A 95% confidence interval was computed using a sample of 16 lithium batteries, which had a sample mean life of 645 hours. The confidence interval was (628.5, 661.5) hours. Which of the following would produce a confidence interval that is wider than the one originally computed (assuming everything else remained the same)? Select ALL that are correct. Having a sample with a larger standard deviation. Using a 99% confidence level instead of 95%. Removing an outlier from the data. Using a 90% confidence level instead of 95%. Testing 10 batteries instead of 16. Testing 24 batteries instead of 16.

Answers

Answer 1

Answer:

Step-by-step explanation:

Hello!

The mean life of 16 lithium batteries was estimated with a 95% CI:

(628.5, 661.5) hours

Assuming that the variable "X: Duration time (life) of a lithium battery(hours)" has a normal distribution and the statistic used to estimate the population mean was s Student's t, the formula for the interval is:

[X[bar]±[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]]

The amplitude of the interval is calculated as:

a= Upper bond - Lower bond

a= [X[bar]+[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]] -[X[bar]-[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]]

and the semiamplitude (d) is half the amplitude

d=(Upper bond - Lower bond)/2

d=([X[bar]+[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]] -[X[bar]-[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]] )/2

d= [tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]

The sample mean marks where the center of the calculated interval will be. The terms of the formula that affect the width or amplitude of the interval is the value of the statistic, the sample standard deviation and the sample size.

Using the semiamplitude of the interval I'll analyze each one of the posibilities to see wich one will result in an increase of its amplitude.

Original interval:

Amplitude: a= 661.5 - 628.5= 33

semiamplitude d=a/2= 33/2= 16.5

1) Having a sample with a larger standard deviation.

The standard deviation has a direct relationship with the semiamplitude of the interval, if you increase the standard deviation, it will increase the semiamplitude of the CI

↑d= [tex]t_{n-1;1-\alpha /2}[/tex] * ↑S/√n

2) Using a 99% confidence level instead of 95%.

d= [tex]t_{n_1;1-\alpha /2}[/tex] * S/√n

Increasing the confidence level increases the value of t you will use for the interval and therefore increases the semiamplitude:

95% ⇒ [tex]t_{15;0.975}= 2.131[/tex]

99% ⇒ [tex]t_{15;0.995}= 2.947[/tex]

The confidence level and the semiamplitude have a direct relationship:

↑d= ↑[tex]t_{n_1;1-\alpha /2}[/tex] * S/√n

3) Removing an outlier from the data.

Removing one outlier has two different effects:

1) the sample size is reduced in one (from 16 batteries to 15 batteries)

2) especially if the outlier is far away from the rest of the sample, the standard deviation will decrease when you take it out.

In this particular case, the modification of the standard deviation will have a higher impact in the semiamplitude of the interval than the modification of the sample size (just one unit change is negligible)

↓d= [tex]t_{n_1;1-\alpha /2}[/tex] * ↓S/√n

Since the standard deviation and the semiamplitude have a direct relationship, decreasing S will cause d to decrease.

4) Using a 90% confidence level instead of 95%.

↓d= ↓[tex]t_{n_1;1-\alpha /2}[/tex] * S/√n

Using a lower confidence level will decrease the value of t used to calculate the interval and thus decrease the semiamplitude.

5) Testing 10 batteries instead of 16. and 6) Testing 24 batteries instead of 16.

The sample size has an indirect relationship with the semiamplitude if the interval, meaning that if you increase n, the semiamplitude will decrease but if you decrease n then the semiamplitude will increase:

From 16 batteries to 10 batteries: ↑d= [tex]t_{n_1;1-\alpha /2}[/tex] * S/√↓n

From 16 batteries to 24 batteries: ↓d= [tex]t_{n_1;1-\alpha /2}[/tex] * S/√↑n

I hope this helps!


Related Questions

A rectangular prism has a volume of 120 square feet a height of 15 feet and a width of 4 feet find the length

Answers

Volume = length x width x height

120 = 15 x 4 x length

Simplify:

120 = 60 x length

Divide both sides by 60:

Length = 2 feet

Formula for the volume of a rectangular prism: V = length x width x height

120 = l x 4 x 15

120 = l x 60

l = 2

The length of the rectangular prism is 2 feet.

Hope this helps!! :)

A bag contains 2 red marbles , 3 green marbles , and 4 blue marbles.

If we choose a marble, then another marble without putting the first one back In the bag, what is the probability that the first marble will be green and she second will be red?

Answers

Answer:

You can get it by doing this

Step-by-step explanation:

The Probability

Answer:

0.08 percent chance or 1/12

Solve for x: 3x + 3 = -2x + 13

Please add step by step! I am here to understand, not just for answers.
Please and thank you!!​

Answers

Answer:

x=2

Step-by-step explanation:

To solve, we need to isolate the variable (x)

To do this, we must get all the variables to one side of the equation, and all the numbers to the other

3x+3= -2x+13

Add 2x to both sides to "reverse" the subtraction

5x+3=13

Subtract 3 from both sides to "reverse" the addition

5x=10

Divide both sides by 5 to "reverse" the multiplication

x=2

Assume that females have pulse rates that are normally distributed with a mean of u = 75.0 beats per minute and a standard deviation of sigma = 12.5 beats per minute. If 1 adult female is randomly​ selected, find the probability that her pulse rate is between 69 beats per minute and 81 beats per minute.

Answers

Answer:

36.88% probability that her pulse rate is between 69 beats per minute and 81 beats per minute.

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 75, \sigma = 12.5[/tex]

Find the probability that her pulse rate is between 69 beats per minute and 81 beats per minute.

This is the pvalue of Z when X = 81 subtracted by the pvalue of Z when X = 69.

X = 81

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{81 - 75}{12.5}[/tex]

[tex]Z = 0.48[/tex]

[tex]Z = 0.48[/tex] has a pvalue of 0.6844

X = 69

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{69 - 75}{12.5}[/tex]

[tex]Z = -0.48[/tex]

[tex]Z = -0.48[/tex] has a pvalue of 0.3156

0.6844 - 0.3156 = 0.3688

36.88% probability that her pulse rate is between 69 beats per minute and 81 beats per minute.

Answer:

[tex]P(69<X<81)=P(\frac{69-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{81-\mu}{\sigma})=P(\frac{69-75}{12.5}<Z<\frac{81-75}{12.5})=P(-0.48<z<0.48)[/tex]

And we can find this probability with this difference:

[tex]P(-0.48<z<0.48)=P(z<0.48)-P(z<-0.48)=0.684-0.316= 0.368 [/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the pulse rates of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(75,12.5)[/tex]  

Where [tex]\mu=75[/tex] and [tex]\sigma=12.5[/tex]

We are interested on this probability

[tex]P(69<X<81)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(69<X<81)=P(\frac{69-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{81-\mu}{\sigma})=P(\frac{69-75}{12.5}<Z<\frac{81-75}{12.5})=P(-0.48<z<0.48)[/tex]

And we can find this probability with this difference:

[tex]P(-0.48<z<0.48)=P(z<0.48)-P(z<-0.48)=0.684-0.316= 0.368 [/tex]

Find the volume of a cone with a diameter of 40cm and a height of 40 cm.

Answers

Answer:

[tex]v = \pi {r}^{2} \frac{h}{3} \\ \: \: \: \: = \pi \times 20 \frac{40}{3} \\ \: \: \: \: = 16755.16 {cm}^{3} [/tex]

hope this helps you

About 8 million tons of plastic waste enters the world’s oceans every year. Write a y = mx equation to show this

Answers

Answer: [tex]y=8x[/tex]

Step-by-step explanation:

For this exercise it is important to remember that the equation of a line that passes through the origin (this is located at the point [tex](0,0)[/tex]), has the following form:

[tex]y=mx[/tex]

Where "m" is the slope of the line.

In this case, according to the information given in the exercise, you know that 8 million tons of plastic waste enters the world’s oceans every year, apprdoximately.

Then, let the independent variable "x" represents the number of years.

 Analizing the data given, you can identify that the slope of that line is the following:

[tex]m=8[/tex]

So, knowing the value of "m", you can subsitute them into the equation  [tex]y=mx[/tex], in order to get the equation that shows that situation.

This is:

[tex]y=8x[/tex]

If f(-3) = -8, then f(x)= 3x +

Answers

Answer:

f(x)= 3x + 1

Step-by-step explanation:

Let's set the unknown variable as b, since it's a linear equation.

Using the point given (-3, -8), we can find b by plugging in the known numbers and solving.

-8 = -3 (3) + b

-8 = -9 + b

b = 1

If you want, you can check it by forming the complete equation and plugging in -3.

f(x)= 3x + 1

f(-3) = -9 + 1

f(-3) = -8 = -8

I hope this helped!

Find the values of x, y, and λ that satisfy the system of equations. Such systems arise in certain problems of calculus, and λ is called the Lagrange multiplier. (Enter your answers as a comma-separated list. If there is no solution, enter NO SOLUTION. If the system has an infinite number of solutions, set λ = t and solve for x and y in terms of t.) 3x + λ = 0 3y + λ = 0 x + y − 4 = 0 (x, y, λ) =

Answers

Answer:

Solution (x, y, λ) = (2, 2, - 6)

Step-by-step explanation:

From the above information given:

3x + λ = 0............ eqn (1)

3y + λ = 0 ........... eqn (2)

x + y − 4 = 0 ......... eqn (3)

Now, from equation 1 and 2:

x= - λ / 3

y= - λ / 3

Substitute the values of X and y into equation 3

-λ/ 3 - λ/ 3 - 4 =0

-λ - λ - 12= 0

-2λ - 12= 0

-2λ = 12

λ = - 6

x= - λ/ 3

x = - (- 6) / 3

x= 2

y= - λ/3

y= - (-6)/3

y= 2

Solution (x, y, λ) = (2, 2, - 6)

Therefore,

x = 2

y= 2

λ = - 6

In a study of hormone supplementation to enable oocyte retrieval for assisted reproduction, a team of researchers administered two hormones in different timing strategies to two randomly selected groups of women aged 36 – 40 years. For the Group A treatment strategy, the researchers included both hormones from day 1 . The mean number of oocytes retrieved from the 98 participants in Group A was 9.7 with an 80 % confidence level z ‑interval of ( 8.8 , 10.6 ) .

Answers

80% of the times we are confident that the mean number of oocytes retrieved will fall in interval  ( 8.8 , 10.6 ).

A confidence interval is the probability that an estimate will fall in a particular range for a certain number of times.

From the given scenario, women are selected from the age group 36-40.

The mean number of oocytes retrieved from the 98 participants was 9.7 with an 80 % confidence level z ‑interval of ( 8.8 , 10.6 )

From the given condition we can conclude that if we repeat the experiment 80% of the times we are confident that the mean number of oocytes retrieved will fall in interval  ( 8.8 , 10.6 ).

Thus, the mean number of oocytes retrieved from the 98 participants in Group A was 9.7 with an 80 % confidence level has z ‑interval of ( 8.8 , 10.6 )

Learn more about Confidence interval, here:

https://brainly.com/question/34299305

#SPJ4

Final answer:

The question discusses a study in reproductive endocrinology involving hormone-assisted retrieval of oocytes for assisted reproduction, like IVF. Two hormones, likely follicle-stimulating hormone and luteinizing hormone, are used from day one to boost ovulation. The reported average number of oocytes and the confidence interval indicate the effectiveness of this treatment strategy.

Explanation:

The study described touches upon a field within biology known as reproductive endocrinology with a focus on hormone-assisted techniques in assisted reproduction like IVF (In Vitro Fertilization). The two hormones administered from day one are likely gonadotropins, consisting of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), as per the common methods in IVF procedures. FSH supports the development of multiple follicles while LH triggers ovulation. Their administration significantly boosts the usual number of oocytes (eggs) produced in a woman's ovulation cycle.

Moreover, the mean number of oocytes (9.7) retrieved from the participants in Group A gives an indication of the effectiveness of the treatment strategy. The 80% confidence level z-interval of (8.8, 10.6) suggests that the actual mean number of oocytes retrieved for the overall population of women, aged 36-40 years, following this treatment strategy, is likely to lie within this range with an 80% probability.

Learn more about In Vitro Fertilization here:

https://brainly.com/question/554326

#SPJ11

The melting point of each of 16 samples of a certain brand of hydrogenated vegetable oil was determined, resulting in ¯x = 94.32. Assume that the distribution of the melting point is normal with σ = 1.20. (a) Test H0 : µ = 95 versus Ha : µ 6= 95 using a two-tailed level .01 test. (b) If a level .01 test is used, what is β(94), the probability of a type II error when µ = 94? (c) What value of n is necessary to ensure that β(94) = .1 when α = .01?

Answers

Answer:

Given:

Mean, x' = 94.32

s.d = 1.20

n = 16

a) For null hypothesis:

H0 : u= 95

For alternative hypothesis:

Ha : u≠95

Level of significance, a = 0.01

(Two tailed test)

We reject null hypothesis, h0, if P<0.01 level of significance.

Calculating the test statistic, we have:

[tex] Z = \frac{x' - u_0}{s.d / \sqrt{n}} = \frac{94.32-95}{1.20/ \sqrt{16}}[/tex]

= -2.266

= -2.27

Calculating the P value:

P value = 2P(Z < -2.27)

Using the standard normal table,

NORMSDIST(-2.27)

= 0.0116

P value= 2(0.0116)

= 0.0232

Since P value(0.0232) is greater than level of significance (0.01), we fail to reject the null hypothesis H0.

We can say that there is enough evidence to conclude the data does not support that average melting point differs from the level of 95 at the level of 0.01 significance level.

b) B(u = 94)

= P(when u=94, do not reject H0)

Using the standard nkrmal table, the z-score corresponding to

Z(0.01/2)= 0.005 will be

[tex]Z_a_/_2 = 2.58[/tex]

[tex]B(94) = ∅[Z_a_/_2+ \frac{u_0-u}{s.d- \sqrt{n}}] - ∅[-Z_a_/_2+ \frac{u_0-u}{s.d/ \frac{n}}] [/tex]

[tex]B(94) = ∅[2.58+ \frac{95-94}{1.20- \sqrt{16}}] - ∅[-2.58+ \frac{95-94}{1.2/ \frac{16}}] [/tex]

= ∅(5.91)-∅(0.75)

P(Z≤5.91)-P(Z≤0.75)

From standard normal table, we have:

P(Z≤0.75)=0.7734, P(Z≤5.91)=1

= 1 - 0.7734

= 0.2266

Probability of making type II error when u=94 is 0.2266

c) Probability of committing type II error when u= 94 at a significance level of 0.01 will be =0.10.

B(94) = 0.10

Finding sample size, n for a two tailed test:

[tex] n = [\frac{s.d(Z_a_/_2+Z_B)}{u_0-u}]^2 [/tex]

Using standard normal table, Z score corresponding to a/2 = 0.005 cummulative area(1-0.005 = 0.995) is Z= 2.58

Z score corresponding to 0.10 cummulative area(1-0.10 = 0.90) is Z = 1.28

Our sample size n, wil be=

[tex] n = [\frac{1.2(2.58+1.28)}{95-94}]^2 [/tex]

[tex] = [\frac{4.632}{1}]^2 [/tex]

= 21.46

= 22

Sample size = 22

Final answer:

The z-score for the hypothesis test can be calculated and compared with the critical values for a two-tailed level of .01. The probability of a Type II error can be calculated using the standard normal table, and the required sample size to ensure β(94)=0.1 when α=0.01 can be calculated using the appropriate formula. Remember, in the calculations, to use the values provided in the question.

Explanation:(a) Hypothesis Test:

The null hypothesis will be H0: μ = 95 and the alternative hypothesis Ha: μ ≠ 95. Since we are given σ = 1.20 and the sample mean ¯x = 94.32, we can perform a z-test.

The z-score is calculated as: z = (¯x - μ) / (σ / √n), here n is the number of samples i.e., 16. Plug in the given values to calculate the z-score.

If the obtained z-score lies within the critical values of a two-tailed level of .01 (which for a normal distribution is approximately -2.576 and 2.576), we can't reject the null hypothesis.

(b) Type II Error:

Beta error, β(94), is the probability of a Type II error when actual mean (µ) is 94. To calculate this, you first need to find the z value for the α level .01, and then use the standard normal table to find the corresponding values for β(94).

(c) Sample Size:

To ensure that β(94)=0.1 when α=0.01, use the formula for sample size in hypothesis testing. You would need to find the z-scores associated with α and β, and then use these in the formula: n = [(Zα √2π + Zβ)^2 σ^2]/ (μ - μ0)^2.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ11

Jim bought a new bicycle for $129. If the sales tax is 8%, how much did Jim pay in sales tax? What was the total cost?

Answers

Answer:

$10.32 is the sales tax.

$139.32 is the total price.

Step-by-step explanation:

Sales tax is 8% of the original price.

First, change the percentage into a decimal, by moving the decimal point to the left two place values: 8% = 0.08

Next, multiply 129 with 0.08:

129 x 0.08 = 10.32

$10.32 is the sales tax.

Then, add 10.32 to the original price:

10.32 + 129 = 139.32

$139.32 is the total price.

Convert 30°to radians. Leave answer as a reduced fraction in terms of π.

a: pi/3
b: pi/6
c: pi/4
d:pi/2

Answers

Answer: B

Step-by-step explanation:

[tex]30(\frac{\pi}{180})=\frac{\pi}{6}[/tex]

30 degree to radian= 0.523598776. b: pi/6 is your answer

In the 1992 presidential election Alaska's 40 election districts averaged 1955 votes per district for President Clinton. The standard deviation was 556. (There are only 40 election districts in Alaska.) The distribution of the votes per district for President Clinton was bell-shaped. Let X = number of votes for President Clinton for an election district. (Source: The World Almanac and Book of Facts) Round all answers except part e. to 4 decimal places.

a. What is the distribution of X? X-NO
b. Is 1955 a population mean or a sample mean? Select an answer
C. Find the probability that a randomly selected district had fewer than 1911 votes for President Clinton.
d. Find the probability that a randomly selected district had between 1868 and 2105 votes for President Clinton
e. Find the 95th percentile for votes for President Clinton, Round your answer to the nearest whole number.

Answers

Answer:

a) X = N(1955,556)

b) 1955 is the population mean

c) P(X <1911) = 0.4685

d) P(1868 < X <2105) = 0.1685

e) 95th percentile = 2870 (nearest whole number)

Step-by-step explanation:

a) Average number of votes per district, μ = 1955

The standard deviation, [tex]\sigma = 556[/tex]

The distribution of X will take the form [tex]N(\mu, \sigma)[/tex]

Therefore the distribution of X is N(1955,556)

b)1955 is the average of all the votes president Clinton had per district(i.e. the mean of all the values of the population) and not the mean of collected samples.

1955 is the population mean

c) Probability that a randomly selected district had fewer than 1911 votes for president Clinton

[tex]P(X < 1911) = P ( z < \frac{x - \mu}{\sigma} )[/tex]

z=(1911-1955)/556

z=-0.079

From the probability distribution table

P(z<-0.079)=0.4685

Therefore, P(X <1911) = 0.4685

d)probability that a randomly selected district had between 1868 and 2105 votes for President Clinton

[tex]P(x_{1} < X <x_{2}) = P(z_{2} < \frac{x_{2} - \mu }{\sigma} )- P(z_{1} < \frac{x_{1} - \mu }{\sigma} )[/tex]

[tex]P(1868 < X <2105) = P(z_{2} < \frac{2105 - 1955 }{556} )- P(z_{1} < \frac{1868 - 1955 }{556} )\\P(1868 < X <2105) = P(z_{2} < 0.27)- P(z_{1} < -0.16 )[/tex]

P(1868 < X <2105) = 0.6063 - 0.4378

P(1868 < X <2105) = 0.1685

e)  Find the 95th percentile for votes for President Clinton

[tex]P_{95} = \mu + 1.645 \sigma\\P_{95} = 1955 + 1.645(556)\\P_{95} = 2869.62\\P_{95} = 2970[/tex]

P95=1955+1.645*556=2870

Final answer:

The distribution of X is a normal distribution with a sample mean of 1,956.8. The probability of a randomly selected district having fewer than 1,600 votes is approximately 0.267. The probability of a randomly selected district having between 1,800 and 2,000 votes is approximately 0.161. The 95th percentile for votes is approximately 2,885.

Explanation:a. The approximate distribution of X is a normal distribution.

b. 1,956.8 is a sample mean because it is calculated from the data of the 40 election districts in Alaska.

c. To find the probability that a randomly selected district had fewer than 1,600 votes for the candidate, you need to standardize the value and use the standard normal distribution table. First, calculate the z-score using the formula z = (x - mean) / standard deviation. Plugging in the values, we get z = (1600 - 1956.8) / 572.3 = -0.621. Then, we can use the standard normal distribution table to find the probability associated with a z-score of -0.621, which is approximately 0.267.

d. To find the probability that a randomly selected district had between 1,800 and 2,000 votes for the candidate, you need to calculate the z-scores for both values and find the area between them on the standard normal distribution. Use the same formula as before to get z1 = (1800 - 1956.8) / 572.3 = -0.275 and z2 = (2000 - 1956.8) / 572.3 = 0.075. Then, use the standard normal distribution table to find the area between z1 and z2, which is approximately 0.161.

e. The 95th percentile represents the value below which 95% of the data falls. To find the 95th percentile for votes for the candidate, you can use the z-score associated with a cumulative probability of 0.95 on the standard normal distribution table. The z-score is approximately 1.645. Then, use the formula x = z * standard deviation + mean to calculate the value. Plugging in the values, we get x = 1.645 * 572.3 + 1956.8 ≈ 2,885 votes.

Learn more about Normal distribution here:

https://brainly.com/question/34741155

#SPJ3

A diet guide claims that you will consume 120 calories from a serving of vanilla yogurt. A random
sample of 22 brands of vanilla yogurt produced a mean of 118.3 calories with standard deviation 3.7
calories.
Suppose that mu is the true mean number of calories for a serving of vanilla yogurt. We want to test if
the diet guide’s claim is accurate. Use significance level 0.05.

1. What are the null and alternative hypotheses?
2. What is the value of the test statistic?
3. What is the rejection region?
4. Do we reject the null hypothesis?
5. Based on this hypothesis test, do we conclude the diet guide is accurate or inaccurate?
6. Should the p-value for this test be greater than or less than the significance level?

Answers

Answer:

1) Null hypothesis:[tex]\mu = 120[/tex]  

Alternative hypothesis:[tex]\mu \neq 120[/tex]  

2) [tex]t=\frac{118.3-120}{\frac{3.7}{\sqrt{22}}}=-2.155[/tex]  

3) [tex] t_{cric}=\pm 2.08[/tex]

And the rejection zone of the null hypothesis would be [tex] |t_{calc}|>2.08[/tex]

4) Since our statistic calculated is higher than the critical value we have enough evidence to reject the null hypothesis at 5% of significance

5) Since we reject the null hypothesis of accuracy we have enough evidence to conclude at 5% of significance that the procedure is not accurate

6) Since we reject the null hypothesi we need to expect that the p value would be lower than the significance level provided and that means:

[tex] p_v <\alpha[/tex]

Step-by-step explanation:

Data given and notation  

[tex]\bar X=118.3[/tex] represent the sample mean

[tex]s=3.7[/tex] represent the sample standard deviation

[tex]n=22[/tex] sample size  

[tex]\mu_o =120[/tex] represent the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

Part 1: State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the true mean is equal to 120 because that means accurate, the system of hypothesis would be:  

Null hypothesis:[tex]\mu = 120[/tex]  

Alternative hypothesis:[tex]\mu \neq 120[/tex]  

If we analyze the size for the sample is < 30 and we don't know the population deviation so is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Part 2: Calculate the statistic

We can replace in formula (1) the info given like this:  

[tex]t=\frac{118.3-120}{\frac{3.7}{\sqrt{22}}}=-2.155[/tex]    

Part 3: Rejection region

We calculate the degrees of freedom given by:

[tex] df = n-1= 22-1 =21[/tex]

We need to find a critical value who accumulates [tex]\alpha/2 = 0.025[/tex] of the area in the tails of the t distribution with 21 degrees of freedom and we got:

[tex] t_{cric}=\pm 2.08[/tex]

And the rejection zone of the null hypothesis would be [tex] |t_{calc}|>2.08[/tex]

Part 4

Since our statistic calculated is higher than the critical value we have enough evidence to reject the null hypothesis at 5% of significance

Part 5

Since we reject the null hypothesis of accuracy we have enough evidence to conclude at 5% of significance that the procedure is not accurate

Part 6

Since we reject the null hypothesi we need to expect that the p value would be lower than the significance level provided and that means:

[tex] p_v <\alpha[/tex]

A rectangle gift box is 8 inches wide 10 inches long and 7 inches tall how much wrapping paper is needed to cover the box exactly

Answers

Final answer:

To cover a rectangle gift box with dimensions of 8 inches by 10 inches by 7 inches, you need to calculate the surface area by adding the area of all six faces. After calculation, you would need 412 square inches of wrapping paper.

Explanation:

To calculate how much wrapping paper is needed to cover a rectangle gift box exactly, we need to find the surface area of the box. The box dimensions are 8 inches wide, 10 inches long, and 7 inches tall.

Surface area of a rectangle box is calculated by adding the areas of all six faces. The areas of the faces are:

Calculating each area:

Adding all of these areas together gives us:

160 in² + 112 in² + 140 in² = 412 in².

Therefore, you would need 412 square inches of wrapping paper to cover the box exactly.

What’s percent of Benny age is his moms age

Answers

Answer:

Benny's mom's age is 400% of Benny's age.

Step-by-step explanation:

Let p represent the percent of his mom's age to Benny's age.

48=P(12)

p=4=400%

- (3n - 2)(4n+1)=0
Solve by factoring

Answers

Answer:

n=2/3, -1/4

Step-by-step explanation:

Riddle me this. A New Hotel containing 100 rooms. Tom was Hired to paint the numbers from 1-100 on the doors. How many times will Tom have to paint the number 8?

I beat Desi Velasquez

Answers

Answer:

20 times

Step-by-step explanation:

8, 18, 28, 38, 48, 58, 68, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98

1     2    3   4   5   6      7   8     9   10  11    12   13   14   15   16  17 18 19 20

From1-100, the numbers that contain eight include;
8
18
28
38
48
58
68
78
80
81
82
83
84
85
86
87
88
89
98
So, tom would have to paint the number "8", 19 times.

Do flashcards help students retain the Chinese Language? Six randomly selected students are given a pretest, asked to study a set of flashcards once a day for a week and then given post test for their Chinese Language class. Is there evidence that flashcards can improve scores? Their data is below. What is the test statistic?(pretest – posttest)

Answers

Answer:

-1.64

Explanation:

Multiple Choice Answers that were not provided in the question:

a. 0.103 .

b. None of the above.

c. -4.16

d. -1.45

e. 2.86

f .-1.64

The provided data is as below:

             Student 1  Student 2  Student 3  Student 4  Student 5  Student 6

Pre- test    80              76              76              50             48              67

Post- test   75              86              87              60            48               68

Further Explanation:

                    Student 1  Student 2  Student 3  Student 4  Student 5  Student 6

Pre- test             80              76              76              50             48              67

Post- test            75              86              87              60            48               68

Pretest-Postest   5               -10              -11              -10            0                 -1

Calculating the mean of the difference (Pretest-postest) we get d bar = -4.5

Calculating the standard deviation  of the difference  (Pretest-postest) we get sd= 6.716.

Since sample score is under 30 and population standard deviation is unknown, we will use a tscore to find the standardized test statistic

t = dbar/(sd/√n) = -4.5/(6.716√6) = -1.642 ≈ -1.64

The test statistic is -1.64.

There are about 0.62 miles in a kilometer. How many kilometers long is a 95-mile drive? Round your answer to the nearest tenth of a kilometer​

Answers

Final answer:

To find the number of kilometers in a 95-mile drive, multiply 95 by the conversion factor of 1.61 kilometers per mile, giving you 152.95 kilometers, which rounds to 153.0 kilometers when rounded to the nearest tenth.

Explanation:

To calculate how many kilometers are in a 95-mile drive when there are approximately 0.62 miles in a kilometer, we need to use the conversion factor between miles and kilometers. The conversion factor is 1 mile equals to 1.61 kilometers. Therefore, to convert 95 miles to kilometers, you multiply 95 miles by 1.61 kilometers per mile.

The calculation will be:

95 miles × 1.61 km/mile = 152.95 kilometers

After calculating, we round the answer to the nearest tenth, resulting in:

153.0 kilometers.

A problem that can be represented by the equation 1/2x+6=20

Answers

Answer:

Six more than half of a number is 20

Step-by-step explanation:

The given expression in word problem can be translated as:

Six more than half of a number is 20

the length of a classroom is 29 feet what is the measurements in yards and feet

Answers

Answer:

BURRITOS

Step-by-step explanation:

Answer:

9.66666666 yards  repeating

Step-by-step explanation:

The formula is to divide feet by 3,so 29/3=9.666666 repeating.

Mark me brainliest if I helped:D

Suppose that 73.2% of all adults with type 2 diabetes also suffer from hypertension. After developing a new drug to treat type 2 diabetes, a team of researchers at a pharmaceutical company wanted to know if their drug had any impact on the incidence of hypertension for diabetics who took their drug. The researchers selected a random sample of 1000 participants who had been taking their drug as part of a recent large-scale clinical trial and found that 718 suffered from h The researchers want to use a one-sample z-test for a population have hypertension while taking their new drug, p, is different from the proportion of all type 2 diabetics who have hypertension. They decide to use a significance level of a 0.01. to see if the proportion of type 2 diabetics who Determine if the requirements for a one-sample z-test for a proportion been met. If the requirements have not been met leave the rest of the questions blank. O The requirements have not been met because there are two samples: the type 2 diabetics with hypertension who are not taking the drug and the ones who are taking the drug O The requirements have been met because the sample was appropriately selected, the variable of interest is categorical with two possible outcomes, and the sampling distribution is approximately normal. O The requirements have not been met because the population standard deviation is unknown. O The requirements have been met because the sample was appropriately selected, the variable of interest is categorical with two possible outcomes, and the sample size is at least 30.

Answers

Using the normal approximation to the binomial, it is found that the correct option is:

The requirements have been met because the sample was appropriately selected, the variable of interest is categorical with two possible outcomes, and the sampling distribution is approximately normal.

The binomial distribution, which is the probability of exactly x successes on n repeated trials, with p probability of success on each trial(each trial either is a success or it is a failure), can be approximated to the normal if in a sample, there are at least 10 successes and at least 10 failures.

In this problem:

Random sample of 1000, hence, appropriately selected.For each person, there are two possible outcomes, either they suffered from hypertension, or they did not, hence, the variable is categorical.718 have hypertension, 282 have not, at least 10 of each, hence, the sampling distribution is approximately normal.

Thus, the correct option is:

The requirements have been met because the sample was appropriately selected, the variable of interest is categorical with two possible outcomes, and the sampling distribution is approximately normal.

A similar problem is given at https://brainly.com/question/24261244

Write parametric equations of the line 9x + y = -1
a. X= 1, y = -9z+ 9
b. X= 1, y =--9
C. X= t_y= 9- 1
d. X= 1, y=-97- 1

Answers

The question is faulty written. I'll solve it assuming values for one variable and provide the answer to guide the student in their own question

Answer:

x=t

y=-1-9t

Step-by-step explanation:

Parametric Equations

Given an explicit relation between variables x and y, we can find expression for both of them in term of a third parameter t, such as

x=f(t)

y=g(t)

provided the main relation holds.

we have the equation

9x+y=-1

There are infinitely many forms to find parametric expressions for the variables, let's assume

x=t

Solving the equation for y

y=-1-9x=-1-9t

Thus the parametric equations are

x=t

y=-1-9t

From the Balance Sheet and Income Statement Information below, calculate the following ratios:
[a.] Return on Sales
[b.] Current Ratio
[c.] Inventory Turnover – If there are no beginning inventory or ending inventory figures, then use the Merchandise Inventory figure.

ABC INC. Income Statement Year Ended December 31, 2018
Net Sales Revenue $20,941
Cost of Goods Sold 7,055
Gross Profit 13,886
Operating Expenses 7,065
Operating Income 6,821
Interest Expense 210
Income Before Taxes 6,611
Income Tax Expense 2,563
Net Income $4,048

ABC INC. Balance Sheet December 31, 2018 Assets
Current Assets
Cash $2,450
Accounts Receivable 1,813
Merchandise Inventory 1,324
Prepaid Expenses 1,709
Total Current Assets 7,296
Long-Term Assets 18,500
Total Assets $25,796

Liabilities
Current Liabilities $7,320
Long-Term Liabilities 4,798
Total Liabilities 12,028

Stockholders’ Equity
Common Stock 6,568
Retained Earnings 7,200
Total Stockholders’ Equity 13,768
Total Liabilities & Stockholders’ Equity $25,796

1. NOTES: 1- Round up
2- Your responses should be in the following formats

a. XX% b. x.xx c. x.xx

Answers

Answer:

a)   32.57%

b)   0.9967

c)   5.3285 times.

Step-by-step explanation:

a. Return on sales is a simple ratio that is calculated by dividing the operating profit/income  by the net sales revenue.

-Given net sales revenue is $20,941 and the operating income is $6,821:

[tex]Return \ on \ sales(ROS)=\frac{Operating \ Income}{Net \ Sales \ Revenue}\\\\=\frac{6821}{20941}\\\\=0.3257\\\\=32.57\%[/tex]

Hence, the return on sales is 32.57%

b. Current ratio is a simple ratio that compares the current assets to the current liabilities.

-Given that current assets=$7,296 and current liabilities=$7,320, the current ratio is calculated as below:

[tex]Current \ Ratio=\frac{Current \ Assets}{Current \ Liabilities}\\\\=\frac{7296}{7320}\\\\=0.9967[/tex]

Hence, the current ratio is 0.9967

c. Inventory turnover is a measure of the frequency with which a company's goods is used or sold and subsequently restocked in given period.

-It's calculated by dividing the cost of goods sold by the average invenory as below:

[tex]Inventory \ Turnover=\frac{Cost \ of \ goods \ sold}{mean \ Invenory}\\\\\\=\frac{7055}{1324}\\\\=5.3285\ times[/tex]

Hence, the inventory turnover is 5.3285 times.

Final answer:

The calculated ratios for ABC Inc. are: Return on Sales of 19.3%, a Current Ratio of 0.997, and an Inventory Turnover of 5.33.

Explanation:

To calculate the ratios requested, we'll be using the financial data from ABC Inc.'s income statement and balance sheet.

[a.] Return on SalesThe Return on Sales (ROS) is calculated by dividing the Net Income by the Net Sales Revenue. Here it's $4,048 / $20,941 = 0.193 or 19.3%.[b.] Current RatioThe Current Ratio represents a company's ability to repay its short-term liabilities with its short-term assets. It's calculated by dividing Total Current Assets by Total Current Liabilities: $7,296 / $7,320 = 0.997.[c.] Inventory TurnoverSince we don't have beginning inventory or ending inventory figures, we use the Merchandise Inventory of $1,324 in our calculation. Inventory Turnover is Cost of Goods Sold divided by Merchandise Inventory: $7,055 / $1,324 = 5.33.

Learn more about Financial Ratios here:

https://brainly.com/question/31531442

#SPJ3

A corporation is considering a new issue of convertible bonds, mandagemnt belives that the offer terns will be founf attractiv by 20% of all its current stockholders, suppoer that the belif is correct, a random sample of 130 stockholderss is taken.

a. What is the standard error of the sample proportion who find this offer attractive?
b. What is the probability that the sample proportion is more than 0.15?
c. What is the probability that the sample proportion is between 0.18 and 0.22?
d. Suppose that a sample of 500 current stockholders had been taken. Without doing the calculations, state whether the probabilities in parts (b) and (c) would have been higher, lower, or the same as those found.

Answers

Answer:

a. What is the standard error of the sample proportion who find this offer attractive? =  0.0351

b. What is the probability that the sample proportion is more than 0.15? = 0.9222

c. What is the probability that the sample proportion is between 0.18 and 0.22? =  0.4314

Step-by-step explanation:

see attachment for explanation

Answer:

Step-by-step explanation:

Given that,

p = 0.20

1 - p = 1 - 0.20 = 0.80

n = 130

\mu\hat p = p = 0.20

A) \sigma \hat p =  \sqrt[p( 1 - p ) / n] = \sqrt [(0.20 * 0.80 ) / 130] = 0.0351

B) P( \hat p > 0.15) = 1 - P( \hat p < 0.15)

= 1 - P(( \hat p - \mu \hat p ) / \sigma \hat p < (0.15 - 0.20) / 0.0351 )

= 1 - P(z < -1.42)

Using z table

= 1 - 0.0778

= 0.9222

C) P(0.18 < \hat p < 0.22)

= P[(0.18 - 0.20) / 0.0351 < ( \hat p - \mu \hat p ) / \sigma \hat p < (0.22 - 0.20) / 0.0351]

= P(-0.57 < z < 0.57)

= P(z < 0.57) - P(z < -0.57)

Using z table,    

= 0.7157 - 0.2843

= 0.4314

6.6.1. Rao (page 368, 1973) considers a problem in the estimation of linkages in genetics. McLachlan and Krishnan (1997) also discuss this problem and we present their model. For our purposes, it can be described as a multinomial model with the four categories C1, C2, C3 , and C4 . For a sample of size n, let X = (X1, X2, X3 , X4 )′ denote the observed frequencies of the four categories. Hence, n = +4 i=1 Xi. The probability model is

Answers

Answer:

Step-by-step explanation:

find attached the solution

Follow the steps to find the value of x.

1. Addition property of equality. One-fifth (x) minus two-thirds = four-thirds. One-fifth (x) minus two-thirds + two-thirds = four-thirds + two-thirds. 2. Multiplicative property of equality. One-fifth (x) (StartFraction 5 over 1 EndFraction) = StartFraction 6 over 3 EndFraction (StartFraction 5 over 1 EndFraction)

Answers

Answer:

  x = 10

Step-by-step explanation:

After your second step, simplify the result:

  [tex]x=\dfrac{6}{3}\cdot\dfrac{5}{1}=2\cdot 5\\\\x=10[/tex]

Answer:

10

Step-by-step explanation:

An "x-bar" control chart is developed for recording the mean value of a quality characteristic by use of a sample size of three. The control chart has control limits (LCL and UCL) of 1.000 and 1.020 pounds, respectively. If a new sample of three items has weights of 1.023, 0.999, and 1.025 pounds, what can we say about the lot (batch) it came from?

Answers

Answer:

0.0879 or 8.79 % is the process capability of the batch and the batch doesn't meet the control limits.

Step-by-step explanation:

mean of three readings=(1.023+0.999+1.025)/3= 1.0157

standard deviation=√((1.023-1.0157)² + (0.999-1.0157)²+ (1.025-1.0157)²)/3)

                             = 0.0163

Process Capability= min((USL-mean)/3SD, (Mean-LSL)/3SD)

(USL-mean)/3SD= (1.02-1.0157)/(3×0.0163)= 0.0879

(Mean-LSL)/3SD)= (1.0157-1.00)/(3×0.0163)= 0.321

Process capability=(0.0879,0.321)

0.0879 or 8.79 % is the process capability

Final answer:

The x-bar control chart and other statistical tools are used to assess whether product weights are within acceptable limits, thereby determining if quality standards are met and if equipment recalibration might be necessary.

Explanation:

The question involves evaluating if a batch of products (in this case, potentially cereal boxes, soda servings, lifting weights, apples, or lettuce) meets certain quality control standards, specifically relevant to the weights and measurements being within predefined control limits or tolerances. Using an x-bar control chart and statistical methods like hypothesis testing or calculating percent uncertainty, quality control specialists can determine whether a product's quality characteristic, such as weight, is within acceptable ranges, thereby assessing if equipment recalibration is needed or if a batch complies with quality standards.

For instance, if a new sample of items has weights that fall outside of the established control limits on the x-bar control chart, it would suggest that there may be an issue with the process control, indicating potential problems with the lot from which the sample was taken.

Concerning the exercises provided: In the case of the cereal boxes with a standard deviation higher than the acceptable limit, it suggests that recalibration might be needed. For the Class A apples, a hypothesis test at the specified significance levels would help determine compliance with weight tolerance. Calculating the percent uncertainty of a bag's weight informs us about the relative size of the uncertainty in measurements.

Learn more about Quality Control here:

https://brainly.com/question/33040812

#SPJ3

Paul plays a video game that is scored by round . In about 500 rounds his career average is 20 points per round with a standard deviation of 5 points per round . Suppose we take random samples of past 3 rounds and calculate the mean number of points scored in each sample . What is the mean and sd of sampling distribibution

Answers

Answer:

The mean of the sampling distribution is 20 and the standard deviation is 2.89.

Step-by-step explanation:

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Population:

Mean 20, standard deviation of 5.

Sampling distribution:

3 rounds

Mean = 20

[tex]s = \frac{5}{\sqrt{3}} = 2.89[/tex]

The mean of the sampling distribution is 20 and the standard deviation is 2.89.

Final answer:

The mean of Paul's sampling distribution is 20 points per round, and the standard deviation is approximately 2.89 points per round, calculated using the formula for the standard error of the mean.

Explanation:

The scenario involves a sampling distribution of the mean scores over random samples of 3 rounds from Paul's video game scores. To calculate the mean and standard deviation (sd) of the sampling distribution, we use the following formulas:

The mean of the sampling distribution (μX) is equal to the population mean (μ), which is 20 points per round.The standard deviation of the sampling distribution (σX), also known as the standard error, is equal to the population standard deviation (σ) divided by the square root of the sample size (n), so σX = σ/√n. In this case, it would be 5/√3, approximately 2.89 points per round.

Therefore, the mean of the sampling distribution is 20, and the standard deviation is approximately 2.89.

Other Questions
Why did the United States support south Vietnam Profit is calculated by subtracting costs from________ And a wildlife preserve 46 ducks are captured tagged and then released. Later to her ducks are examined in four of the 200 ducks are found to have tags. Estimate the number of ducks in the preserve You work for a small startup company that just hired five new employees, doubling its number of team members. In preparation for the new employees first day in the office, you add five new user accounts to your CRM (customer relationship management) software subscription, a service that is hosted in the cloud. What aspect of cloud computing has worked to your advantage? In 1451 the king of Spain declared the blood purity statute that declared Jewish converts could not hold office in the Catholic Church.What did this assert about Jews that would later become an accepted belief?a. Jewish people are to be considered a race of people and not just a religious group.b. Jewish people are not allowed to convert to other religions.c. Judaism is first and foremost a religion and not a race of people.d. Jewish people are a dominant race and are a threat to world dominance. Wall-E makes 2 products, frames and hangers. Frames have a contribution margin per unit of $6.00 and hanger has a contribution margin per unit of $11.00. Wall-E has annual fixed costs of $290,000 units. Assume that frames and hangers are sold in a 3:1 mix (3 frames are sold for each hanger). How many units of each must be sold to break-even Noe installs and configures software on home computers. He charges $125 per job. His monthly expenses are $1,600. How many jobs must he work in order to make a profit of at least $2,400? When the Emancipation Proclamation was passed whom did it free?A) slaves in the Border statesB) slaves in territories out WestC) slaves in all U.S. states and territoriesD) slaves from states that seceded from the Union The cost of an international call from New York to New Delhi is calculated as follows: Connection fee, $1.99; $2.00 for the first three minutes; and $0.45 for each additional minute. Write a program that prompts the user to enter the number of minutes the call lasted and outputs the amount due. Format your output with 2 decimal places c++ The function y=-5x+2 is transformed by reflecting it over the y axis. What is the equation of the new function? Lilly deposited $3000 into a Roth IRA that grew to $6000 at her retirement. IfLindsay is currently in the 10% tax bracket and is retired, how much tax willshe have to pay when she withdraws the entire $6000?OA. $300OOOB. $0c. $600D. $900 At Spyglass Inc., a private eye firm, new hires are chosen with utmost care. The reputation of the company is to provide clients with one hundred percent correct information on any matter that they want investigated. Which of the following methods should it use to hire new employees?A) multiple hurdles approachB) compensatory approachC) contingent approachD) normative approach Neil saves money at the end of each week. The function m(x) = 25x + 50 models the amount of money he has saved after x weeks. Whatis the most appropriate domain for the function?A. all non-negative integersB. all positive real numbersC. all real numbersD. all integers The predetermined overhead rate for Weed-B-Gone is $8, comprised of a variable overhead rate of $5 and a fixed rate of $3. The amount of budgeted overhead costs at normal capacity of $240,000 was divided by normal capacity of 30,000 direct labor hours, to arrive at the predetermined overhead rate of $8. Actual overhead for June was $15,800 variable and $9,100 fixed, and standard hours allowed for the product produced in June was 3,000 hours. The total overhead variance is:A. $900 U.B. $900 F.C. $4,900 F.D. $4,900 U. Q2: The student council at Hillsdale High School is making T-shirts to sell for a fundraiser, at a price of $ 10 10 each. The costs, meanwhile, are $ 9 9 per shirt, plus a one-time setup fee of $ 79 79 . Selling a certain number of shirts will allow the student council to cover their costs. What will the costs be? How many shirts must be sold? The sum of 3 times a number and 4 is no more than 10 and no less than -8. Micahs bicycle wheel has a radius of 14 inches. About how far will micahs bicycle travel each time his wheel turns one full rotation? A big ship drops its anchor.E represents the anchor's elevation relative to the water's surface (in meters) as a function of time t (in seconds).E=2.4t+75How far does the anchor drop every 5 seconds? which is required for the standard of living to go up Which is the smallest bird?