A bowling ball that has a radius of 11.0 cm and a mass of 5.00 kg rolls without slipping on a level lane at 2.80 rad/s.
1) Calculate the ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball. (Express your answer to three significant figures.)

Answers

Answer 1

Answer:

[tex]\dfrac{K_t}{K_r}=\dfrac{5}{2}[/tex]

Explanation:

Given that,

Mass of the bowling ball, m = 5 kg

Radius of the ball, r = 11 cm = 0.11 m

Angular velocity with which the ball rolls, [tex]\omega=2.8\ rad/s[/tex]

To find,

The ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball.

Solution,

The translational kinetic energy of the ball is :

[tex]K_t=\dfrac{1}{2}mv^2[/tex]

[tex]K_t=\dfrac{1}{2}m(r\omega)^2[/tex]

[tex]K_t=\dfrac{1}{2}\times 5\times (0.11\times 2.8)^2[/tex]

The rotational kinetic energy of the ball is :

[tex]K_r=\dfrac{1}{2}I \omega^2[/tex]

[tex]K_r=\dfrac{1}{2}\times \dfrac{2}{5}mr^2\times \omega^2[/tex]

[tex]K_r=\dfrac{1}{2}\times \dfrac{2}{5}\times 5\times (0.11)^2\times (2.8)^2[/tex]

Ratio of translational to the rotational kinetic energy as :

[tex]\dfrac{K_t}{K_r}=\dfrac{5}{2}[/tex]

So, the ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball is 5:2

Answer 2

The ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball is [tex]\frac{5}{2}[/tex] or 2.50.

Given the data in question;

Mass of the bowling ball; [tex]m = 5.0kg[/tex]Radius; [tex]r = 11.0cm = 0.11m[/tex]Angular velocity; [tex]w = 2.80rad/s[/tex]

Ratio of [tex]E_{translational}[/tex] to the [tex]E_{rotational }[/tex]; [tex]R_{\frac{E_{translational}}{E_{rotational}}}= \frac{E_{translational}}{E_{rotational}} = \ ?[/tex]

Translational and Rotational kinetic Energy

Rotational energy or angular kinetic energy is simply the kinetic energy due to the rotation of a rigid body while translational kinetic energy is the same as one-half the product of mass and the square of the velocity of the body.

They are expressed as;

[tex]E_{rotational} = \frac{1}{2}Iw^2[/tex]

Where;

[tex]w[/tex] is the angular speed or velocity. [tex]I[/tex] is the moment of inertia of the bowling ball ( [tex]I = \frac{2}{5}mR^2[/tex] ).

Hence, [tex]E_{rotational} = \frac{1}{2}(\frac{2}{5}mR^2 )w^2[/tex]

[tex]E_{translational} = \frac{1}{2}mv^2[/tex]

Where;

m is mass of the objectv is the linear velocity ( [tex]v = R*w[/tex] )

Hence, [tex]E_{translational} = \frac{1}{2}m(R*w)^2[/tex]

To determine the translational kinetic energy of the bowling ball, we substitute our given values into the equation above.

[tex]E_{translational} = \frac{1}{2}m( R*w)^2\\ \\E_{translational} = \frac{1}{2} * 5.0kg * 0.0121m^2 * 7.84rad/s^2[/tex]

To determine the rotational kinetic energy of the bowling ball, we substitute our given values into the equation above.

[tex]E_{rotational} = \frac{1}{2}( \frac{2}{5}mR^2)w^2\\ \\E_{rotational} = \frac{1}{2}( \frac{2}{5} * 5.0kg* (0.11m)^2)(2.80rad/s)^2\\ \\E_{rotational} = \frac{2}{10} * 5.0kg * 0.0121m^2 * 7.84rad/s^2[/tex]

So, Ratio of [tex]E_{translational}[/tex] to the [tex]E_{rotational }[/tex]; [tex]R_{\frac{E_{translational}}{E_{rotational}}}= \frac{E_{translational}}{E_{rotational}}[/tex]

[tex]R_{\frac{E_{translational}}{E_{rotational}}}= \frac{E_{translational}}{E_{rotational}}\\\\R_{\frac{E_{translational}}{E_{rotational}}} = \frac{\frac{1}{2} * 5.0kg * 0.0121m^2 * 7.84rad/s^2}{\frac{2}{10} * 5.0kg * 0.0121m^2 * 7.84rad/s^2}\\\\R_{\frac{E_{translational}}{E_{rotational}}} = \frac{\frac{1}{2} }{\frac{2}{10} }\\ \\R_{\frac{E_{translational}}{E_{rotational}}} = \frac{\frac{1*10}{2} }{2}\\ \\R_{\frac{E_{translational}}{E_{rotational}}} = \frac{5}{2} = 2.50[/tex]

Therefore, the ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball is [tex]\frac{5}{2}[/tex] or 2.50.

Learn more about translational kinetic energy and rotational kinetic energy: https://brainly.com/question/13926915


Related Questions

A carnival game consists of a two masses on a curved frictionless track, as pictured below. The player pushes the larger object so that it strikes the stationary smaller object which then slides follows the curved track so that it rises vertically to a maximum height, h_{max}h ​max ​​ . The masses are equipped with elastic bumpers so that the impact between them is an elastic collision. If the larger object has a mass , M = 5.41 ~\text{kg}M=5.41 kg and the smaller object has a mass of m = 1.68~\text{kg}m=1.68 kg, then with what velocity, v_0v ​0 ​​ should the player release the larger object so that the smaller object just reaches the target maximum height of h_{max} = 3.0 mh ​max ​​ =3.0m above the horizontal portion of the track?

Answers

Final answer:

The required velocity of the larger object for the smaller object to reach a maximum height of 3m in an elastic collision can be calculated using the equation v0 = sqrt((2*m*g*h_max)/M). This concept relies on the conservation of energy and momentum in an elastic collision.

Explanation:

The central physics concept in this question is the conservation of energy and momentum in an elastic collision. In an elastic collision, both momentum and kinetic energy are conserved. According to the conservation of energy, the kinetic energy of the larger mass before the collision is converted into the potential energy of the smaller mass at its maximum height.

Expressing the conservation of energy mathematically, we have:

1/2*M*v0² = m*g*h_max

Solving for v0, we have:

v0 = sqrt((2*m*g*h_max)/M)

where v0 is the velocity with which the player should release the larger object, m is the mass of the smaller object (1.68 kg), g is the acceleration due to gravity (9.8 m/s²), h_max is the maximum height the smaller object will reach (3.0 m), and M is the mass of the larger object (5.41 kg).

Please do remember to plug in the correct values and units when solving the equation.

Learn more about Elastic Collision here:

https://brainly.com/question/33268757

#SPJ12

The player must release the larger object with a velocity of 1.95 m/s so that the smaller object just reaches the target maximum height of 3.0 m.

Since the collision of the two masses is elastic, the total kinetic energy of the system before the collision is equal to the total kinetic energy of the system after the collision.

We can use the principle of conservation of mechanical energy to solve this problem. The mechanical energy of a system is the sum of its potential energy and kinetic energy. At the beginning of the collision, the larger object has only potential energy due to its height, while the smaller object is at rest on the ground and has no energy. After the collision, the larger object has some kinetic energy and the smaller object has both potential energy and kinetic energy.

Let's denote the velocity of the larger object before the collision as v_0 and the velocity of the smaller object after the collision as v.

The potential energy of the larger object before the collision is:

PE_initial = Mgh

where:

M is the mass of the larger object (kg)

g is the acceleration due to gravity (m/s^2)

h is the height of the larger object above the ground (m)

The kinetic energy of the larger object before the collision is:

KE_initial = (1/2)Mv_0^2

The total mechanical energy of the system before the collision is:

E_initial = PE_initial + KE_initial = Mgh + (1/2)Mv_0^2

After the collision, the potential energy of the smaller object is:

PE_final = mgh_{max}

where:

m is the mass of the smaller object (kg)

g is the acceleration due to gravity (m/s^2)

h_{max} is the maximum height reached by the smaller object (m)

The kinetic energy of the smaller object after the collision is:

KE_final = (1/2)mv^2

The total mechanical energy of the system after the collision is:

E_final = PE_final + KE_final = mgh_{max} + (1/2)mv^2

Since the collision is elastic, we know that E_initial = E_final. Therefore, we can set the two equations equal to each other and solve for v_0.

Mgh + (1/2)Mv_0^2 = mgh_{max} + (1/2)mv^2

Solving for v_0, we get:

v_0 = sqrt((2mg(h - h_{max}))/(M + m))

Plugging in the values, we get:

v_0 = sqrt((2(5.41 kg)(9.81 m/s^2)(0.3 m))/(5.41 kg + 1.68 kg)) = 1.95 m/s

Therefore, the player must release the larger object with a velocity of 1.95 m/s so that the smaller object just reaches the target maximum height of 3.0 m.

For more such information on: velocity

https://brainly.com/question/80295

#SPJ6

Consider a cylinder initially filled with 9.33 10-4 m3 of ideal gas at atmospheric pressure. An external force is applied to slowly compress the gas at constant temperature to 1/6 of its initial volume. Calculate the work that is done. Note that atmospheric pressure is 1.013 105 Pa.

Answers

Final answer:

The work done to compress an ideal gas in a cylinder to 1/6 of its initial volume at constant temperature is -78.3 Joules.

Explanation:

This question involves the principle of work done in compressing a gas, a core concept in thermodynamics. The work done on an ideal gas at constant temperature (isothermal process) is given by the formula W = PΔV, where W is the work done, P is the atmospheric pressure, and ΔV is the change in volume.

Given that the initial volume (V1) is 9.33 * 10^-4 m³ and the final volume (V2) is 1/6 of the initial volume, so V2 = V1/6. Thus, the change in volume ΔV = V2 - V1 = V1/6 - V1 = -5V1/6.

Substituting the values into the formula and solving, we get W = PΔV = (1.013 * 10^5 Pa)(-5V1/6) = -5/6 * 1.013 * 10^5 Pa * 9.33 * 10^-4 m³ = -78.3 Joules.

Note that the work done is negative, which in this context means that work is done on the system (gas), not by it.

Learn more about Work Done on Gas here:

https://brainly.com/question/32263955

#SPJ11

One Newton is the force: 1. of gravity on a 1 g body. 2. of gravity on a 1 kg body. 3. that gives a 1 kg body an acceleration of 1 m/s2. 4. that gives a 1 kg body an acceleration of 9.8 m/s2. 5. that gives a 1 g body an acceleration of 1 cm/s.

Answers

Answer:

3. One Newton is the force that gives a 1 kg body an acceleration of 1 m/s².

Explanation:

The force is a vector magnitude that represents every cause capable of modifying the state of motion or rest of a body or of producing a deformation in it.

Its unit in the International System is the Newton (N). A Newton is the force that when applied on a mass of 1 Kg causes an acceleration of 1 m/s².

1 N = kg*(m/s²)

A 70 kg person does a bungee jump from a bridge. The natural length of the bungee cord is 20m and it has a spring constant k of 80 N/m. When the bungee cord has a total length of 25m, what is the acceleration of the jumper (to 2 significant figures)? Hint: Draw a FBD showing the magnitudes and directions of all forces on the jumper at the instant described.

Answers

Final answer:

The bungee jumper experiences a downward acceleration of 4.09 m/s^2 at the point when the bungee cord has lengthened to 25m.

Explanation:

The subject of this problem pertains to physics, specifically, the principles of dynamics and Hooke's Law. At the instant when the bungee cord has stretched to a total length of 25m, it has undergone an extension of 5m since its natural length is 20m. According to Hooke’s Law, this extension causes a restoring force F = kx, where k is the spring constant and x is the change in length.

In this case, F = 80 N/m × 5 m = 400 N which is the upward force exerted by the cord. The weight of the 70 kg person is mg, or 70 kg × 9.8 m/s² = 686 N downward. The net force acting on the jumper is the difference between the weight and the restoring force. This gives a net force of 686 N – 400 N = 286 N downward.

From Newton’s second law, force equals mass times acceleration, F = ma. Therefore, the acceleration of the jumper at the instant would be a = F/m, or 286 N ÷ 70 kg = 4.09 m/s² downward to 2 significant figures.

Learn more about Bungee Jump Physics here:

https://brainly.com/question/34061662

#SPJ12

Because you were desperate for a gift for your mom, you have a picture of yourself imbedded in the center of a cubic block of Lucite (n = 3/2) with sides of length 8cm. As you turn the block you notice the location of the picture seems to change. You know the picture is physically in the exact center of the block. How far from one of the faces of the block does the picture appear to be, that is what is the image distance of the picture from the face you are looking through?

Select One of the Following:

(a) 1.5cm

(b) 2.7cm

(c) 6.0cm

(d) 9.0cm

Answers

Answer:

correct option is (b) 2.7cm

Explanation:

given data

n = 3/2 = 1.5

sides of length  = 8 cm

to find out

How far from one of the faces of the block that what is the image distance of the picture from the face

solution

we get here distance that is

distance d = [tex]\frac{d_o}{n}[/tex]      ......................1

put here value as do is [tex]\frac{8}{2}[/tex]  = 4 cm

so

distance d = [tex]\frac{d_o}{n}[/tex]  

distance d = [tex]\frac{4}{1.5}[/tex]  

distance d = 2.6666666 = 2.67

so correct option is (b) 2.7cm

As the image distance of the picture from the face is 2.7 cm, the correct answer is (b) 2.7cm.

The problem is related to optics, specifically the refraction of light through a medium with a given refractive index, here Lucite, which has a refractive index of n = 1.5.

The picture is physically at the center of the block. Since the block has sides of length 8 cm, the center is 4 cm from any face.

To find the apparent distance due to refraction, we use the formula for the apparent depth (d') from the real depth (d) and the refractive index (n) given as:

[tex]d' = \frac{d}{n}[/tex]

Substituting the given values, we get:

d' = [tex]\frac{4 cm}{1.5}[/tex] ≈ 2.67 cm.

Rounding to the closest option, the apparent distance is 2.7 cm from one of the faces of the block.

A car with tires of radius 25.0 cm accelerates from rest to 30.0 m/s in 10.0 s. When the car's speed is 2.00 m/s find the linear acceleration of the top of the wheel relative to (a) the center of the wheel, (b) the road. (Note that there will be a vertical and horizontal component to the acceleration.

Answers

Answer

given,                                    

radius of tire = 25 cm = 0.25 m

initial velocity = 0 m/s                

final velocity = 30 m/s                  

time = 10 s                                        

a) acceleration with respect to center  

   v = u + a t                      

   30 = 0 + 10 a                      

    a = 3 m/s²                            

   radial acceleration            

  [tex]a_r = \dfrac{v^2}{r}[/tex]      

  [tex]a_r = \dfrac{2^2}{0.25}[/tex]

  [tex]a_r =16\ m/s^2[/tex]

  [tex]a=\sqrt{a_r^2 + a_t^2}[/tex]

  [tex]a=\sqrt{16^2 + 3^2}[/tex]

  [tex]a=16.28\ m/s[/tex]

acceleration w.r.t center of tire = [tex]a=16.28\ m/s[/tex]

b) acceleration with respect to road will be equal to 3 m/s²

A solid brass (bulk modulus 6.7 x 1010 N/m2) sphere is subjected to a pressure of 1.0 x 105 Pa due to the earth's atmosphere. On Venus the pressure due to the atmosphere is 9.0 x 106 Pa. By what fraction r/r0 (including the algebraic sign) does the radius of the sphere change when it is exposed to the Venusian atmosphere? Assume that the change in radius is very small relative to the initial radius.

Answers

Answer:

[tex]\frac{r}{r_0}=-4.4x10^{-5}[/tex]

Explanation:

Using the equation to find the fraction does the radius of the sphere change when it is exposed to Venusian atmosphere.

[tex]\frac{r}{r_0}=\frac{1}{3}*\frac{V}{V_0}[/tex]

Replacing to find the relation between the radius

[tex]\frac{V}{V_0}=-\frac{P}{B}[/tex]

Replacing numeric to find the relation

[tex]\frac{r}{r_0}=\frac{1}{3}*\frac{8.9x10^6pa}{6.7x10^{10}pa}[/tex]

[tex]\frac{r}{r_0}=\frac{1}{3}*-1.33x10^{-4}[/tex]

So the relation is

[tex]\frac{r}{r_0}=-4.4x10^{-5}[/tex]

A toy car having mass m = 1.50 kg collides inelastically with a toy train of mass M = 3.60 kg. Before the collision, the toy train is moving in the positive x-direction with a velocity of Vi = 2.45 m/s and the toy car is also moving in the positive x-direction with a velocity of vi = 4.75 m/s. Immediately after the collision, the toy car is observed moving in the positive x-direction with a velocity of 2.15 m/s.

(a) Determine Vf, the final velocity of the toy train.

Answers

Answer:

  [tex]v_{f}[/tex] = 3,126 m / s

Explanation:

In a crash exercise the moment is conserved, for this a system formed by all the bodies before and after the crash is defined, so that the forces involved have been internalized.

the car has a mass of m = 1.50 kg a speed of v1 = 4.758 m / s and the mass of the train is M = 3.60 kg and its speed v2 = 2.45 m / s

Before the crash

    p₀ = m v₁₀ + M v₂₀

After the inelastic shock

    [tex]p_{f}[/tex]= m [tex]v_{1f}[/tex] + M [tex]v_{2f}[/tex]

    p₀ =  [tex]p_{f}[/tex]

    m v₀ + M v₂₀ = m [tex]v_{1f}[/tex]  + M [tex]v_{2f}[/tex]

We cleared the end of the train

     M [tex]v_{2f}[/tex] = m (v₁₀ - v1f) + M v₂₀

Let's calculate

     3.60 v2f = 1.50 (2.15-4.75) + 3.60 2.45

     [tex]v_{2f}[/tex]  = (-3.9 + 8.82) /3.60

      [tex]v_{2f}[/tex]  = 1.36 m / s

As we can see, this speed is lower than the speed of the car, so the two bodies are joined

set speed must be

      m v₁₀ + M v₂₀ = (m + M) [tex]v_{f}[/tex]

      [tex]v_{f}[/tex]  = (m v₁₀ + M v₂₀) / (m + M)

      [tex]v_{f}[/tex]  = (1.50 4.75 + 3.60 2.45) /(1.50 + 3.60)

      [tex]v_{f}[/tex] = 3,126 m / s

The earth has a radius of 6.38 × 106 m and turns on its axis once every 23.9 h.

(a) What is the tangential speed (in m/s) of a person living in Ecuador, a country that lies on the equator?

(b) At what latitude (i.e., the angle theta in the drawing) is the tangential speed one-third that of a person living in Ecuador?

Answers

Answer:

a) V = 465.9 m/s

b) θ = 70.529°

Explanation:

Let's first calculate angular velocity of earth:

[tex]\omega=\frac{2\pi}{23.9h}*1h/3600s[/tex]

Velocity of a person on Ecuador will be:

[tex]V_E = \omega*R[/tex]

[tex]V_E = 465.9 m/s[/tex]

For part b, since angular velocity is the same:

[tex]\frac{\omega*R}{3}=\omega*(R*cos\theta )[/tex]

Solving for θ:

[tex]\theta=acos(1/3)[/tex]

[tex]\theta=70.529\°[/tex]

(a)   speed at the equator: 465.9 m/s

(b) Latitude for 1/3 speed: 50.6°

(a) The tangential speed of a person living in Ecuador is equal to the circumference of the Earth at the equator divided by the period of rotation. The circumference of the Earth at the equator is 2πr, where r is the radius of the Earth. The period of rotation is 23.9 hours, which is equal to 23.9 × 3600 seconds. Therefore, the tangential speed of a person living in Ecuador is:

v = 2πr / T = 2π(6.38 ×[tex]10^6[/tex] m) / (23.9 × 3600 s) ≈ 465.9 m/s

(b) The tangential speed of a person living at a latitude of θ is equal to vr * cos(θ), where vr is the tangential speed of a person living in Ecuador and r is the radius of the Earth. Therefore, we can solve for θ:

cos(θ) = vr / v = 465.9 m/s / v

Solving for θ, we get:

θ = arccos(vr / v) ≈ 50.6°

Therefore, the latitude at which the tangential speed is one-third that of a person living in Ecuador is approximately 50.6°.

For more such questions on Tangential

https://brainly.com/question/28738284

#SPJ3

A proton and an alpha particle are momentarily at rest at adistance r from each other. They then begin to move apart.Find the speed of the proton by the time the distance between theproton and the alpha particle doubles. Both particles arepositively charged. The charge and the mass of the proton are,respectively, e and m. The e charge and the mass of the alphaparticle are, respectively, 2e and 4m.
Find the speed of the proton (vf)p by the time the distancebetween the particles doubles.
Express your answer in terms of some or all of the quantities,e, m, r, and ?0.
Which of the following quantities are unknown?
A initial separation of the particles
B final separation of the particles
C initial speed of the proton
D initial speed of the alpha particle
E final speed of the proton
F final speed of the alpha particle
G mass of the proton
H mass of the alpha particle
I charge of the proton
J charge of the alpha particle

Answers

Answer:

The unknown quantities are:

E and F

The final velocity of the proton is:

√(8/3) k e^2/(m*r)

Explanation:

Hello!

We can solve this problem using conservation of energy and momentum.

Since both particles are at rest at the beginning, the initial energy and momentum are:

Ei = k (q1q2)/r

pi = 0

where k is the coulomb constant (= 8.987×10⁹ N·m²/C²)

and q1 = e and q2 = 2e

When the distance between the particles doubles, the energy and momentum are:

Ef = k (q1q2)/2r + (1/2)m1v1^2 + (1/2)m2v2^2

pf = m1v1 + m2v2

with m1 = m,   m2 = 4m,    v1=vf_p,    v2 = vf_alpha

The conservation momentum states that:

pi = pf      

Therefore:

m1v1 + m2v2 = 0

That is:

v2 = (1/4) v1

The conservation of energy states that:

Ei = Ef

Therefore:

k (q1q2)/r = k (q1q2)/2r + (1/2)m1v1^2 + (1/2)m2v2^2

Replacing

      m1 =  m, m2 = 4m, q1 = e, q2 = 2e

      and   v2 = (1/4)v1

We get:

(1/2)mv1^2 = k e^2/r + (1/2)4m(v1/4)^2 =  k e^2/r + (1/8)mv1^2

(3/8) mv1^2 = k e^2/r

v1^2 = (8/3) k e^2/(m*r)

** In Problem 4.26, the coefficient of static friction between the book and the vertical back of the wagon is μs. Determine an expression for the minimum acceleration of the wagon in terms of μs so that the book does not slide down. Does the mass of the book matter? Explain.

Answers

Final answer:

The minimum acceleration of the wagon required for the book not to slide down can be determined using the coefficient of static friction (μs) between the book and the vertical back of the wagon. The expression for the minimum acceleration is given by a = μs * g.

Explanation:

The minimum acceleration of the wagon required for the book not to slide down can be determined using the coefficient of static friction (μs) between the book and the vertical back of the wagon. The expression for the minimum acceleration is given by a = μs * g, where g is the acceleration due to gravity.

The mass of the book does not matter in this scenario. The coefficient of static friction is a property that depends on the nature of the surfaces in contact, and it determines the maximum force of static friction that can act between the book and the wagon before the book starts to slide down. The acceleration required to prevent sliding is independent of the mass of the book.

Learn more about Coefficient of static friction here:

https://brainly.com/question/30394536

#SPJ3

Two students, sitting on frictionless carts, push against each other. Both are initially at rest and the mass of student 1 and the cart is M, and that of student 2 and the cart is 1.5M. If student 1 pushes student 2 so that she recoils with velocity v,  what is the velocity of student 2.

Answers

Answer:

  v₂ = v/1.5= 0.667 v

Explanation:

For this exercise we will use the conservation of the moment, for this we will define a system formed by the two students and the cars, for this isolated system the forces during the contact are internal, therefore the moment conserves.

Initial moment before pushing

    p₀ = 0

Final moment after they have been pushed

    [tex]p_{f}[/tex] = m₁ v₁ + m₂ v₂

   p₀ =  [tex]p_{f}[/tex]

   0 = m₁ v₁ + m₂ v₂

   m₁ v₁ = - m₂ v₂

Let's replace

   M (-v) = -1.5M v₂

   v₂ = v / 1.5

  v₂ = 0.667 v

Final answer:

Conservation of momentum dictates that the total momentum before and after the push must be the same since there are no external forces. Therefore, student 2 and the cart will move in the opposite direction to student 1's movement, with a velocity of two-thirds of student 1's velocity.

Explanation:

This question relies on the concept of Conservation of Momentum. In this scenario, the frictionless carts allow us to use the principle of momentum conservation, because if there is no external force, the total momentum of the system remains constant.

Second Cart's Velocity Calculation:

Applying the principle, if student 1 and the cart (both with mass M) are initially at rest, the initial momentum of the system is 0. When student 1 pushes and goes in the opposite direction with velocity -v, the momentum of the system is still 0 (since no external forces are present). So, if student 2 (with mass 1.5M) is pushed in the opposite direction, for the total momentum to remain zero, the velocity (V2) of student 2 and the cart must be such that:
-M * v (student 1's momentum) + 1.5M * V2 (student 2's momentum) = 0.
Solving for V2 gives us V2 = -(-M * v) / 1.5M = 2v/3.

So, the velocity of student 2 and the cart is 2v/3 in the opposite direction to student 1's movement.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ3

Halogen lightbulbs allow their filaments to operate at a higher temperature than the filaments in standard incandescent bulbs. For comparison, the filament in a standard lightbulb operates at about 2900K, whereas the filament in a halogen bulb may operate at 3400K. Which bulb has the higher peak frequency? Calculate the ratio of the peak frequencies. The human eye is most sensitive to a frequency around 5.5x10^14 Hz. Which bulb produces a peak frequency close to this value?

Answers

Answer:

Halogen

0.85294

Explanation:

c = Speed of light = [tex]3\times 10^8\ m/s[/tex]

b = Wien's displacement constant = [tex]2.897\times 10^{-3}\ mK[/tex]

T = Temperature

From Wien's law we have

[tex]\lambda_m=\frac{b}{T}\\\Rightarrow \lambda_m=\frac{2.897\times 10^{-3}}{2900}\\\Rightarrow \lambda_m=9.98966\times 10^{-7}\ m[/tex]

Frequency is given by

[tex]\nu=\frac{c}{\lambda_m}\\\Rightarrow \nu=\frac{3\times 10^8}{9.98966\times 10^{-7}}\\\Rightarrow \nu=3.00311\times 10^{14}\ Hz[/tex]

For Halogen

[tex]\lambda_m=\frac{b}{T}\\\Rightarrow \lambda_m=\frac{2.897\times 10^{-3}}{3400}\\\Rightarrow \lambda_m=8.52059\times 10^{-7}\ m[/tex]

Frequency is given by

[tex]\nu=\frac{c}{\lambda_m}\\\Rightarrow \nu=\frac{3\times 10^8}{8.52059\times 10^{-7}}\\\Rightarrow \nu=3.52088\times 10^{14}\ Hz[/tex]

The maximum frequency is produced by Halogen bulbs which is closest to the value of [tex]5.5\times 10^{14}\ Hz[/tex]

Ratio

[tex]\frac{3.00311\times 10^{14}}{3.52088\times 10^{14}}=0.85294[/tex]

The ratio of Incandescent to halogen peak frequency is 0.85294

A machine part has the shape of a solid uniform sphere of mass 220 g and diameter 4.50 cm . It is spinning about a frictionless axle through its center, but at one point on its equator it is scraping against metal, resulting in a friction force of 0.0200 N at that point.

Answers

The sphere's angular acceleration is [tex]2.064 rad/s^2[/tex], and it will take approximately 10.17 seconds to decrease its rotational speed by 21.0 rad/s when experiencing a constant friction force.

Part A: Calculating Angular Acceleration

To find the angular acceleration, we must first calculate the torque. The torque ( au) caused by the friction force (F) is the product of the force and the radius (r) at which the force is applied, and torque is given by [tex]\tau = r \times F[/tex]. Using the diameter (d) to find the radius, we have r = d / 2 = 4.50 cm / 2 = 2.25 cm = 0.0225 m. The given friction force is 0.0200 N. Therefore, [tex]\tau = 0.0225 m \times 0.0200 N = 0.00045 Nm[/tex].

Next, we use the moment of inertia (I) for a sphere, [tex]I=\frac{2}{5} mr^2[/tex], to calculate the angular acceleration ([tex]\alpha[/tex]). The mass (m) is 220 g which is 0.220 kg. So, [tex]I = \frac{2}{5} \times 0.220 kg \times (0.0225 m)^2 = 0.000218025 kg m^2[/tex]. Angular acceleration, [tex]\alpha = \frac{\tau}{I} = \frac{0.00045 Nm}{0.000218025 kgm^2} \longrightarrow \alpha= 2.064 rad/s^2[/tex].

Part B: Time to Decrease Rotational Speed

To find the time (t) to decrease the rotational speed by 21.0 rad/s, we can use the equation [tex]\omega = \omega_0 + \alpha \times t[/tex], where [tex]\omega_0[/tex] is the initial angular velocity and [tex]\omega[/tex] is the final angular velocity. Since the sphere is slowing down due to friction, the angular acceleration will be negative, [tex]\alpha = -2.064 rad/s^2[/tex]. We are looking for the time it takes for the speed to decrease by 21.0 rad/s, so if the initial speed is [tex]\omega_0[/tex] and the final is [tex]\omega_0 - 21.0 rad/s[/tex], then [tex]0 = \omega_0 - 21.0 rad/s + \alpha \times t[/tex]. Solving for t gives [tex]t = \frac{21.0 rad/s}{2.064 rad/s^2} \approx t = 10.17 s[/tex].

A hollow spherical shell with mass 1.65 kg rolls without slipping down a slope that makes an angle of 38.0 ∘ with the horizontal. Part A Find the magnitude of the acceleration acm of the center of mass of the spherical shell. Take the free-fall acceleration to be g = 9.80 m/s2 .

Answers

Answer:

The acceleration is 3.62 m/s²

Explanation:

Step 1: Data given

mass of the shell = 1.65 kg

angle = 38.0 °

Step 2: Calculate the acceleration

We have 2 forces working on the line of motion:

⇒ gravity down the slope = m*g*sinα

       ⇒ provides the linear acceleration

⇒ friction up the slope = F

      ⇒ provides the linear acceleration and also the torque about the CoM.

∑F = m*a = m*g*sin(α) - F

I*dω/dt = F*R

The spherical shell with mass m has moment of inertia I=2/3*m*R² Furthermore a pure rolling relates  dω/dt and a through a = R dω/dt. So the two equations become

m*a = m*g sin(α) - F

2/3*m*a = F  

IF we combine both:

m*a = m*g*sin(α) - 2/3*m*a

1.65a = 1.65*9.81 * sin(38.0) - 2/3 *1.65a

1.65a + 1.1a = 9.9654

2.75a = 9.9654

a = 3.62 m/s²

The acceleration is 3.62 m/s²

The magnitude of the acceleration of the center of mass of the spherical shell is 3.62 m/s².

What is Newton’s second law of motion?

Newton’s second law of motion shows the relation between the force mass and acceleration of a body. It says, that the net force applied on the body is equal to the product of mass of the body and the acceleration of it.

It can be given as,

[tex]\sum F=ma[/tex]

Here, (m) is the mass of the body and (a) is the acceleration.

A hollow spherical shell with mass 1.65 kg rolls without slipping down a slope that makes an angle of 38.0 ∘ with the horizontal. The free-fall acceleration g is 9.80 m/s2 .

The total friction force is equal to the force of gravity acting downward of the slope.

[tex]\sum F=mg\sin(\theta)-F\\[/tex]

For the force acting on the rotating spherical shell is,

[tex]F=\dfrac{2}{3}ma[/tex]

Put this value in above equation,

[tex]\sum F=(1.65)(9.80)\sin(38)-\dfrac{2}{3}(1.65)a\\ma=(1.65)(9.80)\sin(38)-\dfrac{2}{3}(1.65)a\\(1.65)a=(1.65)(9.80)\sin(38)-\dfrac{2}{3}(1.65)a\\a=(9.80)\sin(38)-\dfrac{2}{3}a\\a=3.62\rm \; m/s^2[/tex]

Thus, the magnitude of the acceleration of the center of mass of the spherical shell is 3.62 m/s².

Learn more about the Newton’s second law of motion here;

https://brainly.com/question/25545050

A 86 g particle undergoes SHM with an amplitude of 1.3 mm, a maximum acceleration of magnitude 6.8 x 103 m/s2, and an unknown phase constant φ. What are (a) the period of the motion, (b) the maximum speed of the particle, and (c) the total mechanical energy of the oscillator? What is the magnitude of the force on the particle when the particle is at (d) its maximum displacement and (e) half its maximum displacement?

Answers

Answer:

Explanation:

mass, m = 86 g

Amplitude, A = 1.3 mm

Maximum acceleration, a = 6.8 x 10^3 m/s^2

(a) Let T be the period of motion and ω be the angular frequency.

maximum acceleration, a = ω²A

6.8 x 10^3 = ω² x 1.3 x 10^-3

ω = 2287.0875 rad/s

T = 2π/ω

T = ( 2 x 3.14) / 2287.0875

T = 2.75 x 10^-3 second

T = 2.75 milli second

(b) maximum speed = ωA

v = 2287.0875 x 1.3 x 10^-3

v = 2.97 m/s

(c) Total mechanical energy

T = 1/2 mω²A²

T = 0.5 x 86 x 10^-3 x 2287.0875 x 2287.0875 x 1.3 x 1.3 x 10^-6

T = 0.38 J

(d) At maximum displacement, the acceleration is maximum

F = m x a = 86 x 10^-3 x 6.8 x 1000

F = 541.8 N

(e) acceleration a = ω² y = ω² x A / 2

a =  2287.0875 x 2287.0875 x 1.3 x 10^-3 / 2

a = 3400 m/s^2

Force, F = 86 x 10^-3 x 3400

F = 292.4 N

A horizontal water jet strikes a stationary vertical plate at a rate of 5 kg/s with a velocity of 35 km/hr. Assume that the water stream moves in the vertical direction after the strike. The force, in N, needed to prevent the plate from moving horizontally is _____ .

Answers

Answer:

48.6 N

Explanation:

rate of mass per second, dm/dt = 5 kg/s

Velocity, v = 35 km/hr = 9.72 m/s

Force acting on the plate

F = v x dm/dt

F = 9.72 x 5 = 48.6 N

Thus, the force acting on the plate is 48.6 N.

To prevent the plate from moving horizontally, a force of 48.6 N is required. The initial horizontal momentum of the water is 48.6 kg*m/s.

To calculate the force needed to prevent the plate from moving horizontally when a horizontal water jet strikes a vertical plate, we first need to determine the change in momentum of the water. The water strikes the plate at a rate of 5 kg/s with a velocity of 35 km/hr. Let's convert the velocity to meters per second:

35 km/hr = (35 * 1000) / 3600 = 9.72 m/s.

Next, we calculate the initial horizontal momentum of the water jet:

Initial momentum = mass flow rate * velocity = 5 kg/s * 9.72 m/s = 48.6 kg*m/s.

The water stream moves in the vertical direction after the strike, so its horizontal momentum is reduced to zero. The change in momentum is:

Change in momentum = Initial momentum - Final momentum = 48.6 kg*m/s - 0 kg*m/s = 48.6 kg*m/s.

We use the change in momentum (impulse) to find the force since force is the rate of change of momentum:

Force = Change in momentum / Time

The mass flow rate gives the change in momentum per second, which means the force can be directly calculated as:

Force = 48.6 N

Thus the force required to prevent the plate from moving horizontally, a force of 48.6 N

As an admirer of Thomas Young, you perform a double-slit experiment in his honor. You set your slits 1.19 mm apart and position your screen 3.53 m from the slits. While Young had to struggle to achieve a monochromatic light beam of sufficient intensity, you simply turn on a laser with a wavelength of 635 nm. How far on the screen are the first bright fringe and the second dark fringe from the central bright fringe? Express your answers in millimeters.

Answers

Answer:

First bright fringe is at 1.82 mm

First dark fringe is at 2.83 mm

Solution:

As per the question:

Slit width, d = 1.19 mm = [tex]1.19\times 10^{- 3}\ m[/tex]

Distance from the screen, x = 3.53 m

Wavelength of the light, [tex]\lambda = 635\ nm = 635\times 10^{- 9}\ m[/tex]

Now,

We know that the 1st bright fringe from the central fringe is given by:

[tex]y = \frac{n\lambda x}{d}[/tex]

where

n = 1

[tex]y = \frac{1\times 635\times 10^{- 9}\times 3.53}{1.19\times 10^{- 3}} = 1.88\ mm[/tex]

Also, we know that the 1st dark fringe from the central fringe is given by:

[tex]y = \frac{(n + \frac{1}{2})\lambda x}{d}[/tex]

[tex]y = \frac{(1 + \frac{1}{2})\times 635\times 10^{- 9}\times 3.53}{1.19\times 10^{- 3}} = 2.83\ mm[/tex]

Nitrogen (N2) undergoes an internally reversible process from 6 bar, 247°C during which pν1.2 = constant. The initial volume is 0.1 m3 and the work for the process is 50 kJ. Assuming ideal gas behavior, and neglecting kinetic and potential energy effects, determine heat transfer, in kJ, and the entropy change, in kJ/K.

Answers

Final answer:

The given question involves the thermodynamic process of an internally reversible process of nitrogen gas (N2) at specific pressure and temperature with a constant value of pν1.2. However, the question does not provide enough information to calculate the heat transfer and entropy change accurately.

Explanation:

The given question involves the thermodynamic process of an internally reversible process of nitrogen gas (N2) at specific pressure and temperature with a constant value of pν1.2. In order to determine the heat transfer and entropy change, we need to use the first and second laws of thermodynamics. However, the question does not provide enough information to calculate the heat transfer and entropy change accurately.

Learn more about thermodynamic process here:

https://brainly.com/question/31237212

#SPJ12

A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 23.1 rad/s . The radius of the wheel is 0.652 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom of the hill; this work has a magnitude of 3470 J .

Answers

Answer:

h=12.04m

Explanation:

1) Notation and some important concepts

[tex]\omega_i[/tex] represent the initial angular velocity

[tex]v_i[/tex] represent the initial velocity

[tex]h[/tex] represent the final height reached by the mass

[tex]M[/tex] represent the mass of the object

[tex]W_f[/tex] represent the work due the friction force (variable of interest)

[tex]KE_{rot}[/tex] represent the rotational energy

[tex]KE_{tra}[/tex] represent the transitional kinetic energy

[tex]PE=mgh[/tex] represent the potential energy

[tex]I=0.8MR^2[/tex] represent the rotational inertia

W= 395 N is the weight of the object

For this problem we can use the principle of energy conservation, this principle states that "the total energy of an isolated system remains constant; it is said to be conserved over time".

At the begin the wheel had rotational energy defined as "The kinetic energy due to rotational motion. Is a scalar quantity and have units of energy usually Joules". And this energy is represented by the following formula: [tex]KE_{rot}=\frac{1}{2}I\omega^2_i[/tex]

At the starting point the wheel also had kinetic energy defined as "The energy of mass in motion" and is given by the formula : [tex]KE_{tran}=\frac{1}{2}mv_i^2_i[/tex]

At the end of the movement we have potential energy since the mass is at height h the potential energy is defined as "The energy stored within an object, due to the object's position, arrangement or state" and is given by the formula [tex]PE=mgh[/tex].

Since we have friction acting we have a work related to the force of friction and we need to subtract this from the formula of conservation of energy

2) Formulas to use

The figure attached is an schematic draw for the problem

Using the principle of energy conservation we have:

[tex]KE_{rot}+KE_{tran}-W_f =PE[/tex]

Replacing the formulas for each energy w ehave:

[tex]\frac{1}{2}I\omega^2_i+\frac{1}{2}mv_i^2_i-W_f =Mgh[/tex]    (1)

We also know that [tex]v_i =\omega_i R[/tex] and [tex]I=0.8MR^2[/tex] so if we replace this into equation (1) we got:

[tex]0.8(\frac{1}{2})M(R\omega_i)^2 +\frac{1}{2}M(\omega_i R)^2-W_f=Mgh[/tex]    (2)

We also know that the weight is defined as [tex]W=mg[/tex] so then [tex]M=\frac{W}{g}[/tex], so if we replace this into equation (2) we have:

[tex]0.8(\frac{1}{2})\frac{W}{g}(R\omega_i)^2 +\frac{1}{2}\frac{W}{g}(\omega_i R)^2-W_f=Wh[/tex]    (3)

So then if we solve for h we got:

[tex]h=\frac{0.8(\frac{1}{2})\frac{W}{g}(R\omega_i)^2 +\frac{1}{2}\frac{W}{g}(\omega_i R)^2-W_f}{W}[/tex]    (4)

3) Solution for the problem

Now we can replace the values given into equation (4):

[tex]h=\frac{0.8(\frac{1}{2})\frac{395N}{9.8\frac{m}{s^2}}(0.652m(23.1\frac{rad}{s}))^2 +\frac{1}{2}\frac{395}{9.8\frac{m}{s^2}}(23.1\frac{rad}{s}(0.652m))^2-3470J}{395N}=12.04m[/tex]    (4)

So then our final answer would be h=12.04m

When 1.14 g of octane (molar mass = 114 g/mol) reacts with excess oxygen in a constant volume calorimeter, the temperature of the calorimeter increases by 10.0°C. The heat capacity of the calorimeter is 6.97 kJ/°C. Determine the energy flow, q (reaction).

Answers

Answer:

Q (reaction) = -69.7 kJ

Explanation:

Octane reacts with oxygen to give carbon dioxide and water.

C₈H₁₈ + 25 O₂ ---> 16 CO₂ +18 H₂O

This reaction is exothermic in nature. Therefore, the energy is released into the atmosphere. This reaction took place in a calorimeter, there the temperature (T) increases by 10 C. The heat capacity of the calorimeter is 6.97 kJ/C

The heat (q) of the reaction is calculated as follows:

Q= -cT, where c is the heat capacity of the calorimeter and T is the increase in temperature

q = -(6.97) x (10) = -69.7kJ

Since the heat capacity is given in kilo -joule per degree Celsius, therefore, the mass of octane is not required

8. A solid wooden door, 90 cm wide by 2.0 m tall, has a mass of 35 kg. It is open and at rest. A small 500-g ball is thrown perpendicular to the door with a speed of 20 m/s and hits the door 60 cm from the hinged side, causing it to begin turning. The ball rebounds along the same line with a speed of 16.0 m/s relative to the ground. If the momentum of inertia of the door around the hinge is I=1/3 Ma 2 , where a is the width of the door, how much energy was lost during this collision?

Answers

Answer:

Explanation:

Kinetic energy of ball

= .5 x .5 x 20²

= 100 J

Original kinetic energy of door = 0

Total kinetic energy before ball hitting the door

= 100 J

We shall apply law of conservation of momentum to calculate angular velocity of the door after ball hitting it.

change in angular  momentum of ball

= mvr - mur , u is initial velocity and v is final velocity of ball

= .5 ( 20 + 16 ) x .06

= 1.08

Change in angular momentum of door

= I x ω - 0

1/3 x 35 x .09² x ω

= .0945 x ω

so

.0945 x ω = 1.08

ω = 11.43

rotational K E of door after collision

= 1/2 I ω²

= .5 x .0945 x 11.43 ²

= 6.17 J  

Kinetic energy of ball after collision

= 1/2 x .5 x 16²

= 64

Total KE of door and ball

= 64 + 6.17

= 70.17 J

LOSS OF ENERGY

= 100 - 70.17 J

= 29.83 J

A conducting loop of radius 1.50 cm and resistance 8 × 10−6Ω is perpendicular to a uniform magnetic field of magnitude 23.0 × 10−6T. The field magnitude drops to zero in 7 ms. How much thermal energy is produced in the loop by the change in the magnetic field?

Answers

To solve this problem it is necessary to apply the concepts related to electromotive force or induced voltage.

By definition we know that the induced emf in the loop is equal to the negative of the change in the magnetic field, that is,

[tex]\epsilon = -A \times \frac{\Delta B}{\Delta t}[/tex]

[tex]\epsilon = -A \times (\frac{B_f-B_i}{t_f-t_i})[/tex]

Where A is the area of the loop, B the magnetic field and t the time.

Replacing with our values we have that

[tex]\epsilon = -(\pi (1.5*10^{-2})^2)(\frac{0-23*10^{-6}}{7*10^{-3}-0})[/tex]

[tex]\epsilon = 2.3225*10^{-6}V[/tex]

Therefore the thermal energy produced is given by

[tex]E = P*t = \frac{\epsilon^2}{R}t[/tex]

[tex]E = \frac{(2.3225*10^{-6})^2}{8*10^{-6}}*(7*10^{-3})[/tex]

[tex]E = 4.719*10^{-9}J[/tex]

The thermal energy produced in the loop is [tex]4.719*10^{-9}J[/tex]

Ethanol has a heat of vaporization of 38.56 kJ/mol and a vapor pressure of 760 torr at 78.4 oC. What is the vapor pressure of ethanol at 38.8 oC?

Answers

To develop this problem it is necessary to apply the concepts developed by Clausius - Claperyron.

This duet found the relationship between temperature and pressure expressed as,

[tex]ln P = constant - \frac{\Delta H}{RT}[/tex]

For the two states that we have then we could define the pressure and temperature in each of them as

[tex]ln(\frac{P_2}{P_1}) = \frac{-\Delta H}{R}(\frac{1}{T_2}-\frac{1}{T_1})[/tex]

Where,

[tex]P_{1,2}[/tex]= Pressure at state 1 and 2

[tex]T_{1,2}[/tex]= Temperature at state 1 and 2

[tex]\Delta H[/tex]= Enthalpy of Vaporization of a substance

R = Gas constant (8.134J/mol.K)

Our values are given by,

[tex]P_1 = 1atm \\\Delta H = 38.56*10^{-3} J/mol \\R = 8.134J/mol.K\\T_1 = 78.4\°C = 351.55K\\T_2 =38.8\°C = 311.95K[/tex]

Therefore replacing we have that,

[tex]ln(\frac{P_2}{P_1}) = \frac{-\Delta H}{R}(\frac{1}{T_2}-\frac{1}{T_1})[/tex]

[tex]ln(\frac{P_2}{1atm}) = \frac{-38.56*10^3}{8.314}(\frac{1}{311.95}-\frac{1}{351.55})[/tex]

[tex]ln(P_2) - Ln(1atm) = \frac{-38.56*10^3}{8.314}(\frac{1}{311.95}-\frac{1}{351.55})[/tex]

[tex]P_2 = e^{\frac{-38.56*10^3}{8.314}(\frac{1}{311.95}-\frac{1}{351.55})}[/tex]

[tex]P_2 = 0.187355atm[/tex]

Therefore the pressure of the Ethanol at 38.8°C is 0.187355atm

⦁ A speed skater increases her speed form 10 m/s to 12.5 m/s over a period of 3 seconds while coming out of a curve of 20 m radius. What are the magnitudes of her radial, tangential and total accelerations as she leaves the curve?

Answers

Answer:

7.85 m/s^2

Explanation:

linear or tangential acceleration= dv/dt

⇒[tex]a_t= \frac{12.5-10}{3}[/tex]

=0.83 m/s^2

radial acceleration is given by = [tex]\frac{v^2}{r}[/tex]

⇒[tex]a_r =\frac{12.5^2}{20}[/tex]

= 7.81 m/s^2

total acceleration

[tex]a_T= \sqrt{a_t^2+a_r^2}[/tex]

putting values we get

[tex]a_T= \sqrt{0.83^2+7.81^2}[/tex]

= 7.85 m/s^2

Answer:

Explanation:

Tangential acceleration = ( 12.5 - 10 )/ 3

a_t= .833 m /s²

radial acceleration

= v² / R

12.5² / 20 ( 12.5 m/s is the velocity when it leaves the curve )

a_r= 7.81 ms⁻²  

Total acceleration √( .833² + 7.81²)

=  √( 61.6939)

= 7.85 m/s⁻

wide tube that extends down from the bag of solution, which hangs from a pole so that the fluid level is 90.0 cm above the needle. The inner radius of the needle is 0.200 mm. The top of the fluid is exposed to the atmosphere, and the flow rate of the fluid (which has a density of 1025 kg/m^3 and a viscosity of 0.0010 Pass) through the needle is 0.200 L/h. What is the average gauge pressure inside the vein where the needle is? Use g = 9.8 m/s^2. _______ Pa

Answers

Answer:

The average gauge pressure inside the vein is 110270.58 Pa

Explanation:

This question can be solved using the Bernoulli's Equation. First, in order to determine the outlet pressure of the needle, we need to find the total pressure exerted by the atmosphere and the fluid.

[tex]P_f: fluid's\ pressure\\P_f= \rho g h=1025\frac{kg}{m^3} \times 9.8 \frac{m}{s^2} \times 0.9 m=9040.5 Pa \\P_T: total\ pressure\\P_T=P_{atm}+P_f\\P_T=101325 Pa + 9040.5 Pa=110275.5 Pa\\[/tex]

Then, we have to find the fluid's outlet velocity with the transversal area of the needle, as follows:

[tex]S: transversal\ area \\S= \pi r^2=\pi (0.200 \times 10^{-3})^2=5.65 \times 10^{-7} m^2\\v=\frac{F}{S}=\frac{5.55 \times 10^{-8} \frac{m^3}{s}}{5.65 \times 10^{-7} m^2}=0.98\times 10^{-1} \frac{m}{s}[/tex]

As we have all the information, we can complete the Bernoulli's expression and solve to find the outlet pressure as follows:

[tex]P_T-P_{out}=\frac{1}{2} \rho v^2\\P_{out}=P_T-\frac{1}{2} \rho v^2=110275.5 Pa-\frac{1}{2} 1025\frac{kg}{m^3} (0.98\times 10^{-1} \frac{m}{s})^2=110275.5 Pa-4.92 Pa =110270.58 Pa[/tex]

If the net work done on an object is positive, what can you conclude about the object's motion?

- The object is moving with a constant velocity.

- The object is speeding up.

- The object is slowing down.

- The object is at rest; its position is constant.

Answers

Since there is a positive work on an object, this directly indicates that there is an increase in Energy on the body.

Work can be expressed in terms of Force and distance as

W = Fd

Where,

F = Force

d = Distance

The force in turn is a description of how mass accelerates according to Newton's second law, that is

F = ma

The mass (m) remains constant, but the acceleration (a) is constant, which implies directly that there is a gradual change in the velocity of the object.

Therefore the correct answer is: The object is speeding up.

The work is positive so the energy of the object is  increasing so the object is speeding up

What can you conclude about objects' motion?

As we know that the work is the product of the force and the displacement

[tex]W=F\times D[/tex]

Where,

F = Force

D= Distance

And from newtons second law we can see that

[tex]F=m\times a[/tex]

Since here mass will be constant to there will be a change in the velocity that is acceleration in the body so the energy of the body will change

Thus work is positive so the energy of the object is  increasing so the object is speeding up

To know more about mechanical work follow

https://brainly.com/question/25573309

A small rubber wheel drives the rotation of a larger pottery wheel by running along its edge. The small wheel radius is 1.2 cm, and it accelerates at 3 rad/s2. The pottery wheel has a radius of 36 cm. What is the angular acceleration of the pottery wheel? How long till the pottery wheel rotates at 60 rpm?

Answers

Answer:

α₂= 0.1  rad/s²

t= 62.8 s

Explanation:

Given that

For small wheel

r₁= 1.2 cm

α₁ = 3 rad/s²

For large wheel

r₂= 36 cm

Angular acceleration = α₂  rad/s²

The tangential acceleration for the both wheel will be same

a = α₁ r₁=α₂ r₂

Now by putting the values in the above equation

α₁ r₁=α₂ r₂

3 x 1.2 = 36 x α₂

α₂= 0.1  rad/s²

Given that

N = 60 rpm

Angular speed in rad/s ω

[tex]\omega = \dfrac{2\pi N}{60}[/tex]

[tex]\omega = \dfrac{2\pi \times 60}{60}[/tex]

ω = 6.28 rad/s

Time taken is t

ω = α₂ t

6.28 = 0.1 t

t= 62.8 s

Final answer:

The angular acceleration of the pottery wheel is 0.1 rad/s². It will rotate at 60 rpm after approximately 63 seconds.

Explanation:

The concept involved in the question relates to the principle of angular momentum conservation. The angular acceleration of the pottery wheel can be calculated from the given angular acceleration of the small wheel and the ratio of their radii. The equation that connects linear acceleration (a), angular acceleration (alpha), and radius (r) is a = alpha*r. Given that the small wheel has an angular acceleration, alpha1=3 rad/s² and radius r1=1.2 cm, while the pottery wheel has radius r2=36 cm, the linear acceleration of both is the same. Hence, the angular acceleration of the pottery wheel, alpha2 = a/r2 = (alpha1*r1)/r2 = (3 * 1.2 cm)/(36 cm) = 0.1 rad/s².

Now, for how long until the pottery wheel rotates at 60 rpm, first convert 60 rpm to rad/s. Note that 1 rev = 2π rad, and 1 min = 60 s. So, 60 rev/min = (60 * 2π rad)/(60 s) = 2π rad/s = final angular velocity, omega.

Then, use the formula for time in angular motion having constant angular acceleration: t = (omega - omega_initial) / alpha, and since the pottery wheel starts from rest, omega_initial = 0. Hence, t = omega/alpha2 = (2π rad/s)/(0.1 rad/s²) = 20π s, or approximately 63 seconds.

Learn more about Angular Acceleration here:

https://brainly.com/question/32293403

#SPJ11

The femur is a bone in the leg whose minimum cross-sectional area is about 3.70 10-4 m2. A compressional force in excess of 6.60 104 N will fracture this bone. (a) Find the maximum stress that this bone can withstand. (b) What is the strain that exists under a maximum-stress condition

Answers

Answer:

178378378.37 Pa

0.01897

Explanation:

F = Force = [tex]6.6\times 10^4\ N[/tex]

A = Area = [tex]3.7\times 10^{-4}\ m^2[/tex]

Y = Young's modulus of bone under compression = [tex]9.4\times 10^{9}\ Pa[/tex]

[tex]\varepsilon[/tex] = Strain

Stress is given by

[tex]\sigma=\frac{F}{A}\\\Rightarrow \sigma=\frac{6.6\times 10^4}{3.7\times 10^{-4}}\\\Rightarrow \sigma=178378378.37\ Pa[/tex]

The maximum stress that this bone can withstand is 178378378.37 Pa

Compression force is given by

[tex]F=Y\varepsilon A\\\Rightarrow \varepsilon=\frac{F}{YA}\\\Rightarrow \varepsilon=\frac{6.6\times 10^4}{9.4\times 10^{9}\times 3.7\times 10^{-4}} \\\Rightarrow \varepsilon=0.01897[/tex]

The strain that exists under a maximum-stress condition is 0.01897

Final answer:

The maximum stress that the femur can withstand is 1.78 * 10^8 Pascals, and the strain under this maximum stress condition is approximately 0.012 or 1.2%.

Explanation:

The subject of the question is the stress and strain on the femur bone, which is integral to the field of Physics. To address part (a) of the question, we must find the maximum stress that the femur can withstand. Stress is defined as the average force per unit area, or the force divided by the area. In this case, we are given a compressional force of 6.60 * 10^4 Newtons and a cross-sectional area of the femur as 3.70 * 10^-4 m2. We divide the force by the area to find the stress:

Stress = Force / Area = (6.60 * 10^4 N) / (3.70 * 10^-4 m2) = 1.78 * 10^8 Pa (Pascals).

For part (b) of the question, the strain under a maximum-stress condition can be calculated by dividing the stress by Young's modulus. For bone, the modulus can vary, and bones are brittle with the elastic region small. However, if we take an average value, say 1.5 * 10^10 Pa, then, the strain will be:

Strain = Stress / Young's modulus = (1.78 * 10^8 Pa) / (1.5 * 10^10 Pa) = 0.012.

So under maximum stress, the strain is 0.012 (dimensionless) or 1.2%. Remember, this is an approximation as the actual modulus can vary based on numerous factors such as age, diet and lifestyle of the individual.

Learn more about Stress and Strain here:

https://brainly.com/question/13261407

#SPJ3

A horizontal uniform bar of mass 2.9 kg and length 3.0 m is hung horizontally on two vertical strings. String 1 is attached to the end of the bar, and string 2 is attached a distance 0.74 m from the other end. A monkey of mass 1.45 kg walks from one end of the bar to the other. Find the tension T1 in string 1 at the moment that the monkey is halfway between the ends of the bar.

Answers

Answer:

given,

mass of uniform bar = 2.9 Kg

length of string = 3 m

mass of monkey = 1.45 Kg

monkey is sitting at the center

Weight of the beam will also consider to as the center

total downward force  = 2.9 g  + 1.45 g

now tension will balance the force

T₁ + T₂ = 2.9 g  + 1.45 g

T₁ + T₂ = 4.35 g

taking moment about T₂ string

now,

T₁ x (3-0.74) - 4.35 g x (1.5 - 0.74) = 0

T₁ x  2.26 = 32.3988

T₁ = 14.34 N

Other Questions
Consider a sample of helium gas in a container fitted with a piston as pictured below. The piston is frictionless, but has a mass of 10.0 kg. How many of the following processes will cause the piston to move away from the base and decrease the pressure of the gas? Assume ideal behavior. I. Heating the helium. II. Removing some of the helium from the container. III. Turning the container on its side. IV. Decreasing the pressure outside the container. a) 0 b) 1 c) 2 d) 3 e) 4 At a rock concert, a dB meter registered 128 dB when placed 2.9 m in front of a loudspeaker on the stage. The intensity of the reference level required to determine the sound level is 1.01012W/m2. Determine the following: A. What was the power output of the speaker, assuming uniform spherical spreading of the sound and neglecting absorption in the air? B. How far away would the sound level be 82 dB? who is cuche girl........... Explain this quote from Macbeth.To be thus is nothing, but to be safely thus-- Our fears in Banquo stick deep, And in his royalty of nature reigns that Which would be feared. 'Tis much he dares; And to that dauntless temper of his mind He hath a wisdom that doth guide his valour To act in safety. There is none but he Whose being I do fear; and under him My genius is rebuked, as it is said, Marc Antony's was by Caesar. Lisa put five quarters into the parking meter every time she goes downtown. However, when asked, Lisa cannot say if the head on a quarter is facing left or right. This may be an example of ________. you want to buy desserts for your sisters birthday party. At the grocery store it costs $6 for a package of cupcakes and 4$ for a package of cookies. write a linear equation to represent the number of items you can buy if she spends $48 Find all solutions to the equation in the interval [0, 2). (3 points) cos 4x - cos 2x = 0 0, two pi divided by three. , four pi divided by three. pi divided by six , pi divided by two , five pi divided by six , seven pi divided by six , three pi divided by two , eleven pi divided by six 0, pi divided by three. , two pi divided by three. , , four pi divided by three. , five pi divided by three. No solution Express the angular velocity of the wheel in terms of the displacement d, the magnitude F of the applied force, and the moment of inertia of the wheel Iw, if you've found such a solution. Otherwise, following the hints for this part should lead you to express the angular velocity of the wheel in terms of the displacement d, the wheel's radius r, and . Can someone please answer this! (1/4 + 5/4)^2 +3/4 Which of the following monomers would be used to make the double helix of a DNA molecule? 3. Bare lymphocyte syndrome does NOT: A. produce a phenotype like SCID. B. result from a defect in the TAP transporter. C. lead to a lack of MHC class II. D. result in a deficiency of cytotoxic T cells. E. increase susceptibility to viral infections. Two long, straight wires are parallel and 16 cm apart. One carries a current of 2.9 A, the other a current of 5.7 A. (a) If the two currents flow in opposite directions, what is the magnitude (in N/m) and direction of the force per unit length of one wire on the other? A chemist puts 0.2 liters of liquid in each of 3 beakers. How much liquid is there in total? 23. In the late 1950s, the United States supported Vietnamese President Ngo Dihn Diemwho was A. a repressive leader who killed thousands of his own people B. CatholicC. Not a communist D. All (A, B, C) In class, a psychology professor states that learned helplessness causes people to make attributions that are internally focused, global in nature, and stable. A student who demonstrates critical thinking would raise his or her hand and remind the professor that __________. Which is the best first step and explanation for solving this system of equations? Thomas buys 6 souvenirs for his friends and family. Each gift takes up 1/15 of his suitcase. If he has two suitcases, how much room is left for his own belongings in his suitcases? Which of the following will NOT disqualify your vehicle from being usedfor the Class E driving skills test?A. An inoperable hornB. A missing driver's side windshield wiperC. A broken or missing door or seatD. A crack in your windshield that doesn't affect visibility A cheerleader lifts his 43.8 kg partner straight up off the ground a distance of 0.737 m before releasing her. Assume the partners velocity is zero at the beginning and the end of the lift. The acceleration of gravity is 9.8 m/s 2 . If he does this 27 times, how much work has he done? Answer in units of J. Sometimes, when the wind blows across a long wire, a low-frequency "moaning" sound is produced. The sound arises because a standing wave is set up on the wire, like a standing wave on a guitar string. Assume that a wire (linear density = 0.0180 kg / m ) sustains a tension of 350 N because the wire is stretched between two poles that are 17.43 m apart. The lowest frequency that an average, healthy human ear can detect is 20.0 Hz. What is the lowest harmonic number n that could be responsible for the "moaning" sound?