A ball is thrown from the top of one building toward a tall building 50 m away. The initial velocity of the ball is 20 m/s at 40° above the horizontal. How far above or below its original level will the ball strike the opposite wall?

Answers

Answer 1

Answer:

Ball hit the tall building 50 m away below 10.20 m its original level

Explanation:

Horizontal speed = 20 cos40 = 15.32 m/s

Horizontal displacement = 50 m

Horizontal acceleration = 0 m/s²

Substituting in s = ut + 0.5at²

    50 = 15.32 t + 0.5 x 0 x t²

     t = 3.26 s

Now we need to find how much vertical distance ball travels in 3.26 s.

Initial vertical speed  = 20 sin40 = 12.86 m/s

Time = 3.26 s

Vertical acceleration = -9.81 m/s²

Substituting in s = ut + 0.5at²

    s = 12.86 x 3.26 + 0.5 x -9.81 x 3.26²

    s = -10.20 m

So ball hit the tall building 50 m away below 10.20 m its original level

Answer 2

The distance the ball will strike the opposite wall is 32.79 m.

Time of motion of the ball

The time of motion of the ball from the given height is calculated as follows;

h = vsinθ(t) + ¹/₂gt²

50 = 20 x sin(40)t + 0.5(9.8)t²

50 = 12.86t + 4.9t²

4.9t² + 12.86t - 50 = 0

solve the quadratic equation using formula method,

t = 2.14 s

Horizontal distance of the ball

The horizontal distance of the ball from the initial position is calculated as follows;

X = vcosθ(t)

X = 20 x cos(40) x 2.14

X = 32.79 m

Thus, the distance the ball will strike the opposite wall is 32.79 m.

Learn more about horizontal distance here: https://brainly.com/question/24784992


Related Questions

A 0.45 m radius, 500 turn coil is rotated one-fourth of a revolution in 4.01 ms, originally having its plane perpendicular to a uniform magnetic field. Find the magnetic field strength in T needed to induce an average emf of 10,000 V.

Answers

Answer:

B = 0.126 T

Explanation:

As per Faraday's law we know that rate of change in magnetic flux will induce EMF in the coil

So here we can say that EMF induced in the coil is given as

[tex]EMF = \frac{\phi_2 - \phi_1}{\Delta t}[/tex]

initially the coil area is perpendicular to the magnetic field

and after one fourth rotation of coil the area vector of coil will be turned by 90 degree

so we can say

[tex]\phi_1 = NBAcos 0 = BA[/tex]

[tex]\phi_2 = NBAcos 90 = 0[/tex]

now we will have

[tex]EMF = \frac{NBA}{t}[/tex]

[tex]10,000 V = \frac{(500)(B)(\pi \times 0.45^2)}{4.01\times 10^{-3}}[/tex]

[tex]B = 0.126 T[/tex]

A particle is going into a nozzle at 10 m/s and then after 3m the particle is slowing down to 2 m/s. The particle travels through a straight path down the middle of the nozzle. How do you find average acceleration using eularian and then Lagrangian view point.

Answers

Answer:

[tex]a = -16 m/s^2[/tex]

Explanation:

As we know that the initial speed of the particle when it enters the nozzle is given as

[tex]v_i = 10 m/s[/tex]

after travelling the distance d = 3 m it will have its final speed as

[tex]v_f = 2 m/s[/tex]

now we know that when acceleration is constant the equation of kinematics is applicable

so we will have

[tex]v_f^2 - v_i^2 = 2 a d[/tex]

[tex]2^2 - 10^2 = 2(a)(3)[/tex]

[tex]a = -16 m/s^2[/tex]

Final answer:

To find the average acceleration from a fluid dynamics perspective, one can use the Eulerian viewpoint to observe velocity changes at a fixed point, or follow the particle through its motion using the Lagrangian viewpoint. However, the provided information is insufficient for precise calculation without the time variable or assumption of constant deceleration.

Explanation:

To find the average acceleration of a particle that slows down from 10 m/s to 2 m/s over a distance of 3 meters, we can use the concepts of Eulerian and Lagrangian viewpoints in fluid dynamics, though it is more common to apply these in the context of fluid flow rather than individual particles in motion.

In the Eulerian viewpoint, we observe the change of velocity at a fixed point in space as the particle passes through. Writing the kinematic equation δv = aδt, where δv is the change in velocity and a is the average acceleration, we can rearrange to find a = δv / δt.

The Lagrangian viewpoint, on the other hand, follows the particle along its path. Given the initial and final velocities (v₀=10 m/s and vf=2 m/s) and the distance traveled (3 m), we can use the kinematic equation vf^2 = v₀^2 + 2aδx to solve for a. In this case, δx is 3m, and vf and v₀ are given. From this equation, a = (vf^2 - v₀^2) / (2δx).

If actual calculations are performed, please note that the given information in the problem statement is insufficient to solve for time, as neither the time taken to travel through the nozzle nor the deceleration time is provided. Assuming the particle moves at a constant deceleration, one can calculate the time through δv = aδt and then average acceleration using that time duration. However, without additional data or time measurement, we cannot find a precise numerical value for acceleration.

While finding the spring constant, if X1 = 12 cm, X2 = 15 cm, and hanging mass = 22 grams, the value of spring constant K would be:________ (write your answer in newtons/meter)

Answers

Answer:

If x₁=12 cm then k=1.7985 N/m

If x₂=15 cm then k=1.4388 N/m

Explanation:

Hanging mass= 22 g=0.022 kg

Acceleration due to gravity g=9.81 m/s²

If x₁=displacement= 12 cm=0.12 m

k= spring constant

[tex]F=ma\\\Rightarrow F=0.022\times 9.81\\\Rightarrow F=0.21582\ N[/tex]

[tex]\text {For spring}\\F=kx\\\Rightarrow 0.21582=k\times 0.012\\\Rightarrow k=1.7985\ N/m\\[/tex]

∴k = 1.7985 N/m

If x₂=15 cm=0.15 m

Force of the hanging mass is same however the spring constant will change

[tex]\text {For spring}\\F=kx\\\Rightarrow 0.21582=k\times 0.015\\\Rightarrow k=1.4388\ N/m\\[/tex]

∴k = 1.4388 N/m

As the mass is not changing the spring constant has to change. That means that here there are two spring one with k=1.7985 N/m and the other with k= 1.4388 N/m

A force of 20 N holds an ideal spring with a 10-N/m spring constant in compression. The potential energy stored in the spring is: a. 0.5 J b. 2.5 J c. 5J d. 20 J e. 200 J

Answers

Final answer:

The potential energy stored in the spring is calculated using the formula U = 1/2kx^2. With a force of 20 N and a spring constant of 10 N/m, the displacement is found to be 2 m, and thus the potential energy is 20 J.

Explanation:

The question is related to the calculation of the potential energy stored in an ideal spring. To find this, we use the formula for elastic potential energy, which is U = 1/2kx2, where U is the potential energy, k is the spring constant, and x is the displacement (or compression) of the spring from its rest position.

In this case, since the force holding the spring in compression is 20 N and the spring constant is 10 N/m, we first need to find the displacement x. The force F applied to a spring is also given by F=kx, so rearranging for x gives us x = F/k = 20 N / 10 N/m = 2 m. Plugging this into the potential energy formula, we get U = 1/2 * 10 N/m * (2 m)2 = 1/2 * 10 * 4 = 20 J.

Therefore, the potential energy stored in the spring is 20 J.

A 640-N hunter gets a rope around a 3200-N polar bear. They are stationary, 20m apart, on frictionless level ice. When the hunter pulls the polar bear to him, the polar bear will move: A. 1:0m B. 3:3m C. 10m D. 12m E. 17m

Answers

Answer:

When the hunter pulls the polar bear to him, the polar bear will move 3.3 meters.

Explanation:

It is given that, a 640-N hunter gets a rope around a 3200-N polar bear. They are stationary, 20 m apart, on friction less level ice.

The given system is an isolated system which is initially at rest and they both will meet at the center of mass. Then finding the center of mass of the system as :

[tex]X_{com}=\dfrac{m_1x_1+m_2x_2}{m_1+m_2}[/tex]

Multiplying "g" to the numerator and denominator both as :

[tex]X_{com}=\dfrac{gm_1x_1+m_2x_2g}{m_1g+m_2g}[/tex]

[tex]X_{com}=\dfrac{640(0)+3200\times 20}{640+3200}=16.67\ m[/tex]

i.e. 640 N hunter moves at a distance of 16.67 meters and when the hunter pulls the polar bear to him, the polar bear will move, 20 m - 16.67 m = 3.3 meters. Hence, this is the required solution.

An insulated cup contains 250g of water at 20° C. What will the water temperature be after 100g of ice at 0° C is added to the cup and allowed to melt?

Answers

answer

50°C

Explanation:

Mw*©=Mi*©

250*20=100*©

©=250*20/100

©=50°C//

Final answer:

To find the final temperature after mixing ice and water, one must calculate the heat required to melt the ice and compare it to the heat the water loses in the process, using the specific heat of water and the enthalpy of fusion of ice.

Explanation:

To determine the final temperature of water after adding 100g of ice at 0°C to 250g of water at 20°C, we must consider the heat transfer involved in the process of melting ice and the subsequent equilibrium between the melted ice and the initial water. The specific heat of water (4.184 J/(g°C)) and the enthalpy of fusion of ice (6.01 kJ/mol) are crucial to this calculation.

The process involves calculating the heat required to melt the ice (Q = mfusion * ΔHfusion) and equating it to the heat lost by the water as it cools (Q = mcwater*ΔT), and solving for the final temperature. However, in this scenario, it's important to note that without the specific values or further calculations included in the question details, we can't provide a precise numerical answer but can outline the method to find it.

A driver parked his car on a steep hill and forgot to set the emergency brake. As a result, the car rolled down the hill and crashed into a parked truck. If the car was moving at 10 mph (4.5 m/s) when it hit the truck 7.0 seconds after it began to move, what was the car’s average acceleration while it rolled down the hill? Define the positive x direction to be down the hill.

Answers

Answer:0.642

Explanation:

Given

initially car is at rest i.e u=0

When car hits the truck it's velocity is 4.5 m/s

it hits the truck after 7 sec

Now average acceleration of car is =[tex]\frac{change\ in\ velocity}{time\ taken}[/tex]

average acceleration of car =[tex]\frac{\left ( final velocity\right )-\left ( initial velocity\right )}{time}[/tex]

average acceleration of car=[tex]\frac{\left ( 4.5\right )-\left ( 0\right )}{7}[/tex]

average acceleration of car=[tex]0.642 m/s^{2}[/tex]

Taking Down hill as positive x axis

average acceleration of car=[tex]0.642\hat{i}[/tex]

An electron moving with a speed of 1.50*10^7 m/sec is projected at right angles into a uniform magnetic field of flux density 6.50*10^-8 w/m^2. Calculate quantitatively the new path of the electron.

Answers

Answer:

the path of the moving charge will be circular path now

Radius = 1312.5 m

Explanation:

Force on a moving charge due to constant magnetic field is given by

[tex]\vec F = q(\vec v \times \vec B)[/tex]

since here force on the moving charge is always perpendicular to the velocity always as it is vector product of velocity and magnetic field so here magnitude of the speed is always constant

Also the force is since perpendicular to the velocity always

so here the path of the moving charge will be circular path now

now to find out the radius of this circular path

[tex]F = \frac{mv^2}{R}[/tex]

[tex]qvBsin90 = \frac{mv^2}{R}[/tex]

[tex]R = \frac{mv}{qB}[/tex]

[tex]R = \frac{9.1\times 10^{-31}(1.50 \times 10^7)}{1.6 \times 10^{-19}(6.50 \times 10^{-8})}[/tex]

[tex]R = 1312.5 m[/tex]

While you watch a parade, a band on a float passes you. You detect the frequency of a note played on a flute to be 356 Hz when the float is coming toward you and 348 Hz after the float passes you. Part A At what speed is the float traveling

Answers

Answer:

Float is travelling at speed of 3.86 m/s

Explanation:

As per Doppler's effect we know that when source and observer moves relative to each other then the frequency is different from actual frequency

so here when source moves closer to the observer

[tex]f_1 = f_o(\frac{v}{v - v_s})[/tex]

now we have

[tex]356 = f_o(\frac{v}{v - v_s})[/tex]

again when source moves away from the observer then we have

[tex]f_2 = f_o(\frac{v}{v + v_s})[/tex]

[tex]348 = f_o(\frac{v}{v + v_s})[/tex]

now divide above two equations

[tex]\frac{356}{348} = \frac{v + v_s}{v - v_s}[/tex]

[tex]1.023 = \frac{v + v_s}{v - v_s}[/tex]

[tex]1.023( v - v_s) = (v + v_s)[/tex]

here we know that the speed of sound in air is 340 m/s

so we have

[tex]1.023(340 - v_s) = (340 + v_s)[/tex]

[tex]7.816 = 2.023 v_s[/tex]

now we have

[tex]v_s = 3.86 m/s[/tex]

Final answer:

The speed of the float in the parade is determined using the observed frequencies of the flute when the band is approaching and moving away informed by the Doppler Effect physics theory. You generate equations for both scenarios and solve for the speed of the source, using the average speed of sound in the air.

Explanation:

This problem relates to the Doppler Effect, which explains why the frequency of a sound changes when the source of the sound is moving in relation to the observer. The formula to calculate a Doppler Shift when the source is moving away (as in the float in the parade) is given by: f' = f [(v + v0) / v] and when the source is approaching is given by: f' = f [(v - v0) / v]. Where, f' is the observed frequency, f is the source frequency, v is the sound speed (340 m/s), and v0 is the speed of the source.

In the problem, it's given that the observed frequencies when the band is approaching and moving away are 356 Hz and 348 Hz, respectively. By setting up two equations using the Doppler Shift formula for both observed frequencies, we can solve for v0. In this case, we use the average speed of sound in the air, which is about 340 m/s.

Learn more about Doppler Effect here:

https://brainly.com/question/15318474

#SPJ3

A capacitor is connected to a 9 V battery and acquires a charge Q. What is the charge on the capacitor if it is connected instead to an 18 V battery? A capacitor is connected to a 9 V battery and acquires a charge Q. What is the charge on the capacitor if it is connected instead to an 18 V battery? Q Q/2 2Q 4Q

Answers

Answer:

Option C is the correct answer.

Explanation:

We have charge stored in a capacitor

           Q = CV

C is the capacitance and V is the voltage.

A capacitor is connected to a 9 V battery and acquires a charge Q.

That is

          Q = C x 9 = 9C

What is the charge on the capacitor if it is connected instead to an 18 V battery

That is

          Q' = C x 18 = 9C x 2 = 2Q

Option C is the correct answer.      

Final answer:

When the voltage on a capacitor is doubled, the charge on the capacitor doubles as well. Hence, if a capacitor initially has a charge Q at 9V, it will have a charge of 2Q at 18V.

Explanation:

The subject of the question is the behavior of a capacitor when it is connected to various voltage sources. The charge Q on a capacitor is given by the equation Q = CV, where C is the capacitance of the capacitor and V is the voltage across it. So if a capacitor is charged by a 9V battery (Q = C*9V), and then connected to an 18V battery, its new charge (lets call it Q1) would be C*18V. Therefore, Q1 = 2Q, since the voltage is doubled, hence, the charge on the capacitor also doubles.

Learn more about Capacitor charging here:

https://brainly.com/question/33555960

#SPJ12

A parallel-plate air capacitor with a capacitance of 260 pF has a charge of magnitude 0.155 μC on each plate. The plates have a separation of 0.313 mm. What is the potential difference between the plates?

Answers

Answer:

The potential difference between the plates is 596.2 volts.

Explanation:

Given that,

Capacitance [tex]C=260\ pF[/tex]

Charge [tex]q=0.155\ \mu\ C[/tex]

Separation of plates = 0.313 mm

We need to calculate the potential difference between the plates

Using formula of potential difference

[tex]V= \dfrac{Q}{C}[/tex]

Where, Q = charge

C = capacitance

Put the value into the formula

[tex]V=\dfrac{0.155\times10^{-6}}{260\times10^{-12}}[/tex]

[tex]V=596.2\ volts[/tex]

Hence,The potential difference between the plates is 596.2 volts.

A composite wall 8 m long and 4 m high consists of 4 cm of brick, 8 cm of concrete, 6 cm of fiberglass and 10 cm of corkboard. The inside temperature is 18°C, and the outside temperature is 40°C. How much heat is flow into the house through this wall in 10 hours?

Answers

Answer:

Heat flow through walls in 10 hours is

[tex]Q = 6.1 \times 10^6 J[/tex]

Explanation:

Thermal conductivity of all the materials is as follows

1). Concrete = 0.8

2). Brick = 0.6

3). Fibreglass = 0.04

4). Corkboard = 0.04

Area of the wall is given as

[tex]A = (8 \times 4) = 32 m^2[/tex]

now the thermal resistance due to each wall is given as

[tex]R_1 = \frac{0.04}{0.6(32)} = 2.08 \times 10^{-3}[/tex]

[tex]R_2 = \frac{0.08}{0.8(32)} = 3.125 \times 10^{-3}[/tex]

[tex]R_3 = \frac{0.06}{0.04(32)} = 46.87 \times 10^{-3}[/tex]

[tex]R_2 = \frac{0.10}{0.04(32)} = 78.13 \times 10^{-3}[/tex]

Now total thermal resistance of all walls

[tex]R = R_1 + R_2 + R_3 + R_4[/tex]

[tex]R = (2.08 + 3.125 + 46.87 + 78.13) \times 10^{-3}[/tex]

[tex]R = 0.130[/tex]

now rate of heat transfer per second is given as

[tex]\frac{dQ}{dt} = \frac{T_1 - T_2}{R}[/tex]

[tex]Q = \frac{40 - 18}{0.130}(10 \times 3600)[/tex]

[tex]Q = 6.1 \times 10^6 J[/tex]

In case of a damped oscillation. (a) Amplitude increases (b) Remains constant (c) None (d) Amplitude reduces

Answers

Answer:

option (d)

Explanation:

There are two types of oscillations.

1. Damped oscillations: The oscillations in which the amplitude of a wave goes on decreasing continuously are called damped oscillations.

For example, the oscillations of a seismic wave.

2. Undamped oscillations: The oscillations in which the amplitude o a wave remains constant are called undamped oscillations.

for example, oscillations of light waves.

Light that is polarized along the vertical direction is incident on a sheet of polarizing material. Only 92% of the intensity of the light passes through the sheet and strikes a second sheet of polarizing material. No light passes through the second sheet. What angle does the transmission axis of the second sheet make with the vertical?

Answers

Final answer:

The transmission axis of the second sheet makes a right angle (90 degrees) with the vertical given that no light passes through it. This is based on Malus's Law for polarization.

Explanation:

The phenomenon described in your question is polarization, which is a characteristic of transverse waves such as light. The sheet of polarizing material allows only the light polarized in the same direction as the sheet's axis of transmission to pass through it. Following Malus's Law for polarization, we can determine that if no light passes through the second polarizer, its transmission axis must be at a right angle (90 degrees) to the initial polarization direction, which is vertical in this case.

The Malus's Law is an equation that describe the intensity of the light after passing through a polarizer as: I = I0 cos^2 θ where I0 is the initial intensity of the light, θ is the angle between the light polarization direction and the transmission axis of the polarizer. If I = 0, then cos^2 θ = 0, which indicates that θ is 90 degrees. This concept comes under the area of wave optics in Physics.

Learn more about Polarization here:

https://brainly.com/question/33242453

#SPJ12

Final answer:

The transmission axis of the second sheet of polarizing material makes a 90-degree angle with the vertical because it must be perpendicular to the first sheet's axis for no light to pass through. Hence, with the first polarizer vertical, the second must be horizontal.

Explanation:

The question asks about the angle that the transmission axis of the second sheet of polarizing material makes with the vertical, given that no light passes through. According to the principles of light polarization, if no light passes through a second sheet of polarizing material, it means the transmission axis of the second sheet is perpendicular to the axis of the first one.

Since the first sheet polarizes light vertically, this implies the transmission axis of the second sheet must be horizontal. Therefore, as per common geometric considerations where vertical and horizontal lines are perpendicular, the angle between the vertical (first filter axis) and horizontal (second filter axis) is 90 degrees.

Learn more about Light Polarization here:

https://brainly.com/question/29217577

#SPJ3

The mean time between collisions for electrons in room temperature copper is 2.5 x 10-14 s. What is the electron current in a 2 mm diameter copper wire where the internal electric field strength is 0.01 V/m?

Answers

Answer:

1.87 A

Explanation:

τ = mean time between collisions for electrons = 2.5 x 10⁻¹⁴ s

d = diameter of copper wire = 2 mm = 2 x 10⁻³ m

Area of cross-section of copper wire is given as

A = (0.25) πd²

A = (0.25) (3.14) (2 x 10⁻³)²

A = 3.14 x 10⁻⁶ m²

E = magnitude of electric field = 0.01 V/m

e = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C

m = mass of electron = 9.1 x 10⁻³¹ kg

n = number density of free electrons in copper = 8.47 x 10²² cm⁻³ = 8.47 x 10²⁸ m⁻³

[tex]i[/tex] = magnitude of current

magnitude of current is given as

[tex]i = \frac{Ane^{2}\tau E}{m}[/tex]

[tex]i = \frac{(3.14\times 10^{-6})(8.47\times 10^{28})(1.6\times 10^{-19})^{2}(2.5\times 10^{-14}) (0.01)}{(9.1\times 10^{-31})}[/tex]

[tex]i[/tex]  = 1.87 A

A coil of 1000 turns of wire has a radius of 12 cm and carries a counterclockwise current of 15 A. If it is lying flat on the ground, and the Earth’s magnetic field points due north, has a magnitude of 5.8 x 10-5 T, and makes a downward angle of 25° with the vertical, what is the torque on the loop?

Answers

Answer:

0.01663 Nm

Explanation:

N = 1000, r = 12 cm = 0.12 m, i = 15 A, B = 5.8 x 10^-5 T, θ = 25

Torque = N i A B Sinθ

Torque = 1000 x 15 x 3.14 x 0.12 x 0.12 x 5.8 x 10^-5 x Sin 25

Torque = 0.01663 Nm

A projectile is fired vertically with an initial velocity of 192 m/s. Calculate the maximum altitude h reached by the projectile and the time t after firing for it to return to the ground. Neglect air resistance and take the gravitational acceleration to be constant at 9.81 m/s2.

Answers:

h = m
t = s

Answers

Answer:

a) Maximum height reached = 1878.90 m

b) Time of flight = 39.14 seconds.

Explanation:

Projectile motion has two types of motion Horizontal and Vertical motion.  

Vertical motion:  

We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.  

Considering upward vertical motion of projectile.  

In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g [tex]m/s^2[/tex] and final velocity = 0 m/s.  

0 = u sin θ - gt  

t = u sin θ/g  

Total time for vertical motion is two times time taken for upward vertical motion of projectile.  

So total travel time of projectile , [tex]t=\frac{2usin\theta }{g}[/tex]

Vertical motion (Maximum height reached, H) :

We have equation of motion, [tex]v^2=u^2+2as[/tex], where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.  

Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

[tex]0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}[/tex]

In the give problem we have u = 192 m/s, θ = 90° we need to find H and t.

a) [tex]H=\frac{u^2sin^2\theta}{2g}=\frac{192^2\times sin^290}{2\times 9.81}=1878.90m[/tex]

Maximum height reached = 1878.90 m

b) [tex]t=\frac{2usin\theta }{g}=\frac{2\times 192\times sin90}{9.81}=39.14s[/tex]

Time of flight = 39.14 seconds.

Suppose a clay model of a koala bear has a mass of 0.200 kg and slides on ice at a speed of 0.750 m/s. It runs into another clay model, which is initially motionless and has a mass of 0.350 kg. Both being soft clay, they naturally stick together. What is their final velocity?

Answers

Answer:

0.278 m/s

Explanation:

We can answer the problem by using the law of conservation of momentum. In fact, the total momentum before the collision must be equal to the total momentum after the collision.

So we can write:

[tex]mu=(m+M)v[/tex]

where

m = 0.200 kg is the mass of the koala bear

u = 0.750 m/s is the initial velocity of the koala bear

M = 0.350 kg is the mass of the other clay model

v is their final combined velocity

Solving the equation for v, we get

[tex]v=\frac{mu}{m+M}=\frac{(0.200)(0.750)}{0.200+0.350}=0.278 m/s[/tex]

Steam undergoes an adiabatic expansion in a piston–cylinder assembly from 100 bar, 360°C to 1 bar, 160°C. What is work in kJ per kg of steam for the process? Calculate the amount of entropy produced, in kJ/K per kg of steam. What is the magnitude of the maximum theoretical work that could be obtained from the given initial state to the same final pressure?

Answers

Answer:

work is 130.5 kJ/kg

entropy change is 1.655 kJ/kg-k

maximum  theoretical work is 689.4 kJ/kg

Explanation:

piston cylinder assembly

100 bar, 360°C to 1 bar, 160°C

to find out

work  and amount of entropy  and magnitude

solution

first we calculate work i.e heat transfer - work =   specific internal energy @1 bar, 160°C  - specific internal energy @ 100 bar, 360°C    .................1

so first we get some value from steam table with the help of 100 bar @360°C and  1 bar @ 160°C

specific volume = 0.0233 m³/kg

specific enthalpy = 2961 kJ/kg

specific internal energy = 2728 kJ/kg

specific entropy = 6.004 kJ/kg-k

and respectively

specific volume = 1.9838 m³/kg

specific enthalpy = 2795.8 kJ/kg

specific internal energy = 2597.5 kJ/kg

specific entropy = 7.659 kJ/kg-k

now from equation 1 we know heat transfer q = 0

so - w =   specific internal energy @1 bar, 160°C  - specific internal energy @ 100 bar, 360°C

work = 2728 - 2597.5

work is 130.5 kJ/kg

and entropy change formula is i.e.

entropy change =  specific entropy ( 100 bar @360°C)  - specific entropy ( 1 bar @160°C )

put these value we get

entropy change =  7.659 - 6.004

entropy change is 1.655 kJ/kg-k

and we know maximum  theoretical work = isentropic work

from steam table we know specific internal energy is 2038.3 kJ/kg

maximum  theoretical work = specific internal energy - 2038.3

maximum  theoretical work = 2728 - 2038.3

maximum  theoretical work is 689.4 kJ/kg

Final answer:

The work and entropy produced in the adiabatic expansion of steam can be calculated using the First Law of Thermodynamics and thermodynamic principles. Maximum theoretical work corresponds to an isentropic process, which is an ideal, reversible adiabatic process that occurs without an increase in entropy.

Explanation:

The question regards the calculation of work and entropy of an adiabatic expansion process of steam in a piston-cylinder assembly. We'd need specific heat capacity, initial and end states temperatures data and the thermodynamic equations for adiabatic processes. The First Law of Thermodynamics equation dEint = CyndT will be used to calculate internal energy changes. Final work, W, can be calculated using the equation W = pΔV. Entropy change can be obtained using the formula ΔS=Q/T, where Q represents heat transfer, which is 0 for adiabatic processes.

As for the maximum theoretical work obtainable, this corresponds to a reversible adiabatic process or an isentropic process - entropy remains constant. This requires a quasi-static or reversible deformation. The work obtained in this case is at its maximum because there are no irreversibilities or entropy generation, which are responsible for decreasing the performance of real processes and engines.

Learn more about Adiabatic Processes here:

https://brainly.com/question/31437127

#SPJ3

A piece of wood with density of 824 kg/m^3 is tied to the bottom of a pool and the wood does not move. The volume of the wood is 1.2 m^3. What is the tension is in the rope?

Answers

Answer:

2069.76 N

Explanation:

density of wood = 824 kg/m^3

density of water = 1000 kg/m^3

Volume of wood = 1.2 m^3

True weight of wood = volume of wood x density of wood x gravity

True weight of wood = 1.2 x 824 x 9.8 = 9690.24 N

Buoyant force acting on wood = volume of wood x density of water x gravity

Buoyant force acting on wood = 1.2 x 1000 x 9.8 = 11760 N

Tension in the rope = Buoyant force - True weight

tension in rope = 11760 - 9690.24 = 2069.76 N

A singly charged ion of 7Li (an isotope of lithium which lost only one electron) has a mass of 1.16 ×10^-26 kg. It is accelerated through a potential difference of 224 V and then enters a magnetic field with magnitude 0.724 T perpendicular to the path of the ion. What is the radius of the ion’s path in the magnetic field? (Give your answer in decimal using "mm"(millimeter) as unit)

Answers

Explanation:

It is given that,

Mass of lithium, [tex]m=1.16\times 10^{-26}\ kg[/tex]

It is accelerated through a potential difference, V = 224 V

Uniform magnetic field, B = 0.724 T

Applying the conservation of energy as :

[tex]\dfrac{1}{2}mv^2=qV[/tex]

[tex]v=\sqrt{\dfrac{2qV}{m}}[/tex]

q is the charge on an electron

[tex]v=\sqrt{\dfrac{2\times 1.6\times 10^{-19}\ C\times 224\ V}{1.16\times 10^{-26}\ kg}}[/tex]

v = 78608.58 m/s

[tex]v=7.86\times 10^4\ m/s[/tex]

To find the radius of the ion's path in the magnetic field. The centripetal force is balanced by the magnetic force as :

[tex]qvB=\dfrac{mv^2}{r}[/tex]

[tex]r=\dfrac{mv}{qB}[/tex]

[tex]r=\dfrac{1.16\times 10^{-26}\ kg\times 7.86\times 10^4\ m/s}{1.6\times 10^{-19}\ C\times 0.724\ T}[/tex]

r = 0.0078 meters

So, the radius of the path of the ion is 0.0078 meters. Hence, this is the required solution.

A turntable rotates counterclockwise at 76 rpm . A speck of dust on the turntable is at 0.45 rad at t=0. What is the angle of the speck at t = 8.0 s ? Your answer should be between 0 and 2Ï rad.

Answers

Answer:

64.08 rad

Explanation:

f = 78 rpm = 76 / 60 rps

θ = 0.45 rad, t = 8 s

(θ2 - θ1) / t = ω

θ2 - θ1 = 2 x 3.14 x 76 x 8 / 60 = 63.63

Angle turns from initial position = 0.45 + 63.63 = 64.08 rad

A 1000 kg train car traveling at 12 m/s on a level track has 400 kg of sand dumped, vertically, into it. What is the final speed of the train car after the sand is dumped into it? Ignore friction

Answers

Answer:

The final speed of the train car is 8.57 m/s.

Explanation:

Given that,

Mass of train car = 1000 kg

Mass of sand = 400 kg

Speed of train car = 12 m/s

We need to calculate the final speed of the train car after the sand is dumped

Using conservation of momentum

[tex]m_{1}u_{1}=(m_{1}+m_{2})v[/tex]...(I)

Put the value in the equation (I)

[tex]1000\times12=(1000+400)v[/tex]

[tex]v=\dfrac{1000\times12}{1400}[/tex]

[tex]v=8.57\ m/s[/tex]

Hence, The final speed of the train car is 8.57 m/s.

Calculate the rate of heat transfer by radiation from a car radiator at 111 °C into a 45 °C environment, if the radiator has an emissivity of 0.75 and a 1.6 m^2 surface area.

Answers

Answer:

783.63 Watt

Explanation:

T = 111 degree C = 111 + 273 = 384 K

T0 = 45 degree C = 45 + 273 = 318 K

A = 1.6 m^2

e = 0.75

According to the Stefan's law, the energy radiated per second is given by

[tex]E = \sigma eA\left ( T^{4}- T_{0}^{4}\right )[/tex]

[tex]E = 5.67\times 10^{-8}\times 0.75\times 1.6 ( 384^{4}- 318^{4}\right ))[/tex]

E = 783.63 Watt

Suppose that you time this pendulum, and it completes exactly 68.0 complete cycles in 100 s. [Hint: think carefully about all given distances.] 5. (5 pts) Which choice best represents the value of g in the vicinity of this pendulum?

Answers

Answer:

Explanation:

Number of oscillations in 100 s is 68.

time taken to complete one oscillation = 100 / 68 s = 1.47 s

Use the formula for the time period of an oscillating body

[tex]T = 2\pi \sqrt{\frac{L}{g}}[/tex]

[tex]T^{2} = 4\pi^{2} \frac{L}{g}}[/tex]

In this equation substitute the value of T amd L and then find the value of g.

A brave child decides to grab onto an already spinning merry‑go‑round. The child is initially at rest and has a mass of 34.5 kg. The child grabs and clings to a bar that is 1.45 m from the center of the merry‑go‑round, causing the angular velocity of the merry‑go‑round to abruptly drop from 55.0 rpm to 17.0 rpm. What is the moment of inertia of the merry‑go‑round with respect to its central axis?

Answers

Answer:

[tex]I_1 = 32.5 kg m^2[/tex]

Explanation:

Here as we know that total angular momentum is always conserved for child + round system

so here by angular momentum conservation we have

[tex]I_1 \omega_1 = (I_1 + I_2)\omega_2[/tex]

here we have

[tex]I_2 = mR^2[/tex] (inertia of boy)

[tex]I_2 = (34.5)(1.45^2)[/tex]

[tex]I_2 = 72.5 kg m^2[/tex]

now we have

[tex]I_1(2\pi 55) = (I_1 + 72.5)(2 \pi 17)[/tex]

[tex]I_1 = (I_1 + 72.5)(0.31)[/tex]

[tex]I_1(1 - 0.31) = 22.4[/tex]

[tex]I_1 = 32.5 kg m^2[/tex]

Final answer:

The total moment of inertia of the merry-go-round with the child can be calculated by considering the child as a point mass at a given distance from the axis of rotation. The decrease in the angular velocity of the merry-go-round when the child jumps on is due to the increase in the moment of inertia. The moment of inertia of the merry-go-round itself is close to the total moment of inertia because it has far more mass distributed away from the axis.

Explanation:

The subject is based on the physics concept of moment of inertia, which depends not only on the object's mass but also on its distribution relative to the axis of rotation. The moment of inertia initially decreases when the child, initially at rest, grabs onto the already spinning merry-go-round. This abrupt decrease in angular velocity is because of the increase in moment of inertia caused by the child.

To find the total moment of inertia (I), we first calculate the child’s moment of inertia (Ic) by considering the child as a point mass at a distance of 1.45 m from the axis of rotation. The formula for this is Ic = mR², where m is the child's mass (34.5 kg) and R is the distance from the center (1.45 m).

Then, we calculate for the angular velocity change from 55 rpm to 17 rpm. The goal is to find the moment of inertia of the merry-go-round itself, which should be close to the total moment of inertia because it has much more mass distributed away from the axis than the child does.

Learn more about Moment of Inertia here:

https://brainly.com/question/30051108

#SPJ11

A 36-in-diameter pipeline carries oil (SG = 0.89) at 1 million barrels per day (bbl/day). The friction head loss is 13 ft/1000 ft of pipe. It is planned to place pumping stations every 10 mi along the pipe. Estimate the horsepower which must be delivered to the oil by each pump.

Answers

Answer:

144540.16735 hp

Explanation:

Diameter of pipe = 36 in

Specific gravity of oil = 0.89

ρ = Density of oil = 0.89×62.2407

Q = Flow rate of oil = 1×10⁶ bbl/day = 1×10⁶×5.61458/86400 =  64.9836033565 ft³/s

hf = 13 ft/1000ft = 0.013 ft/ft

for 10 miles

hf = 0.013×10×5280 = 686.4 ft

g = Acceleration due to gravity = 32.17405 ft/s²

Power

P = ρQghf

⇒P = 0.89×62.2407×64.9836033565×32.17405×686.4

⇒P = 79497097.342 ft lbf/s

1 ft lbf/s = 0.0018181817 hp

79497097.342 ft lbf/s = 144540.16735 hp

∴ Horsepower which must be delivered to the oil by each pump is  144540.16735 hp

Dinosaur fossils are too old to be reliably dated using carbon-14, which has a half-life of about 5730 years. Suppose we had a 68 million year old dinosaur fossil. How much of the living dinosaur's 14C would be remaining today? (Round your answer to five decimal places.)

Answers

Answer:

0.00000

Explanation:

The half-life of a radioisotope, in this case carbon-14, is the time that a sample requires to reduce its amount to half, and it is a constant for every radioisotope (it does not change with the amount of sample).

Then, the formula for the remaining amount of a radioisotope is:

A / A₀ = (1/2)ⁿ

Where:

A is the final amount of the element,A₀ is the initial amount of the element, A/A₀ is ratio of remaining amount to the original amount, andn is the number of half-lives elapsed

The number of half-lives for carbon-14 elapsed for the dinosaur fossil is:

n = 68 million years / 5730 years ≈  11,867

Then, A / A₀ = (1/2)ⁿ = (1/2)¹¹⁸⁶⁷ ≈ 0.00000 .

The number is too small, and when you round to five decimal places the result is zero. That is why carbon-14 cannot be used to date dinosaur fossils, given that they are too old.

Final answer:

C-14 dating is not applicable to a 68 million years old dinosaur fossil, because the half-life of C-14 (5730 years) only allows for accurate dating up to about 50,000-57,000 years. After such time period, the remaining C-14 would be too small to measure accurately. Therefore, for a 68 million year old fossil, the remaining C-14 would be effectively zero.

Explanation:

The question is asking about the amount of Carbon-14 (C-14) remaining in a dinosaur fossil that is approximately 68 million years old. However, C-14 dating is not applicable to such old samples. This is because C-14 decays back to Nitrogen-14 (N-14) with a half-life of approximately 5,730 years. Because of this half-life, the best-known method for determining the absolute age of fossils with C-14 allows for reliable dating of objects only up to about 50,000 years old. After 10 half-lives, which would be about 57,000 years, any original C-14 existing in a sample would become too small to measure accurately

For very old samples like a 68 million year old dinosaur fossil, isotopes with much longer half-lives are used for dating, such as uranium-235 and potassium-40. Therefore, for a 68 million year old dinosaur fossil, the remaining C-14 would effectively be zero.

Learn more about Carbon-14 Dating here:

https://brainly.com/question/32047290

#SPJ3

A Nichrome wire is used as a heating element in a toaster. From the moment the toaster is first turned on to the moment the wire reaches it maximum temperature, the current in the wire drops by 20% from its initial value. What is the temperature change in the wire? The temperature coefficient for Nichrome is α = 0.0004 (°C)-1.

Answers

Answer:

Temperature change in the wire is 625°C

Explanation:

Let the initial current in the wire be I₀

Thus,

the final current in the wire will be, I = (1 - 0.20) × I₀ = 0.80I₀

Given α = 0.0004 1/°C

Now,

Resistance = (potential difference (E))/current  (I)

also

R = R₀ [1 + αΔT]

Where ΔT is the increase in temperature , thus

E/I = E/I₀ [1 + α × ΔT)

on substituting the values in the above equation, we get

1/(0.80I₀) = 1/(I₀) × [1 + 0.0004 × ΔT]

or

1/(0.80) = [1 + 0.0004 × ΔT)]

or

ΔT = 625°C

The temperature change in the Nichrome wire, based on a 20% drop in current, is calculated to be approximately 625°C.

A Nichrome wire's resistance increases with temperature, primarily determined by its temperature coefficient.

Step-by-Step Solution :

Let I₀ be the initial current and I be the current after heating.
Given: I = 0.80 I₀ R represents the resistance after the temperature change. From the resistance formula for varying temperatures R = R₀ (1 + αΔT), we find the resistance change:  R = R₀(1 + α ΔT)Solving:
R = R₀ [1 + αΔT] ,Where ΔT is the increase in temperature , thus

      E/I = E/I₀ [1 + α × ΔT)

on substituting the values in the above equation, we get

= 1/(0.80I₀) = 1/(I₀) × [1 + 0.0004 × ΔT]

= 1/(0.80) = [1 + 0.0004 × ΔT)]

= ΔT = 625°C

The temperature change in the Nichrome wire is  approximately 625°C.

PHYSICS: Can someone help me identify a concept/hypothesis and possible experiment to run? THis is supposed to be a mock experiment and not an actual lab completed.

Look around and find a certain pattern. Describe the pattern / phenomena that you have selected. Pretend that you have just performed your observation or observational experiment. You may need to repeat the observation at a later time, if there is a possibility. Illustrate it with a photo or a sketch.

Devise a hypothesis of what created this pattern or what caused this particular pattern/phenomenon. Record it with as much details as possible.

Think of how you can check if your hypothesis is valid (design a testing experiment) and record the prediction of this experiment. It is preferable to provide accurate details of your reasoning , assumptions, and the reasoning behind your prediction. Why you think the suggested cause-effect link would work? Are you making any assumptions? If so, what are they?

Identify what quantities you will be keeping track of and how they will connect the predicted cause to the observed effect. What are these quantities? How would you measure these quantities?

Perform the experiment. If it is possible at all, video-record your experiment to analyze your actions, including the measurements. You have to trust me for now on this, but the more information you get on your thought, work, and measurements, the easier it would be for you to pinpoint the reason for the prediction to be wrong, if that should happen. There is no need in attaching the movie to your submission, but I would recommend you to keep it among the files on Blackboard, so it is within reach if you will need to defend your reasoning.

In one paragraph, explain the results of your experiment. Did they match the prediction?

In the summary, please reflect on the whole process. If the prediction holds true, what would be the better way to further confirm your idea of the cause-effect connection? If not, revise your hypothesis or suggest a different observational/testing experiment to get a better insight into the pattern/phenomenon

Answers

A cool experiment with a testable hypothesis is testing an apple and if it will be able to oxidize in different temperatures with the inside exposed to Oxygen.  

Hypothesis: If the cut piece of an apple is exposed to warm air then the apple will turn brown and oxidize faster than a cut piece of apple in a cooler temperature.

Supplies: Three thermometers, An apple, an apple cutter, a plate, etc.

Directions place the three thermometers in a cool cold area,

Other Questions
you can calculate the probabilityof a random event, such as the rolling of dice or dealing of cards, by _____ In a follow-up experiment, two identical gurneys are placed side-by-side on a ramp with their wheels locked to eliminate spinning. Gurney 1 has a dummy placed on it to give it a total mass of 200 kg, while Gurney 2 is loaded with a dummy that makes it only 50 kg overall. If the ramp has a coefficient of friction of s, which gurney is more likely to slide down the ramp? If b=a+3, then (a-b)exponent 4 A study of the amount of time it takes a mechanic to rebuild the transmission for a 2005 Chevrolet Cavalier shows that the mean is 8.4 hours and the standard deviation is 1.8 hours. If 40 mechanics are randomly selected, find the probability that their mean rebuild time exceeds 8.7 hours. 0.1346 0.1285 0.1946 0.1469 Q What is the significance of amending the Constitution? Bones come together at a The following yield criteria are dependent on hydrostatic stress (a) Maximum distortion energy and maximum normal stress (b) Tresca and Mohr-Coulomb (c) Tresca and von-Mises (d) Maximum normal stress and Mohr-Coulomb Working together, two secretaries can stuff the envelopes for a political fund-raising letter in 3 hours. Working alone, it takes the slower worker 8 hours longer to do the job than the faster worker. How long does it take each to do the job alone? Explain the relationship of the types of muscle fibers to muscle performance. Your company is introducing a fruit drink packaged in an aluminum box with a squarebase. Find the surface area of this box as a function of its dimension of its base, S, giventhat volume of the box is 36 in. Graph this function and determine the dimensions thatproduce a minimum surface area for this aluminum box. Part 1: Jernimo, preparas la merienda para los nios?Qu oracin contesta la pregunta lgicamente?S, te lo preparo.S, se lo preparo.S, se la preparo.S, te la preparo.Part 2: Hola Mario:Cmo ests? Este fin de semana voy a tu casa y me lo llevo. Muchas gracias! Me va a ayudar mucho con el proyecto. Tengo que entregar el proyecto antes del viernes.De qu habla Mercedes?Ella habla de unos papeles.Ella habla de unas herramientas.Ella habla de una computadora.Ella habla de un libro. In 2017, HD had reported a deferred tax asset of $126 million with no valuation allowance. At December 31, 2018, the account balances of HD Services showed a deferred tax asset of $165 million before assessing the need for a valuation allowance and income taxes payable of $98 million. HD determined that it was more likely than not that 30% of the deferred tax asset ultimately would not be realized. HD made no estimated tax payments during 2018. What amount should HD report as income tax expense in its 2018 income statement? (Round your calculations to the nearest whole million.) Round 0.249 to the nearest tenth Thorium 234 is a radioactive substance that decays at a rate proportional to the amount present. 1 gram of this material is reduced to 0.8 grams in one week(a) Find an expression that expresses the amount of Thorium 234 present at any time(b) Find half life of Thorium 234(c) Find amount of Thorium 234 present after 10 weeks Which statement below is false? (UNO Cards)(1.) A Wild Draw Four card cannot end the game.(2.) A player who receives a Wild Draw Four must draw four cards and also forfeit his/her turn.(3.) There are four Wild Draw Four cards in the original Uno deck.(4.) A Wild Draw Four card is used only when you have no other cards to play.----------------------------------------------------------------------------------------------------------------------(PLEASE SAY THE ANSWER IF YOU ARE SURE IT'S THE RIGHT ANSWER) Find the area of the region trapped between LaTeX: y=1-2x^2 y = 1 2 x 2 and LaTeX: y=\left|x\right| y = | x | , shown above. The answer is LaTeX: \frac{A}{12} A 12 . Below, enter only the whole number LaTeX: A A . "using geometric shapes and arrows to sketch how all the main ideas, subpoints, and supporting material of a speech relate to the central idea and to one another is a technique known as" List, in order, all the vessels blood must flow through to get from the abdominal aorta into the kidney and back to the inferior vena cava. The parent function f(x)=5^x has been virtually compressed by a factor of 1/2, shifted to the left three units and up two units. Chose the correct function to represent the transformation. A crate of eggs is located in the middle of the flatbed of a pickup truck as the truck negotiates a curve in the flat road. The curve may be regarded as an arc of a circle of radius 35.0 m. If the coefficient of static friction between crate and truck is 0.600, how fast can the truck be moving without the crate sliding?