted to be 0.25 inches. What is the expected settlement for the pile group given the following information?

1.Group: 16 piles in a 4x4 group
2.Pile Diameter: 12 inches
3.Pile Center to Center Spacing: 3 feet

Answers

Answer:

The expected settlement for the pile group using the given information is 19.92mm or 0.79 inch

Explanation:

In this question, we are asked to calculate the expected settlement for the pole group given some information.

Please check attachment for complete solution and step by step explanation

The diffusion of a molecule in a tissue is studied by measuring the uptake of labeled protein into the tissue of thickness L =8 um. Initially, there is no labeled protein in the tissue. At t=0, the tissue is placed in a solution with a molecular concentration of C1=9.4 uM, so the surface concentration at x=0 is maintained at C1. Assume the tissue can be treated as a semi-infinite medium. Surface area of the tissue is A = 4.2 cm2. Calculate the flux into the tissue at x=0 and t=5 s.Please give your answer with a unit of umol/cm2 s. Assuming the diffusion coefficient is known of D=1*10-9 cm2/s

Answers

Answer:

The flux into the tissue at x=0 and t=5 s is 0.4476 uM/cm²s

Explanation:

Flux = [tex]\frac{Quantity}{Area * Time}[/tex]

given:

Area = 4.2 cm²

Time = 5 sec

Quantity ( concentration) = 9.4 uM

∴ Flux = Quantity / (Area × Time)

Flux = 9.4 uM / (4.2 cm² × 5 s)

Flux = 9.4 uM / 21 cm²s

Flux = 0.4476 uM/cm²s

The steel bar has a 20 x 10 mm rectangular cross section and is welded along section a-a. The weld material has a tensile yield strength of 325 MPa and a shear yield strength of 200 MPa, and the bar material has a tensile yield strength of 350 MPa. An overall factor of safety of at least 2.0 is required. Find the largest load P that can be applied, to satisfy all criteria.

Answers

Final answer:

The largest load P that can be applied to the steel bar, ensuring a factor of safety of 2.0 with respect to the weld material's tensile yield strength, is 32.5 kN. This is calculated based on the allowable tensile strength of the weld after applying the factor of safety and the cross-sectional area of the steel bar.

Explanation:

The student's question relates to the structural engineering concept of material strength and loading. The maximum load P that can be safely applied to a welded steel bar can be determined by considering the tensile and shear yield strengths of the two materials involved, i.e., the weld material and the bar material. Using the given factor of safety of 2.0, the tensile strength of the weld and the bar, and the cross section of the bar, we can calculate the allowable tensile stress and then the maximum load P by dividing the allowable tensile stress by the area of the cross section.

To begin with, we find the allowable tensile strength by dividing the weld material's yield strength (which is the weaker material concerning tensile strength) by the factor of safety:

Allowable tensile strength for weld = 325 MPa / 2 = 162.5 MPa

Next, we need to calculate the area of the cross-section of the bar:

Area (A) = 20 mm x 10 mm = 200 mm² = 200 x 10⁻⁶ m²

Now, we convert the units of the allowable tensile strength to N/m² (because 1 MPa = 1 x 10⁶ N/m²) and calculate the maximum tensile load (Ptensile) that the weld can sustain:

Allowable tensile strength for weld in N/m² = 162.5 x 10⁶ N/m²Ptensile = Allowable tensile strength for weld x AreaPtensile = (162.5 x 10⁶ N/m²) x (200 x 10⁻⁶ m²)Ptensile = 32.5 x 10³ N = 32.5 kN

Thus, the largest load P that can be applied to the steel bar to satisfy the safety criteria is 32.5 kN.

Steel (AISI 1010) plates of thickness δ = 6 mm and length L = 1 m on a side are conveyed from a heat treatment process and are concurrently cooled by atmospheric air of velocity u[infinity] = 10 m/s and T[infinity] = 20°C in parallel flow over the plates. For an initial plate temperature of Ti = 300°C, what is the rate of heat transfer from the plate? What is the corresponding rate of change of the plate temperature? The velocity of the air is much larger than that of the plate.

Answers

Answer:

Rate of heat transfer from plate

6796.16 W

Corresponding rate of change of plate temperature

-2634 degrees.Celcius/sec

Explanation:

In this question, we are asked to calculate the rate of heat transfer and the corresponding rate of change of the plate temperature.

Please check attachment for complete solution and step by step explanation

Locate the centroid y¯ of the composite area. Express your answer to three significant figures and include the appropriate units. y¯ = nothing nothing Request Answer Part B Determine the moment of intertia of this area about the centroidal x′ axis. Express your answer to three significant figures and include the appropriate units. Ix′ = nothing nothing Request Answer Provide Feedback

Answers

Answer:

Please see the attached Picture for the complete answer.

Explanation:

A certain process requires 2.0 cfs of water to be delivered at a pressure of 30 psi. This water comes from a large-diameter supply main in which the pressure remains at 60 psi. If the galvanized iron pipe connecting the two locations is 200 ft long and contains six threaded 90o elbows, determine the pipe diameter. Elevation differences are negligible.

Answers

Answer:

determine the pipe diameter.  = 0.41ft

Explanation:

check the attached file for answer explanation

Answer: you need to do it on your own first

Explanation:

7. Implement a function factorial in RISC-V that has a single integer parameter n and returns n!. A stub of this function can be found in the file factorial.s. You will only need to add instructions under the factorial label, and the argument that is passed into the function is configured to be located at the label n. You may solve this problem using either recursion or iteration

Answers

Answer:

addi x31, x0, 4

addi x30, x0, 2

Explanation:

Recursion in computer sciencs is defined as a method of solving a problem in which the solution to the problem depends on solutions to smaller cases of the same problem. Such problems can generally be solved by iteration, but this needs to identify and index the smaller cases at time of programming.

addi x31, x0, 4

addi x30, x0, 2

addi x2, x0, 1600 // initialize the stack to 1600, x2= stackpointer

ecall x5, x0, 5 // read the input to x5

jal x1, rec_func

ecall x0, x10, 2 // print the result now

beq x0, x0, end

rec_func:

addi x2, x2, -8 // make room in stack

sd x1, 0(x2) // store pointer and result in stack

bge x5, x31, true // if i > 3, then go to true branch

ld x1, 0(x2)

addi x10, x0, 1 // if i <= 3, then return 1

addi x2, x2, 8 // reset stack point

jalr x0, 0(x1)

true:

addi x5, x5, -2 // compute i-2

jal x1, rec_func // call recursive func for i-2

ld x1, 0(x2) // load the return address

addi x2, x2, 8 // reset stack point

mul x10, x10, x30 // multiply by 2

addi x10, x10, 1 // add 1

jalr x0, 0(x1) // return

end:

The vehicle motor or engine can be size based on required peak power. The energy or average power required provides a sense for how much fuel is required.

1. Calculate the average and peak power (kW) needed to accelerate a 1364 kg vehicle from 0 to 60 mph in 6 seconds. Assume that aerodynamic, rolling, and hill‐climbing force counts for an extra 10% of the needed acceleration force.
2. Chart the average and peak power (kW) vs. time duration from 2 to 15 seconds.
3. How much energy (kWh) is required to accelerate the vehicle?

Answers

Answer:

1. Parg = 89.954 kw

  Pmax = 179.908 kw

2. Parg = 29.984 kw

  Pmax = 59.96 kw

3. Energy = 0.15 kWh

Explanation:

See the attached file for the calculation

Answer:

1) P = 81.74 kW

2) As seen on the pic.

3) E = 0.1362 kWh

Explanation:

1) Given

m = 1364 kg (mass of the vehicle)

vi = 0 mph = 0 m/s  (initial speed)

vf = 60 mph = (60 mph)(1609 m/ 1 mi)(1 h/ 3600 s) = 26.8167 m/s  (final speed)

t = 6 s

We get the acceleration as follows

a = (vf - vi)/t  ⇒   a = (26.8167 m/s - 0 m/s)/ 6s

⇒   a = 4.469 m/s²

then the Force is

F = m*a ⇒   F = 1364 kg*4.469 m/s²

⇒   F = 6096.32 N

Then we get the average power as follows

P = F*v(avg) = F*(vi + vf)/2

⇒   P = 6096.32 N*(0 m/s + 26.8167 m/s)/2

⇒   P = 81741.59 W = 81.74 kW

Knowing that that aerodynamic, rolling, and hill‐climbing force counts for an extra 10% of the needed acceleration force, we use the following formula to find the peak power

Pmax = (1 + 0.1)*F*vf  = 1.1*F*vf

⇒   Pmax = 1.1*6096.32 N*26.8167 m/s

⇒   Pmax = 179831.503 W = 179.83 kW

2) The pic 1 shows the average and peak power (kW) vs. time duration from 2 to 15 seconds.

In the first chart we use the equation

Pinst = F*v  where F is constant and v is the instantaneous speed, and Pavg is the mean of the values.

In the second chart, we use the equation

Ppeak = 1.1*F*v  where F is constant and v is the instantaneous speed.

3) For 0 s ≤ t ≤ 6 s

We can use the equation

E = ΔK = Kf - Ki = 0.5*m*(vf² - vi²)

⇒   E = 0.5*1364 kg*((26.8167 m/s)² - (0 m/s)²)

⇒   E = 490449.123 J = (490449.123 J)(1 kWh/3.6*10⁶J)

⇒   E = 0.1362 kWh

When your complex reaction time is compromised by alcohol, an impaired person's ability to respond to emergency or unanticipated situations is greatly______.

Answers

Answer:

decreased

Explanation:

when impaired you react slower then you would sober.

Final answer:

Alcohol adversely affects the complex reaction time, considerably decreasing the individual’s ability to respond swiftly and adequately in emergencies or unexpected situations. This impairment is attributed to alcohol's impact on the brain causing slow information processing, poor motor control, and a decrease in focus.

Explanation:

When a person's complex reaction time is compromised by alcohol, their ability to respond to unexpected situations or emergencies is greatly diminished. Alcohol's impact on the brain leads to slower processing of information, reduced concentration, and poorer motor control. As a result, they may not react as quickly or efficiently as they would if they were sober to changes in their environment. For example, if a situation arises that requires quick decision-making, such as stopping abruptly while driving to avoid a pedestrian, an intoxicated individual may not respond in time, leading to catastrophic outcomes.

Learn more about Alcohol impact on reaction time here:

https://brainly.com/question/1002220

#SPJ2

An air-conditioning system is used to maintain a house at 70°F when the temperature outside is 100°F. The house is gaining heat through the walls and the windows at a rate of 800 Btu/min, and the heat generation rate within the house from people, lights, and appliances amounts to 100 Btu/min. Determine the minimum power input required for this air- conditioning system.

Answers

Answer:

Minimum power output required = 1.1977 hp

Explanation:

Given Data:

Temperature outside = 100°F.

House temperature =  70°F

Rate of heat gain(Qw) =  800 Btu/min

Generation rate within(Ql) = 100 Btu/min.

Converting the outside temperature 100°F from fahrenheit to ranking, we have;

1°F = 460R

Therefore,

100°F = 460+100

 To     = 560 R

Converting the house temperature 70°F from fahrenheit to ranking, we have;

1°F = 460R

Therefore,

70°F = 460+70

    Th      = 530 R

Consider the equation for coefficient of performance (COP) of refrigerator in terms of temperature;

COP =Th/(To-Th)

        = 530/(560-530)

        = 530/30

        = 17.66

Consider the equation for coefficient of performance (COP) of refrigerator;

COP = Desired output/required input

         =  Q/Wnet

          = Ql + Qw/ Wnet

Substituting into the formula, we have;

17.667 = (100 + 800)/Wnet

17.667 = 900/Wnet

Wnet = 900/17.667

         = 50.94 Btu/min.

Converting from Btu/min. to hp, we have;

1 hp = 42.53 Btu/min.

Therefore,

50.94 Btu/min =  50.94 / 42.53

                         = 1.1977 hp =

Therefore, minimum power output required = 1.1977 hp

Given the following data:

Outside temperature = 100°F.House temperature =  70°F.Rate of heat gain =  800 Btu/min.Heat generation rate = 100 Btu/min.

The conversion of temperature.

We would convert the value of the temperatures in Fahrenheit to Rankine.

Note: 1°F = 460R

Conversion:

Outside temperature = 100°F = [tex]460+100[/tex] = 560RHouse temperature =  70°F = [tex]460+70[/tex] = 530R

To calculate the minimum power input that is required for this air- conditioning system:

The coefficient of performance (COP)

In Science, the coefficient of performance (COP) is a mathematical expression that is used to show the relationship between the power output of an air-conditioning system and the power input of its compressor.

Mathematically, the coefficient of performance (COP) is given by the formula:

[tex]COP =\frac{T_h}{T_o-T_h}[/tex]

Substituting the given parameters into the formula, we have;

[tex]COP =\frac{530}{560-530}\\ \\ COP =\frac{530}{30}[/tex]

COP = 17.66

For the power input:

[tex]COP = \frac{E_o}{E_i} \\ \\ COP = \frac{Q_l + Q_w}{Q_{net}}\\ \\ 17.67 = \frac{100+800}{Q_{net}}\\ \\ Q_{net}=\frac{900}{17.67} \\ \\ Q_{net}=50.93\;Btu/min[/tex]

Conversion:

1 hp = 42.53 Btu/min.

X hp = 50.93 Btu/min.

Cross-multiplying, we have:

[tex]X=\frac{50.93}{42.53} [/tex]

X = 1.1975 hp

Read more on power input here: https://brainly.com/question/16188638

Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 39 m3/min and exits at 12 bar, 400 K. Heat transfer occurs at a rate of 6.5 kW from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in kW.

Answers

Answer:

The power input, in kW is -86.396 kW

Explanation:

Given;

initial pressure, P₁ = 1.05 bar

final pressure, P₂ = 12 bar

initial temperature, T₁ = 300 K

final temperature, T₂ = 400 K

Heat transfer, Q = 6.5 kW

volumetric flow rate, V = 39 m³/min = 0.65 m³/s

mass of air, m = 28.97 kg/mol

gas constant, R = 8.314 kJ/mol.k

R' = R/m

R' = 8.314 /28.97 = 0.28699 kJ/kg.K

Step 1:

Determine the specific volume:

p₁v₁ = RT₁

[tex]v_1 = \frac{R'T_1}{p_1} = \frac{(0.28699.\frac{kJ}{kg.K} )(300 k)}{(1.05 bar *\ \frac{10^5 N/m^2}{1 bar} *\frac{1kJ}{1000N.m} )} \\\\v_1 = 0.81997 \ m^3/kg[/tex]

Step 2:

determine the mass flow rate; m' = V / v₁

mass flow rate, m' = 0.65 / 0.81997

mass flow rate, m' = 0.7927 kg/s

Step 3:

using steam table, we determine enthalpy change;

h₁ at T₁ = 300.19 kJ /kg

h₂ at T₂ = 400.98 kJ/kg

Δh = h₂ - h₁

Δh = 400.98 - 300.19

Δh = 100.79 kJ/kg

step 4:

determine work input;

W = Q - mΔh

Where;

Q is heat transfer = - 6.5 kW, because heat is lost to surrounding

W = (-6.5) - (0.7927 x 100.79)

W = -6.5 -79.896

W = -86.396 kW

Therefore, the power input, in kW is -86.396 kW

Consider an aluminum step shaft. The area of section AB and BC as well as CD are 0.1 inch2 , 0.15 inch 2 and 0.20 inch2. The length of section AB, BC and CD are 10 inch, 12 inch and 16 inch. A force F=1000 lbf is applied to B. The initial gap between D and rigid wall is 0.002. Using analytical approach, determine the wall reactions, the internal forces in members, and the displacement of B and C. Find the strain in AB, BC and CD.

Answers

Answer:

Explanation:

Find attach the solution

Air as an ideal gas in a closed system undergoes a reversible process between temperatures of 1000 K and 400 K. The beginning pressure is 200 bar. Determinc the highest possible ending pressure for this process.If the ending pressure is 3 bar, determine the heat transfer and work per unit mass, if the boundary of the system is in constant contact with a reservoir at 400 K.

Answers

Answer:

highest possible ending pressure for this process is 8.0954 bar

Explanation:

We can say that Heat transfer is any or all of several kinds of phenomena, considered as mechanisms, that convey energy and entropy from one location to another. The specific mechanisms are usually referred to as convection, thermal radiation, and conduction.

Please see attachment for the solution.

Air is compressed from 100 kPa, 300 K to 1000 kPa in a two-stage compressor with intercooling between stages. The intercooler pressure is 300 kPa. The air is cooled back to 300 K in the intercooler before entering the second compressor stage. Each compressor stage is isentropic. Please calculate the total compressor work per unit of mass flow (kJ/kg). Repeat for a single stage of isentropic compression from the given inlet to the final pressure.

Answers

Answer:

The total compressor work is 234.8 kJ/kg for a isentropic compression

Explanation:

Please look at the solution in the attached Word file

Final answer:

The total compressor work per unit of mass flow in a two-stage compressor with intercooling can be calculated by summing the compressor work in each stage and the work done in the intercooler.

Explanation:

The total compressor work per unit of mass flow in a two-stage compressor with intercooling can be calculated by summing the compressor work in each stage and the work done in the intercooler.

In the first stage, the air is compressed from 100 kPa to 300 kPa. The work done in this stage can be calculated using the isentropic compression process. In the second stage, the air is further compressed from 300 kPa to 1000 kPa. The work done in this stage can also be calculated using the isentropic compression process.

To calculate the total compressor work per unit of mass flow, you need to sum the work done in each stage and the work done in the intercooler.

5.3-16 A professor recently received an unexpected $10 (a futile bribe attached to a test). Being the savvy investor that she is, the professor decides to invest the $10 into a savings account that earns 0.5% interest compounded monthly (6.17% APY). Furthermore, she decides to supplement this initial investment with an additional $5 deposit made every month, beginning the month immediately following her initial investment.
(a) Model the professor's savings account as a constant coefficient linear difference equation. Designate yln] as the account balance at month n, where n corresponds to the first month that interest is awarded (and that her $5 deposits begin).
(b) Determine a closed-form solution for y[n] That is, you should express yIn] as a function only of n.
(c) If we consider the professor's bank account as a system, what is the system impulse response h[n]? What is the system transfer function Hz]?
(d) Explain this fact: if the input to the professor's bank account is the everlasting exponential xn] 1 is not y[n] I"H[I]-HII]. 1, then the output

Answers

Answer:

a) y (n + 1) = 1.005 y(n) + 5U n

y (n + 1) - 1.005 y(n) = 5U (n)

b) Z^-1(Z(y0)=y(n) = [1010(1.005)^n - 1000(1)^n] U(n)

c) h(n) = (1.005)^n U(n - 1) + 10(1.005)^n U(n)

Explanation:

Her bank account can be modeled as:

y (n + 1) = y (n) + 0.5% y(n) + $5

y (n + 1) = 1.005 y(n) + 5U n

Given that y (0) = $10

y (n + 1) - 1.005 y(n) = 5U (n)

Apply Z transform on both sides

= ZY ((Z) - Z(y0) - 1.005) Z = 5 U (Z)

U(Z) = Z {U(n)} = Z/ Z - 1

Y(Z) [Z- 1.005] = Z y(0) + 5Z/ Z - 1

= 10Z/ Z - 1.005 + 5Z/(Z - 1) (Z - 1.005)

Y(Z) = 10Z/ Z - 1.005 + 1000Z/ Z - 1.005 + 1000Z/ Z - 1

= 1010Z/Z- 1.005 - 1000Z/Z-1

Apply inverse Z transform

Z^-1(Z(y0)) = y(n) = [1010(1.005)^n - 1000(1)^n] U(n)

Impulse response in output when input f(n) = S(n)

That is,

y(n + 1)= 1. 005y (n) + 8n

y(n + 1) - 1.005y (n) = 8n

Apply Z transform

ZY (Z) - Z(y0) - 1.005y(Z) = 1

HZ (Z - 1.005) = 1 + 10Z [Therefore y(Z) = H(Z)]

H(Z) = 1/ Z - 1.005 + 10Z/Z - 1. 005

Apply inverse laplace transform

= h(n) = (1.005)^n U(n - 1) + 10(1.005)^n U(n)

Other Questions
What do changes in a graphs slopes on a distance-versus-time graph mean? fo:Nyatakan kuantiti air yang perlu diminum oleh setiap orang sehariIl march Just before the close of its fiscal year, a city government issues $2 million of bonds to finance the acquisition of capital assets. However, no part of the debt is repaid by year-end and no part of the debt is used to purchase capital assets. What adjusting entry is needed to prepare the city's government-wide financial statements from its fund-level financial statements 4x-7y=15 and 5x-2y=12 According to this dictionary definition, which sentence uses the word ubiquitous correctly?A)While the dog was ubiquitous, he was also quite sweet when he was fed and had a good night of sleep.B)The truck's transmission was ubiquitous, and it never seemed to work at the moments Trey needed it most.C)Ubiquitous Sally decided that she would stop being so pessimistic and attempt to see the sunny side of life.D)The narrator even suggested that the white whale, Moby, was ubiquitous and present in every ocean at at every moment. What is the authors purpose for writing midass Zinc Touch? Magnetic fields and electric fields are identical in that they both- WHICH TEST LOOKS FOR THE PRESENCE OF BARBITUATES can absolute value equations be equal to zero? my textbook says no but there are multiple equations equaling 0 or a negative numbers once I simplify. When the kids on the block play "airplane," Tran, who wants to play the flight attendant, is ridiculed by the other boys who say, "That's for girls!" This example typically shows how peers influence gender-role learning throughA. overt physical punishment. B. verbal disapproval. C. verbal appellation. D. mean comments. You are interested in estimating the the mean weight of the local adult population of female white-tailed deer (doe). From past data, you estimate that the standard deviation of all adult female white-tailed deer in this region to be 21 pounds. What sample size would you need to in order to estimate the mean weight of all female white-tailed deer, with a 99% confidence level, to within 6 pounds of the actual weight? What are the disadvantages of a contract for deed? Write at least 2 i need to know this ASAP 20 points, How would your hand function differently if your thumb contained a pivot joint? What if it contained a ball and socket joint? Describe 4 consequences of having a different type of joint in the thumb? Thanks evaluate the following numerical expressions2(5+(3)(2)+4)2((5+3)(2+4))2(5+3(2+4)) What disorder is characterized by destruction of the walls of the alveoli producing abnormally large air spaces that remain filled with air during exhalation? Khan academy plz help me In the Transport layer of Internet Protocol Suite model, data is accepted and split it into shorter pieces. What are these pieces called?BitsFramesLayersPackets Unionid mussels are native to the Hudson River in New York State. In the early 1990s, zebra mussels were introduced into the Hudson River. The table shows the number of unionid mussels and zebra mussels over the course of six years.How did the population of unionid mussels change after zebra mussels were introduced? Why did this change occur? 1. The force between a pair of charges is 100 newtons. The distance between the charges is 0.01 meter. If one of the charges is 2 u 10-10 C, what is the strength of the other charge?2. The force between two charges is 2 newtons. The distance between the charges is 2 u 10-4 m. If one of the charges is 3 u 10-6 C, what is the strength of the other charge?