A baseball is launched horizontally from a height of 1.8 m. The baseball travels 0.5 m before hitting the ground.

How fast is the baseball moving, rounded to the nearest hundredth?
m/s

Answers

Answer 1

Here we’re solving a problem where a ball is projected horizontally from a height of h=1.8 m with a horizontal velocity of Vx. At the impact with the ground, the ball has travelled 0.5 m horizontally.


Solution:


We will need kinematic equations

V1^2-V0^2=2aS ………………….(1)

S=V0*t + (1/2)at^2………………..(2)

Where

S=displacement (distance), m

V0=initial velocity, m/s

V1=final velocity, m/s

a=acceleration, m/s^2

t=time, seconds


At the point of impact, there a vertical velocity (downwards) of Vy.

The horizontal velocity Vx remains constant since projection till impact.


Vertical velocity Vy:

Using equation (1),

V0=0 (projected horizontally, so vertical velocity=0)

S=1.8 m (downwards)

a=9.81 m/s^2 (acceleration due to gravity, downwards)

=>

Vy=V1=sqrt(V0^2+2*a*S)=sqrt90+2*9.81*1.8)=5.9427


Horizontal velocity, Vx:

ball travelled 0.5m in time t it took ball to hit ground.

Using equation (2),

S=1.8m

V0=0

a=9.81

=>

1.8=0*t+(1/2)(9.81)t^2

Solve for t

t=sqrt(2*1.8/9.81)=0.60578 s


Horizontal velocity, Vx = 0.5/0.60578 = 0.82538 s


Speed of ball on impact is the vectorial sum of Vx and Vy:

Speed = sqrt(Vx^2+Vy^2)=sqrt(5.9427^2+0.82538^2)=5.99977 m/s, say 6.0 m/s.


A Baseball Is Launched Horizontally From A Height Of 1.8 M. The Baseball Travels 0.5 M Before Hitting
Answer 2

Answer: 0.82

On ED2020


Related Questions

A weight suspended from a spring is seen to bob up and down over a distance of 25 cm twice each second. what is its frequency? answer in units of hz.

Answers

For the frequency it is computed by 2 bobs/second which is equal to 2 Hz.Whereas the period is compute by 1/freq = 1/2 secondAnd lastly, the amplitude is the distance from the equilibrium position tot he maximum displacement so in this case, it is one half the 25 cm peak to peak distance, or 12.5 cm.

Which term is used to describe water that is evaporated, polluted, or used by crops? A. degenerated B. consumptive C. controlled D. processed

Answers

The correct answer is (B) Consumptive.

Explanation:
"Consumptive use" is the term used in the field of Water Science to define "the part of water withdrawn that is evaporated, given off by plants, used by crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. It is also referred as water consumed." Hence the correct answer is (b) Consumptive.

Anna is conducting an experiment to determine how weather affects cell phone reception. She is trying to decide the best way to conduct her experiment in order to collect meaningful data. Which of the following experiments would help Anna collect the best data? A. Test different cell phones in different locations on days with clear weather. B. Test different cell phones in different locations on days with rainy weather. C. Test a cell phone's reception in one location with clear weather and in another location with rainy weather. D. Test a cell phone's reception in the exact same location under various atmospheric conditions.

Answers

Answer:

D. Test a cell phone's reception in the exact same location under various atmospheric conditions

Explanation:

Components of an experiment:

Independent variable:

A manipulated variable, in an experiment or study, whose presence or degree incurs a change in the  dependent variable.

Dependent variable:

A variable which is being studied in the experiment and is supposed to change with respect to the independent variable.

Control variable:

Control variable includes the variables which are of no concern in the experiment and must be constant so that they do not interfere with the results of the experiment. Change in control variable might affect the results of an experiment.

In Anna's experiment, the independent variable is the atmospheric conditions. The dependent variable is cell phone reception that will change according to the atmospheric conditions. All other things related to the experiment are control variables like cellphone, location of the cell phone. Both of these must stay constant to collect the best data.

Hence, the best option is D.

Answer:

D. Test a cell phone's reception in the exact same location under various atmospheric conditions

Explanation:

How fast (in rpm) must a centrifuge rotate if a particle 6.00 cm from the axis of rotation is to experience an acceleration of 113000 g's? if the answer has 4 digits or more, enter it without commas,
e.g. 13500?

Answers

The acceleration experienced by the particle is given by
[tex]a=113000 g=113000 \cdot 9.81 m/s^2[/tex]
This corresponds to the centripetal acceleration of the motion, which is related to the angular speed [tex]\omega[/tex] of the particle and its distance r from the axis by the relationship
[tex]a= \omega ^2 r [/tex]
In our problem, [tex]r=6 cm=0.06 m[/tex], so we can solve for [tex]\omega[/tex]:
[tex]\omega = \sqrt{ \frac{a}{r} } = \sqrt{ \frac{113000 \cdot 9.81 m/s^2}{0.06 m} }=4298 rad/s [/tex]
However, we must convert it into rpm (revolution per minute).
We know that 1 rad corresponds to [tex]( \frac{1}{2 \pi} )[/tex] revolutions, while [tex]1 s = \frac{1}{60} min[/tex]. So we the conversion is[tex]\omega = 4298 rad/s \cdot ( \frac{1}{2\pi} rev/rad )( 60 s/min)=41067 rpm[/tex]

Which memory system provides us with a very brief representation of all the stimuli present at a particular moment?

Answers

Hey there!

Your answer is the sensory memory.

Sensory memory is very short term. It retains your memory on the first impression and works with the five senses like see, taste, and sight, to keep the image in your mind after processed by stimuli.

Hope this helps!

Bats use ultrasound in echolocation. This sound is characterized by _____.

A. low frequency
B. low amplitude
C. high frequency
D. high amplitude

Answers

High frequency, as humans cannot hear the sound of the bats using echolocation because of it's such high frequency.
Hope this helps :)

Answer:

C. high frequency  

Explanation:

Bats use high frequency sound waves -ultra sound (20 to 200 kHz) to locate their prey via a technique -echolocation. The produce these sound waves and when the waves reflect from a prey nearby, they are able to estimate the size, position and speed of their prey. The human hearing range is up to 20 kHz, so we can hear the sound produced by some of the bats.

Solar-powered cars use energy from the Sun to work. A panel on the car absorbs light energy from the Sun, which then generates an electric current. This electric current, in turn, allows the car to move. Which shows the correct order of energy transformations that take place in a solar-powered car?

Answers

Radiation is taken in then presumably is immediately turned into electrical energy which also immediately is turned into mechanical energy or stored in the cars battery as chemical energy.
Final answer:

In a solar-powered car, solar energy is converted to electrical energy by solar cells, which is then used to power an electric motor and generate mechanical energy for the car to move.

Explanation:

The correct order of energy transformations in a solar-powered car is:

Solar energy from the Sun is converted into electrical energy by solar cells on the car's panel.Electrical energy is then used to power an electric motor.Mechanical energy is generated from the movement of the electric motor, allowing the car to move.

For example, when sunlight hits the solar panel, the photovoltaic cells in the panel absorb the energy and generate an electric current. This electric current is used to power the motor, which converts electrical energy into mechanical energy that powers the car's movement.

Find the Voltage drop (in mV) across an 46.6 m long copper wire with diameter of 1.11 mm and with 47.6 miliAmps of current running through it. (The resistivity of copper at room temperature is 1.68×10-8 Ohm×meter). Express the answer (only numerical value) to the nearest whole number.

Answers

First we need to calculate the resistance of this piece of wire. For a wire with resistivity [tex]\rho[/tex], length L and cross section A, the resistance is
[tex]R= \frac{\rho L}{A} [/tex]
The diameter d of the wire is [tex]d=1.11 mm=1.11 \cdot 10^{-3} m[/tex], so the cross sectional area is
[tex]A=\pi ( \frac{d}{2} )^2=9.7 \cdot 10^{-7} m^2[/tex]
Now, using [tex]L=46.6 m[/tex] and [tex]\rho=1.68 \cdot 10^{-8} \Omega m[/tex], we can calculate the resistance:
[tex]R= \frac{\rho L}{A}= \frac{(1.68 \cdot 10^{-8} \Omega m)(46.6 m)}{9.7 \cdot 10^{-7}m^2} =0.807 \Omega [/tex]

And now we can calculate the voltage drop across the resistor, by using Ohm's law, since we know the current flowing through it: [tex]I=47.6 mA=47.6 \cdot 10^{-3} A[/tex]
[tex]V=IR=(47.6 \cdot 10^{-3} A)(0.807 \Omega)=0.038 V=38 mV[/tex]

A dam is a structure built across a river to hold back the river's water. The flow of water through a dam is controlled by gates. When the gates are closed, water is held at a greater height than it would otherwise occupy.

The water has_________ energy when the gates are closed due to its height. This energy is transformed into _______energy when the gates open and the water begins to flow downward.

Answers

Potential is the first blank and kinetic is the second blank. 

This should be correct

potential is the first one kinetic is the second

A 9cm diameter spherical ball whose surface is maintained at a temperature of 110c is

Answers

Final answer:

The question involves concepts of heat transfer and thermal equilibrium in physics, where two spheres reach thermal equilibrium through the transfer of heat, and how a spherical object equilibrates with its ambient temperature.

Explanation:

The question appears to be related to the concept of heat transfer and thermal equilibrium in Physics, specifically involving spherical objects and changes in their temperatures when placed in different environments or in contact with each other.

When considering two spheres of the same material but at different initial temperatures brought into thermal contact, the process involves the transfer of thermal energy from the hotter sphere to the cooler one until they reach a state of thermal equilibrium. This principle is grounded in the second law of thermodynamics, which states that heat energy flows from areas of high temperature to areas of low temperature until thermal equilibrium is achieved. The final temperature reached by both spheres depends on their masses and specific heat capacities, as well as their initial temperatures.

The phenomenon of thermal equilibrium is also apparent when exposing a spherical object to a different ambient temperature, as mentioned in parts of the question. The rate of heat transfer and the time taken for the sphere to reach the temperature of its surroundings can be analyzed using thermodynamics and heat transfer equations, including concepts like conduction, convection, and radiation.

A child sitting 1.20 m from the center of a merry-go-round moves with a speed of 1.35 m/s. (a) calculate the centripetal acceleration of the child.

Answers

The centripetal acceleration in an uniform circular motion is given by

a = V² / r

Where V is the speed and r the radius of the circle (distance to the center)

a = (1.35 m/s)² / 1.2m  = 1.519 m/s²

People are able to hear footsteps because the sound made by a foot hitting the floor travels through the air to reach their ears. is this absorption or transmission

Answers

The answer is transmission.

Answer: The correct answer is transmission.

Explanation:

Sound is a form of energy. The energy that survives the transfer is called the sound transmission. If the energy gets absorb then the sound is not heard to the listener. In this case, the absorption will occur.

People are able to hear footsteps because the sound made by a foot hitting the floor travels through the air to reach their ears.  In this case, the sound transmission will occur as the footsteps can be heard. It means that the energy is transferred here.    

A baby is born with an extra chromosome in each of its cells. Which of the following is responsible for this condition?

A.Albinism
B.Mutations
C.Segregation
D.Gene therapy

Answers

THE ANSWER YOU ARE LOOKING IS

(B) MUTATIONS ARE RESPONSIBLE FOR THIS

Answer:

Mutation is correct

Explanation:

In which of the following is no work done A.climbing stairs B.lifting a book C.pushing a shopping cart D.none of the above

Answers

Final answer:

The correct answer is D. none of the above. In all of the given options, work is done.

Explanation:

The correct answer is D. none of the above. In all of the given options, work is done.

A. Climbing stairs: When you climb stairs, you are doing work against gravity. You are exerting a force to move your body against the force of gravity.B. Lifting a book: When you lift a book, you are also doing work against gravity. You are exerting a force to move the book against the force of gravity.C. Pushing a shopping cart: Pushing a shopping cart requires you to apply a force to move the cart, which is considered work.D. None of the above: This option is incorrect because work is done in all of the given options.

Learn more about Work and force here:

https://brainly.com/question/758238

#SPJ6

response to an unconditioned stimulus that occurs naturally without learning is known as a(n) __________ response.

A.
neutral
B.
conditioned
C.
reconditioned
D.
unconditioned

Answers

The answer is D. Unconditioned
The response to an unconditioned stimulus that occurs naturally without learning and involuntarily triggers reaction is known as an unconditioned response. For example, you smell your favorite food while being cook may make you instantly feel hungry.  

Answer:

the answer is c

An atomic nucleus has a charge of +40e. an electron is 10-9 m from the nucleus. what is the force on the electron?

Answers

The electron charge is equal to [tex]-e=-1.6\cdot 10^{-19}C[/tex]. The atomic nucleus of the problem has a charge of [tex]+40 e=40\cdot (1.6\cdot 10^{-19}C)=6.4\cdot 10^{-18}C[/tex]. The distance between the nucleus and the electron is [tex]r=10^{-9}m[/tex], so we can calculate the electrostatic (Coulomb) force between the two:
[tex]F=k_e \frac{(-e)(+40e) }{r^2} =8.99\cdot 10^9 Nm^2C^{-2} \frac{(-1.6\cdot 10^{-19}C)(6.4\cdot 10^{-18}C)}{(10^{-9}m)^2} =[/tex]
[tex]=-9.2 \cdot 10^{-9} N[/tex]
which is attractive, since the two charges have opposite sign.
Final answer:

The force on an electron placed 10-9 m away from a nucleus with a charge of +40e can be calculated using Coulomb's law, considering the charge of the electron and the proton, the distance between them, and Coulomb's constant.

Explanation:

The question pertains to the force experienced by an electron in the vicinity of an atomic nucleus with a charge of +40e. To calculate this force, we will use Coulomb's law, which states that the electric force (F) between two point charges is directly proportional to the product of the charges (q1 and q2) and inversely proportional to the square of the distance (r) between them. The formula is given by F = k * |q1 * q2| / r², where k is Coulomb's constant (8.9875 × 10⁹ N⋅m²/C²).

Given that the charge of a proton (and thus the atomic number Z) is +e and the charge of an electron is -e, the force will be attractive, and we can ignore the signs for magnitude calculation. The charge of a proton is e = 1.602 × 10⁻¹⁹ C. For a +40e charge, the total charge is 40 × e. Plug these values, along with the given distance of 10 × 10⁻¹ m into Coulomb's law to compute the force on the electron.

Therefore, the magnitude of the force on the electron by a nucleus with a charge of +40e located 10⁻¹ m away can be calculated using the steps above.

The work function (φ) for a metal is 7.40×10-19 j. what is the longest wavelength of electromagnetic radiation that can eject an electron from the surface of a piece of the metal

Answers

Final answer:

To determine the longest wavelength of electromagnetic radiation that can eject an electron from the metal, one can use the equation E = hc / λ, where E equals the work function, h is Planck's constant, c is the speed of light, and λ is the wavelength. Rearranging it as λ = hc / φ and putting the given value of work function and constant values, one can find the required wavelength.

Explanation:

To calculate the longest wavelength of electromagnetic radiation that can eject an electron from the surface of the metal, we need to use the equation which describes the relationship between the energy of a photon (E) and its wavelength (λ). This equation is:

E = hc / λ

Where:

E is the energy of the photon (which is equal to the work function φ in this case), h is Planck's constant (6.63 x 10-34 Js), c is the speed of light (3 x 108 m/s), and λ is the wavelength.

Given the work function φ (7.40×10-19J) and other constant values, we can rearrange this formula to calculate λ:

λ = hc / φ

The result will give you the longest wavelength of electromagnetic radiation that can eject an electron from the metal surface.

Learn more about Electromagnetic radiation and work function here:

https://brainly.com/question/10759891

#SPJ3

The longest wavelength of electromagnetic radiation that can eject an electron from the surface of a piece of the metal is [tex]2.69 \times 10^{-7}\)[/tex] meters.

We use the photoelectric effect equation:

[tex]\[ E = h \nu \][/tex]

where [tex]\( E \)[/tex] is the energy of the photon, [tex]\( h \)[/tex] is Planck's constant, and [tex]\( \nu \)[/tex] is the frequency of the radiation.

The energy of the photon must be at least equal to the work function [tex](\( \phi \))[/tex] of the metal for the electron to be ejected. Therefore, we have:

[tex]\[ E = \phi \][/tex]

[tex]\[ h \nu = \phi \][/tex]

Since [tex]\( \nu = \frac{c}{\lambda} \)[/tex], where [tex]\( c \)[/tex] is the speed of light and [tex]\( \lambda \)[/tex] is the wavelength of the radiation, we can rewrite the equation as:

[tex]\[ h \frac{c}{\lambda} = \phi \][/tex]

Solving for [tex]\( \lambda \)[/tex], we get:

[tex]\[ \lambda = \frac{h c}{\phi} \][/tex]

Given that [tex]\( h = 6.626 \times 10^{-34}\)[/tex] Js (Planck's constant), [tex]\( c = 3.00 \times 10^8\)[/tex] m/s (speed of light), and [tex]\( \phi = 7.40 \times 10^{-19}\)[/tex] J (work function), we can plug in these values to find [tex]\( \lambda \)[/tex]:

[tex]\[ \lambda = \frac{6.626 \times 10^{-34} \text{ Js} \times 3.00 \times 10^8 \text{ m/s}}{7.40 \times 10^{-19} \text{ J}} \][/tex]

[tex]\[ \lambda = \frac{1.9878 \times 10^{-25} \text{ Jm/s}}{7.40 \times 10^{-19} \text{ J}} \][/tex]

[tex]\[ \lambda = 2.6862 \times 10^{-7} \text{ m} \][/tex]

When two notes are played simultaneously, creating a discordant sound, it is called _____.

A. Acoustics
B. Consonance
C. Timbre
D. Dissonance

Answers

Answer:

The correct answer is option D.

Explanation:

Acoustic : A branch of physics which study the properties of sound.

Consonance: Combination of notes occurring simultaneously due to relationship between their respective frequencies.

Timbre: A characteristic of a musical note which makes it distinct from another wave which also have same pitch and intensity.

Dissonance :When combination of two notes are played simultaneously with lack of harmony in between them.

Hence, the correct answer is option D.

Answer:

D. DISSONANCE

Explanation:

Radioactive carbon, or C-14, is used to date fossil remains. When C-14 decays, as seen in the nuclear equation, it produces what nuclide of nitrogen? A) N-7 B) N-13 C) N-14 D) N-15

Answers

The reaction of radiodecay of carbon C-14 is
C-14 --> N-14 + e- + (ve)
where e- is an electron and (ve) is an electron-type antineutrino.
Basically, when the carbon nucleus (atomic number: 6, mass number: 14) decays, a neutron of the nucleus converts into a proton (therefore, the mass number remains the same, 14, but the atomic number increases by 1, therefore it becomes nitrogen) and releases an electron-antineutrino pair. 

So, the correct answer is C), N-14.

Answer:

the answer is c

Explanation:

i did it on usatestprep

Question 4 of 10 (1 point) Jump to Question: Choose the word that best completes this sentence. A personal fall arrest system is the most ________ type of fall arrest in construction. A. Common B. Expensive C. Necessary D. Useful

Answers

b
is the most logical answer to me

Answer:

A. Common

Explanation:

A personal fall arrest system is the most common type of fall arrest in construction. Personal fall arrest systems are used as protection for OSHA workers who work on construction sites and are exposed to vertical drops of six feet or more. These systems consist of a body harness, anchorage and connector.

Explain how the lenses in refracting telescopes help scientists to see enlarged images of celestial objects

Answers

The objective lens makes a small real image of the object so that the eyepiece lens can act as a magnifying glass and produce an enlarged image of the objective lens's image. This is how

What is Refracting telescopes  ?

Refracting telescopes typically use two convex lenses one is objective lenses and the other is an eyepieces.

Enlargement is related to the magnification and magnification is directly proportional to the focal length of the objective lens. The objective have large focal length in order to see distant objects as enlarged .The objective  lens collects light from a distant object and brings that light to a focal point to create an image. Hence it ensures large magnification of the distant object

The refracting telescope works by bending light with lenses. The objective lens makes a small real image of the object so that the eyepiece lens can act as a magnifying glass and produce an enlarged image of the objective lens's image

learn more about refracting telescope :

https://brainly.com/question/946989?referrer=searchResults

#SPJ2

the planet jupiter revolves around the sun in a period of about 12 years (3.79 × 108 seconds). what is its mean distance from the center of the sun? the mass of the sun is 1.99 × 1030 kilograms.

Answers

F = m A 
A = Ac = v^2/R 
so m A = Mjupiter v^2/R (toward sun) 
F = G Msun MJupiter /R^2 (toward sun) 
so 
G Msun/R^2 = v^2/R 
G Msun = v^2 R 
Time around = circumference /v 
T = 2 pi R/v 
so 
v = 2 pi R/T 
v^2 = (2pi)^2 R^2/T^2 
so 
G Msun = (2 pi)^2 R^3/T^2 
(which by the way is Kepler's Third Law) 
so 
R^3 = G Msun T^2/(2 pi)^2 
G is 6.67*10^-11 
so 
R^3 = 6.67*10^-11*1.99*10^30*14.36*10^16 /39.48 

R^3 = 4.828*10^35 
= .4828 * 10^36 
so 
R = .784 * 10^12 = 7.84 * 10^11 meters

The mean distance between the center of the Jupiter and the center of the Sun is "7.85 x 10¹¹ m"

The force of gravitation between the Sun and Jupiter must be equal to the centripetal force between them, for the equilibrium revolution of Jupiter around the Sun.

[tex]Centripeta\ Force\ on\ Jupiter = Gravitational\ Force\ of Attraction\ \\\\\frac{M_{Jupiter}v^2}{r} = \frac{GM_{Jupiter}M_{Sun}}{r^2}\\\\v^2 = \frac{GM_{Sun}}{r}\ -------- eqn(1)\\\\[/tex]

where,

G = Gravitational  Constant = 6.67 x 10⁻¹¹ N.m²/kg²

[tex]M_{Sun}[/tex] = Mass of Sun = 1.99 x 10³⁰ kg

r = mean distance between the center of the Jupiter and the Sun = ?

v = linear speed of the Jupiter around the Sun = [tex]\frac{Circumference\ of Jupiter's\ Path}{Time\ Period\ of\ Revolution}[/tex]

[tex]v = \frac{2\pi r}{3.79\ x\ 10^8\ s}\\\\v^2 = \frac{4\pi^2 r^2}{14.36\ x\ 10^{16}\ s^2}[/tex]

Using the values in eqn (1), we get:

[tex]\frac{4\pi^2 r^2}{14.36\ x\ 10^{16}\ s^2} = \frac{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(1.99\ x\ 10^{30}\ kg)}{r}\\\\r^3 = \frac{(14.36\ x\ 10^{16}\ s^2)(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(1.99\ x\ 10^{30}\ kg)}{4\pi^2}\\\\r = \sqrt[3]{4.83\ x\ 10^{35}\ m^3}[/tex]

r = 7.85 x 10¹¹ m

Learn more about centripetal force and gravitational force here:

https://brainly.com/question/14021112?referrer=searchResults

https://brainly.com/question/16613634?referrer=searchResults

The attached picture shows the relationship between the centripetal force and the gravitational force acting on a planet (Jupiter) revolving around the sun.

In a hydraulic system, piston 1 has a surface area of 100 cm2, and piston 2 has a surface area of 900 cm2. A force of 150 N is exerted on piston 1 of the hydraulic lift. What force will be exerted on piston 2?

Answers

From Pascal's law, we can say that the pressure exerted by piston 1 on the fluid will be transmitted with equal intensity to piston 2:
[tex]p_1 = p_2[/tex] (1)

The relationship between the pressure applied p, the force applied F and the surface A is
[tex]p= \frac{F}{A} [/tex]

So we can rewrite (1) as
[tex] \frac{F_1}{A_1}= \frac{F_2}{A_2} [/tex]
And from this, we can find the magnitude of the force exerted on piston 2, F2:
[tex]F_2 = A_2 \frac{F_1}{A_1}=(900 cm^2) \frac{150 N}{100 cm^2}=1350 N [/tex]

The chemical equation shown represents photosynthesis. Carbon dioxide plus A plus light with a right-pointing arrow towards B plus oxygen. The arrow has an x above it. What is the role of substance B in photosynthesis?

It stores chemical energy.
It converts light into chemical energy.
It traps light energy from the atmosphere.
It cools the atmosphere by changing into vapor.

Answers

I don't know the exact answer but I know it is NOT D or C, I am shooting for A but I may be wrong.    A
the answer is a. i think

If a boat and its riders have a mass of 900 kg and the boat drifts in at 1.4 m/s how much work does sam do to stop it?

Answers

The initial kinetic energy of the boat and its rider is
[tex]K_i = \frac{1}{2} mv_i^2 = \frac{1}{2}(900 kg)(1.4 m/s)^2=882 J [/tex]

After Sam stops it, the final kinetic energy of the boat+rider is
[tex]K_f = 0 J[/tex]
because its final velocity is zero.

For the law of conservation of energy, the work done by Sam is the variation of kinetic energy of the system:
[tex]W=K_f-K_i =0-882 J=-882 J[/tex]
where the negative sign is due to the fact that the force Sam is applying goes against the direction of motion of the boat.

Sam does 1260 J of work to stop the boat.

The work done by Sam to stop the boat is equal to the change in kinetic energy of the boat.

Work = ΔKE

[tex]Work = KE_f - KE_i\\\\\\Work = 0 - \dfrac{1}{2}mv_i^2\\\\Work = -\dfrac{1}{2}(900 kg)(1.4 m/s)^2\\\\\\Work = -1260 J[/tex]

The negative sign indicates that the work is done by the boat on Sam.

We know that the mass of the boat and its riders is 900 kg. We also know that the initial velocity of the boat is 1.4 m/s. The final velocity of the boat is 0 m/s, since the boat stops. We can use the equation for kinetic energy to calculate the change in kinetic energy of the boat. The change in kinetic energy is equal to the work done by Sam to stop the boat. The work done by Sam is equal to -1260 J.

To know more about the Work, here

https://brainly.com/question/7250694

#SPJ3

Is the force that earth exerts on you larger, smaller, or the same as the force you exert on it?

Answers

it is the same! as the normal reaction force from the ground equal and opposite!
if it's smaller then u will sink into the ground!

To grasp how weak this field is, if you wanted to produce it between two parallel metal plates by connecting an ordinary 1.5 v aa battery across these plates, how far apart would the plates have to be?

Answers

10 ft because the have to be connected

The distance between two parallel metal plates to create an electric field equivalent to that inside a 1.5V AA battery can be calculated using the formula E = V/d. Without a specific electric field strength value, the exact distance can't be provided. However, due to the low voltage of the battery, the necessary plate separation would be extremely small.

The question is asking how far apart two parallel metal plates must be to create an electric field equivalent to the electric field within a 1.5V AA battery, given that the electric field is uniform. To find out the distance between the plates, we need to use the formula for electric field strength, E = V/d, where E is the electric field strength, V is the potential difference, and d is the distance between the plates.

Since we know the voltage (V) from the AA battery is 1.5 V and we are looking for d, we can rearrange the formula to d = V/E. However, we don't have the value of the electric field strength E inside the battery. If we had a reference value, for example, electric field magnitude from another setup, we could use it to solve for d. For instance, if we knew that the electric field between two plates with a certain separation was, let's say, 4.50  imes 103 V/m for a 15.0 kV potential difference, we could find their distance and then extrapolate for the 1.5V scenario.

Without specific numbers, we cannot provide the exact distance for the plates. However, it's important to realize that the electric field strength would be very small compared to typical laboratory setups due to the low voltage of the AA battery. Hence, the plates separation would have to be extremely small to match the electric field inside the battery.

You are the juror of a case involving a drunken driver whose 1041 kg sports car ran into a stationary 1928 kg station wagon stopped at a red traffic light. the cars stuck together and slid with locked wheels for 12.0 m before coming to rest. the coefficient of sliding friction on the dry road was 0.60. estimate the speed of the sports car when it hit the station wagon.

Answers

1. Find the force of friction between the sports car and the station wagon stuck together and the road. The total mass m = 1928kg + 1041kg = 2969kg. The only force in the x-direction is friction: F = μ*N = μ * m * g 
2. Find the acceleration due to friction: 
F = m*a =  μ * m * g => a = μ * g = 0.6 * 9.81
3. Find the time it took the two cars stuck together to slide 12m:
x = 0.5*a*t² 
t = sqrt(2*x / a) = sqrt(2 * x / (μ * g) )
4. Find the initial velocity of the two cars:
v = a*t = μ * g * sqrt(2 * x / (μ * g) ) = sqrt( 2 * x * μ * g)
5. Use the initial velocity of the two cars combined to find the velocity of the sports car. Momentum must be conserved:

m₁ mass of sports car
v₁ velocity of sports car before the crash
m₂ mass of station wagon
v₂ velocity of station wagon before the crash = 0
v velocity after the crash

m₁*v₁ + m₂*v₂ = (m₁+m₂) * v = m₁*v₁ 
v₁ = (m₁+m₂) * v / m₁ = (m₁+m₂) * sqrt( 2 * x * μ * g) / m₁
v₁ = 33.9 m/s


A motorist is traveling at 20 m/s. He is 60 m from a stoplight when he sees it turn yellow. Is reaction time, before stepping on the brake, is 0.50 s. What steady acceleration (slowing down) while braking will bring him to a stop right at the light?

Answers

V₀ = V₁ + 2ax
V₀ = final velocity which is 0 m/s
V₁ = initial velocity which is 20 m/s
x = distance which is 60-(0.5 x 20) =50m
     this is because his reaction time is 0.5 sec so he traveled 10m before stepping on the break paddle.

a= (V₀-V₁) / 2x
  = (0-20) / 2*50
  = -0.2m/s
the negative is because it is a deceleration speed hence it is 0.2m/s

Final answer:

A motorist traveling at 20 m/s and located 60 m from a yellow stoplight needs a steady deceleration of 4 m/s², after a reaction time of 0.50 s, to stop precisely at the light.

Explanation:

A motorist is traveling at 20 m/s and is 60 m from a stoplight when it turns yellow. The motorist's reaction time is 0.50 s before stepping on the brake. We need to calculate the steady acceleration (slowing down) required to stop the car right at the light.

First, calculate the distance covered during the reaction time. Since the car continues at its initial speed during the motorist's reaction time, the distance covered is:

D_{reaction} = v × t = 20 m/s × 0.50 s = 10 m

This means the remaining distance to be covered under deceleration is 60 m - 10 m = 50 m.

Next, we use the kinematic equation v^2 = u^2 + 2as, where

v = final velocity (0 m/s, since the car stops),

u = initial velocity (20 m/s),

a = acceleration,

s = distance covered under deceleration (50 m).

Rearranging the equation for a, we get:

a = (v^2 - u^2) / (2s) = (0^2 - 20^2) / (2 × 50) = -400 / 100 = -4 m/s².

Therefore, a steady deceleration of 4 m/s² would be necessary for the motorist to stop right at the stoplight.

Your car burns gasoline as you drive up a large mountain. What energy transformation is the car performing?

Answers

It is kinetic energy, cause itts going up hill

Answer:

Explanation:

According to the conservation of energy, energy can neither be created nor be destroyed but can transform from one form to another.

The form of energy is converted into another form is called the transformation of energy.

Here, the chemical energy of the gasoline is converted into kinetic energy of the car.

Other Questions
How did britain's geography affect its industrial revolution? Which is a long-term effect of sleep deprivation? weak immune system trouble concentrating impaired motor skills difficulty staying awake A wall in Marcus's bedroom is feet high and feet long. If he paints of the wall blue, how many square feet will be blue? What is the opportunity cost in this scenario?Harry has been very busy at work for the past two weeks. He has been working weekends too. Finally, he is going to get a weekend off. {{Originally, he planned to paint his apartment that weekend.}} He also considered going fishing for the weekend. {{But then his parents called and asked him to come for dinner}} because it has been a while since they have seen each other.{{Later on, his friend Theo informed him about a surprise birthday party for another friend.}} Theo plans to reserve a room at a restaurant for the celebration, with the cost to reserve the room split between Theo, Harry, and three other friends.Now Harry is confused about what he should do over the weekend. He decides that, for him, the most important commitments are going over to his parent's house and attending his friend's birthday party. In the end, Harry decides to see his parents. The main significance of the trial of john t. scopes was that _____. Lucinda wants to build a square sandbox but has no way of measuring angles. Explain how she can make sure that the samdbox is meansuring only length.. A) Arrange four equal-length sides so the diagonals bisect each other. B) Arrange four-length sides so the diagonalsare equal in length C) Make each diagonal the same length as four-length sides D) This is not possible, Luninda has to be able to measure a right angle. under what conditions do you think it is permissible for citizens to form a new government? 16 = X + 32............................ If only one person has the necessary it skills and experience to evaluate systems requests, that person should consult closely with users and managers throughout the company to ensure that business and operational needs are considered carefully. a. True b. False The tennis team is selling tickets to a car wash for $6.When they do not sell very many tickets,the team decreases the price 25% what is the new cost of the ticket? A 2.00 g sample of a bromine oxide (brxoy) is converted to 2.94 g of agbr. all the bromine in the original oxide compound ends up in the agbr (molar mass for agbr = 187.8). determine the empirical formula of the bromine oxide. Which of the following were Victorian essayists? Select all that apply.William Makepeace ThackerayGeorge EliotThomas CarlyleThomas Babington MacaulayMathew ArnoldCharlotte Bronte What is the density of a piece of metal in g/cm3 if its mass is determined to be 42.20 g and it is in the shape of a cube, with edge length of 2.50 cm? Refers to the use of digital technologies that enable organizations or individuals who are geographically dispersed to collaboratively plan, design, develop, manage, and research products, services, and innovative applications. will give medalThe most common linking verbs are (1 point) auxillary verbs.intransitive verbs.various forms of be. what is an icon or animation used to represent a participant in an internet chat referred to as If a tuning fork has 75 Hz, how many cycles per second does it vibrate? HELLLLLLLLLLLLLLLLPPPPPPP PLEASE! Is the number 4.78 a solution of x < 5? Is the number 6 a solution of x < 6? PLEASE EXPLAIN. Which comparison is correct for the values of f(x) and g(x) when x=1 ?Function A: f(x)= x^2+1Function B:f(1)>g(1)f(1)=g(1)f(1) Select each equation that has NO real solution!