A burglar attempts to drag a 108 kg metal safe across a polished wood floor Assume that the coefficient of static friction is 0.4, the coefficient of kinetic friction is 0.3, and that the burglar can apply a pushing force of 534 N on the metal safe. What is the acceleration of the metal safe across floor?

Answers

Answer 1

Answer:

2.00 m/s²

Explanation:

Given

The Mass of the metal safe, M = 108kg

Pushing force applied by the burglar,  F = 534 N

Co-efficient of kinetic friction, [tex]\mu_k[/tex] = 0.3

Now,

The force against the kinetic friction is given as:

[tex]f = \mu_k N = u_k Mg[/tex]

Where,

N = Normal reaction

g= acceleration due to the gravity

Substituting the values in the above equation, we get

[tex]f = 0.3\times108\times9.8[/tex]

or

[tex]f = 317.52N[/tex]

Now, the net force on to the metal safe is

[tex]F_{Net}= F-f[/tex]

Substituting the values in the equation we get

 [tex]F_{Net}= 534N-317.52N[/tex]

or

[tex]F_{Net}= 216.48[/tex]

also,

 

[tex]F_{Net}= M\times [/tex]acceleration of the safe

Therefore, the acceleration of the metal safe will be

acceleration of the safe=[tex] \frac{F_{Net}}{M} [/tex]

or

 acceleration of the safe=[tex] \frac{216.48}{108} [/tex]

or

 

acceleration of the safe=[tex] 2.00 m/s^2 [/tex]

Hence, the acceleration of the metal safe will be  2.00 m/s²

Answer 2
Final answer:

The acceleration of the safe is determined by factoring in the force exerted by the burglar, the static friction that initiates movement, and the kinetic friction that must be overcome when the safe is in motion. When these factors are calculated, the acceleration comes out to be approximately 2 m/s².

Explanation:

The subject in question deals with two types of force: the force applied by the burglar and the frictional force which acts against the direction of the motion. The gravitational force acting on the safe, also known as its weight, can be calculated by multiplying the safe's mass (108 kg) with the acceleration due to gravity (approx. 9.80 m/s²), which gives us a value of 1058.4 N. This weight also represents the normal force, as the safe is on a horizontal plane.

The maximum force of static friction, calculated using the formula ƒs_max = μsN (where μs is the coefficient of static friction and N is the normal force), turns out to be 0.4 * 1058.4 N = 423.36 N. This implies the burglar needs to exert a force greater than this to overcome the static friction and set the safe in motion.

Given that the burglar can apply a maximum force of 534 N, this is significantly greater than the static friction, inducing motion in the safe. Once the safe is moving, it's the force of kinetic friction that matters. Calculating this force gives us 0.3 * 1058.4 N = 317.52 N. This is the force that has to be overcome to maintain the safe in motion.

Using Newton's second law (F = ma), we can determine the acceleration by subtracting kinetic friction from the applied force and dividing it by the mass of the safe. This gives us an acceleration of (534N - 317.52N) / 108kg = 2 m/s². Therefore, the safe would indeed move, and its acceleration would be 2 m/s².

Learn more about Friction and Acceleration here:

https://brainly.com/question/37731221

#SPJ3


Related Questions

On takeoff, the combined action of the engines and the wings of an airplane exert a force of 8.00 × 103 N on the plane upward at an angle of 65.0" above the horizontal. The plane rises with constant velocity in the vertical direction while continuing to accelerate in the horizontal direction. (3 marks) a. What is the weight of the plane? b. What is the horizontal acceleration of the plane? .

Answers

Answer:

a) 7250.5 N

b) 4.6 m/s²

Explanation:

a)

F = applied force = 8000 N

θ = angle with the horizontal = 65 deg

Consider the motion along the vertical direction :

[tex]F_{y}[/tex] = Applied force in vertical direction in upward direction = F Sinθ = 8000 Sin65 = 7250.5 N

[tex]F_{g}[/tex] = weight of the plane in vertical direction in downward direction = ?

[tex]a_{y}[/tex] = Acceleration in vertical direction = 0 m/s²

Taking the force in upward direction as positive and in downward direction as negative, the force equation along the vertical direction can be written as

[tex]F_{y}-F_{g} = m a_{y}[/tex]

[tex]7250.5 -F_{g} = m (0)[/tex]

[tex]F_{g}[/tex] = 7250.5 N

b)

m = mass of the plane

force of gravity is given as

[tex]F_{g} = mg [/tex]

[tex]7250.5 = m(9.8) [/tex]

m = 739.85 kg

Consider the motion along the horizontal direction

[tex]F_{x}[/tex] = Applied force in horizontal direction = F Cosθ = 8000 Cos65 = 3381 N

[tex]a_{x}[/tex] = Acceleration in horizontal direction

Acceleration in horizontal direction is given as

[tex]a_{x}=\frac{F_{x}}{m}[/tex]

[tex]a_{x}=\frac{3381}{739.85}[/tex]

[tex]a_{x}[/tex] = 4.6 m/s²

Commander Shepard, an N7 spectre for Earth, weighs 799 N on the Earth's surface. When she lands on Noveria, a distant planet in our galaxy, she weighs 356 N. What is the acceleration of gravity on Noveria in m/s2? Round to one decimal place. (hint: first find her mass!)

Answers

Answer:

Acceleration of gravity on Noveria = 4.4 m/s²

Explanation:

Commander Shepard, an N7 spectre for Earth, weighs 799 N on the Earth's surface.

We have weight, W = mg

Acceleration due to gravity, g = 9.81m/s²    

799 = m x 9.81

Mass of Shepard, m = 81.45 kg            

She lands on Noveria, a distant planet in our galaxy, she weighs 356 N.

We have weight, W = mg'

                 356 = 81.45 xg'

Acceleration of gravity on Noveria, g' = 4.4 m/s²

A rifle is aimed horizontally at a target 30m away. The bullet hits the target 2.9 cm below the aiming point. What is the bullet's speed ( in the unit of m/s) as it emerges from the rifle.

Answers

Answer:

Speed of bullet = 389.61 m/s.

Explanation:

Considering the vertical motion of bullet

Initial vertical speed = 0 m/s

Vertical displacement = 2.9 cm = 0.029 m

Vertical acceleration = 9.81 m/s²

Substituting in s = ut + 0.5at²

    0.029 = 0 x t + 0.5 x 9.81 x t²

    t = 0.077 s

So ball hits the target after 0.077 s.

Now considering the vertical motion of bullet

Time = 0.077 s

Horizontal displacement = 30 m

Horizontal acceleration = 0 m/s²

Substituting in s = ut + 0.5at²

    30 = u  x 0.077 + 0.5 x 0 x 0.077²

     u = 389.61 m/s

Speed of bullet = 389.61 m/s.

Answer:

390 m/s

Explanation:

Let the horizontal speed be u.

Horizontal distance , x = 30 m

Vertical distance, y = 2.9 cm

Let time taken be t.

Use second equation of motion in vertical direction

H = uy × t + 1/2 gt^2

0.029 = 0.5 × 9.8 × t^2

t = 0.077 s

Horizontal distance = horizontal velocity × time

30 = u × 0.077

u = 390 m/s

How much heat transfer is required to raise the temperature of a 0.750-kg aluminum pot containing 2.50 kg of water from 30.0ºC to the boiling point and then boil away 0.750 kg of water? (b) How long does this take if the rate of heat transfer is 500 W

Answers

Answer:

Part a)

[tex]Q = 2.47 \times 10^6[/tex]

Part b)

t = 4950.3 s

Explanation:

As we know that heat required to raise the temperature of container and water in it is given as

[tex]Q = m_1s_2\Delta T_1 + m_2s_2\Delta T_2[/tex]

here we know that

[tex]m_1 = 0.750[/tex]

[tex]s_1 = 900[/tex]

[tex]m_2 = 2.50 kg[/tex]

[tex]s_2 = 4186[/tex]

[tex]\Delta T_1 = \Delta T_2 = 100 - 30 = 70^oC[/tex]

now we have

[tex]Q_1 = 0.750(900)(70) + (2.5)(4186)(70) = 779800 J[/tex]

now heat require to boil the water

[tex]Q = mL[/tex]

here

m = 0.750 kg

[tex]L = 2.25 \times 10^6 J/kg[/tex]

now we have

[tex]Q_2 = 0.750(2.25 \times 10^6) = 1.7 \times 10^6 J[/tex]

Now total heat required is given as

[tex]Q = Q_1 + Q_2[/tex]

[tex]Q = 779800 + 1.7 \times 10^6 = 2.47 \times 10^6 J[/tex]

Part b)

Time taken to heat the water is given as

[tex]t = \frac{Q}{P}[/tex]

here we know that

power = 500 W

now we have

[tex]t = \frac{2.47 \times 10^6}{500} = 4950.3 s[/tex]

on a day when the speed of sound in air is 340 m/s a bat emits a shriek whose echo returns to it 0.0250 seconds later. How far away is the mosquito that reflects back the shriek?

Answers

Answer:

The distance of the mosquito from the bat is 4.25 m.

Explanation:

Given that,

Speed of sound in air v= 340 m/s

Time t = 0.0250 second

Let d be the distance of the mosquito from the bat.

The distance traveled by the sound when the echo heard is 2d.

We need to calculate the distance

Using formula of  distance

[tex]v = \dfrac{2d}{t}[/tex]

Put the value into the formula

[tex]v = \dfrac{2d}{25\times10^{-3}}[/tex]

[tex]d =\dfrac{25\times10^{-3}\times340}{2}[/tex]

[tex]d=4.25\ m[/tex]

Hence, The distance of the mosquito from the bat is 4.25 m.

Final answer:

Utilizing the echo time of 0.0250 seconds and the sound speed of 340 m/s, the distance to the mosquito is calculated as 4.25 meters away from the bat.

Explanation:

Calculating the Distance to the Mosquito using Echo Time

To determine the distance to the mosquito that reflects the bat's shriek, we need to use the speed of sound in air and the echo time. Since the shriek's echo returns in 0.0250 seconds and the speed of sound is given as 340 m/s, we can calculate the total distance traveled by the sound (to the mosquito and back to the bat) with the equation:

Distance = Speed × Time

Here, the time is the round-trip time for the sound, so the distance to the mosquito is half the total distance:

Total Distance = 340 m/s × 0.0250 s = 8.5 m

Distance to the Mosquito = Total Distance / 2 = 8.5 m / 2 = 4.25 m

Therefore, the mosquito is 4.25 meters away from the bat.

Water is boiled in a pan on a stove at sea level. During 10 min of boiling, it is observed that 200 g of water has evaporated. Then the rate of heat transfer to the water is 225.7 kJ/min 45.1 kJ/min 53.5 kJ/min 0.84 kJ/min 41.8 kJ/min

Answers

Answer:

Rate of heat is 45.1 kJ/min

Explanation:

Heat required to evaporate the water is given by

Q = mL

here we know that

[tex]L = 2.25 \times 10^6 J/kg[/tex]

now we have

[tex]Q = (0.200)(2.25 \times 10^6 J/kg)[/tex]

[tex]Q = 452.1 kJ[/tex]

now the power is defined as rate of energy

[tex]P = \frac{Q}{t}[/tex]

[tex]P = \frac{452.1 kJ}{10}[/tex]

[tex]P = 45.1 kJ/min[/tex]

A 2.0 kg hanging mass stretches a coiled spring by 0.15 m. The spring constant, k, is: (A) 0.075 N/m, (B) 2.9 N/m (C) 131 N/m, (D) 1,742 N/m, (E) none of the above.

Answers

Answer:

C

Explanation:

Givens

m = 2 kg

F = 2 * 9.81

F =  19.62 N

x = 0.15 m

Formula

F = k*x

Solution

19.62 = k*0.15

k = 19.62/0.15

k = 130.8 which rounded to the nearest given answer is C

If the intensity of light that is incident on a piece of metal is increased, what else will be increased? Choose all that apply. number of electrons ejected stopping voltage cutoff frequency frequency KEmax work function wavelength

Answers

Answer:

explained

Explanation:

When the intensity of light is increased on a piece of metal only the number of electron ejected will increase because all other things independent of intensity of light.

Light below certain frequency will not cause any electron emission no matter how intense.

The intensity produces more electron but does not change the maximum kinetic energy of electrons.

Work function is independent of the intensity of light, because it is an intrinsic property of a material.

Calculate the mass of a 0.9 m^3 block of a material having a density of 12500 kg/m^3.

Answers

Answer: The mass of the object will be 11250 kg.

Explanation:

Density is defined as the mass contained per unit volume.

[tex]Density=\frac{mass}{Volume}[/tex]

Given :

Density of the object= [tex]12500kg/m^3[/tex]

Mass of object = ?

Volume of the object = [tex]0.9m^3[/tex]

Putting in the values we get:

[tex]12500kg/m^3=\frac{mass}{0.9m^3}[/tex]

[tex]12500kg/m^3=\frac{mass}{0.9m^3}[/tex]

[tex]mass=11250kg[/tex]

Thus the mass of the object is 11250 kg.

Consider a torque ~τ that is constant in both magnitude and direction, and acts on a rigid body of mass 10 kg at a point 1 m from the pivot. How much work does the torque do on the rigid body, if it turns through an angle of 180◦ while the torque is acting? Assume the acceleration due to gravity is 10 m/s2 .

Answers

Answer:

314 Joule

Explanation:

m = 10 kg, g = 10 m/s^2, d = 1 m, angle turn = 180 degree = π radian

work = torque x angle turn

torque = force x perpendicular distance

torque = m x g x d = 10 x 10 x 1 = 100 Nm

work = 100 x π

work = 100 x 3.14 = 314 Joule

Final answer:

The work done by a constant torque on a rigid body rotating through an angle of 180° can be found by multiplying the torque by the angle. The torque can be calculated using the equation τ = Iα, where I is the moment of inertia and α is the angular acceleration. Substituting the given values, we find that the work done by the torque on the rigid body is 18000 kg·m^2·rad/s^2.

Explanation:

The work done by a torque on a rigid body is given by the formula W = τθ, where τ is the torque and θ is the angle through which the body rotates. In this case, the torque is constant in both magnitude and direction, so we can use W = τθ. Given that the torque is constant and the body turns through an angle of 180°, we can calculate the work done as follows:

Since τ is constant, we can write W = τθ = τ (180° - 0°). The work done by the torque is equal to the torque multiplied by the change in angle. Substitute the given values into the formula: W = (τ) (180° - 0°) = (τ) (180°). The work done by the torque is equal to the torque multiplied by 180°.

To find the value of the torque, we need to use the equation τ = Iα, where I is the moment of inertia and α is the angular acceleration. In this case, the rigid body has a mass of 10 kg and a distance of 1 m from the pivot. The moment of inertia for a point mass rotating about a fixed axis is given by I = m(r^2), where m is the mass and r is the perpendicular distance from the axis. Substitute the given values into the formula: I = (10 kg)((1 m)^2) = 10 kg·m^2. Since α = a/r and the acceleration due to gravity is 10 m/s^2, we have α = (10 m/s^2)/(1 m) = 10 rad/s^2.

Substitute the values of τ and α into the equation τ = Iα: τ = (10 kg·m^2)(10 rad/s^2) = 100 kg·m^2·rad/s^2. Therefore, the torque is 100 kg·m^2·rad/s^2.

Finally, substitute the values of τ and θ into the equation W = τθ: W = (100 kg·m^2·rad/s^2 )(180°) = 18000 kg·m^2·rad/s^2.

ml(d^2θ/dt^2) =-mgθ

1. From the linearized equation, justify Galileo’s observation that the period of a pendulum depends only on its length and not on the mass or on the initial displacement.

Answers

The equation of motion of a pendulum is:

[tex]\dfrac{\textrm{d}^2\theta}{\textrm{d}t^2} = -\dfrac{g}{\ell}\sin\theta,[/tex]

where [tex]\ell[/tex] it its length and [tex]g[/tex] is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for small angles ([tex]\theta \ll 1[/tex]), we can use:

[tex]\sin\theta \simeq \theta.[/tex]

Additionally, let us define:

[tex]\omega^2\equiv\dfrac{g}{\ell}.[/tex]

We can now write:

[tex]\dfrac{\textrm{d}^2\theta}{\textrm{d}t^2} = -\omega^2\theta.[/tex]

The solution to this differential equation is:

[tex]\theta(t) = A\sin(\omega t + \phi),[/tex]

where [tex]A[/tex] and [tex]\phi[/tex] are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

[tex]T = \dfrac{2\pi}{\omega} = 2\pi\sqrt{\dfrac{g}{\ell}}.[/tex]

This justifies that the period depends only on the pendulum's length.

A uniform rod of mass 2.55×10−2 kg and length 0.380 m rotates in a horizontal plane about a fixed axis through its center and perpendicular to the rod. Two small rings, each with mass 0.200 kg , are mounted so that they can slide along the rod. They are initially held by catches at positions a distance 4.80×10−2 m on each side from the center of the rod, and the system is rotating at an angular velocity 35.0 rev/min . Without otherwise changing the system, the catches are released, and the rings slide outward along the rod and fly off at the ends. What is the angular speed of the system at the instant when the rings reach the ends of the rod?

What is the angular speed of the rod after the rings leave it?

Answers

Answer:

[tex]\omega _{f}=0.3107rad/sec[/tex]

partb) [tex]\omega _{f}=14.93rad/sec[/tex]

Explanation:

Since the system is isolated it's angular momentum shall be conserved

[tex]L_{system}=I_{system}\omega \\\\I_{system}=I_{rod}+2\times m\times r^{2}\\\\I_{system}=\frac{1}{12}ml^{2}+2\times 0.2\times (4.8\times 10^{-2})^{2}\\\\I_{system}=1.22845\times 10^{-3}kgm^{2}\\\\L_{system}=1.22845\times 10^{-3}kgm^{2}\times 3.66rad/sec[/tex]

[tex]\L_{system}=4.496\times 10^{-3}kgm^{2}[/tex]

Now the final angular momentum of the system

[tex]L_{fianl}=I_{final}\omega \\\\I_{final}=I_{rod}+2\times m\times r_{f}^{2}\\\\I_{final}=\frac{1}{12}ml^{2}+2\times 0.2\times (0.19)^{2}\\\\I_{final}=0.01447kgm^{2}\\\\L_{final}=0.01447kgm^{2}\times \omega _{final}rad/sec[/tex]

Thus equating initial and final angular momentum we solve for final angular velocity of rod as

[tex]\omega _{f}=\frac{4.496\times 10^{-3}}{0.01447}\\\\\omega _{f}=0.3107rad/sec[/tex]

part b)

When the rings leave the system we again conserve the angular momentum just before the rings leave the system and the instant when they just leave

[tex]\therefore 0.01447=\frac{1}{12}ml^{2}w\\\\\therefore w=\frac{4.582\times 10^{-3}}{3.068\times10^{-4} }\\\\w_{final}=14.93rad/sec[/tex]

Answer:

A)[tex]\omega_{f}=2.92\frac{rev}{min}[/tex].

B)[tex]\omega_{f}=140\frac{rev}{min}[/tex].

Explanation:

A)

For this problem, we will use the conservation of angular momentum.

[tex]L_{0}=L_{f}\\[/tex].

In the beginning, we have that

[tex]L_{0}=I_{0}\omega_{0}\\[/tex]

where [tex]I_{0}[/tex] is the inertia moment of all the system at the starting position, this is the inertia moment of the rod plus the inertia moment of each ring ([tex]mr^{2}[/tex], with [tex]r[/tex] the distance from the ring to the fixed axis and, [tex]m[/tex] its mass) at the starting position and, [tex]\omega_{0}[/tex] is the initial angular velocity. So

[tex]L_{0}=(\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}[/tex].

When the rings are at the ends of the rod the angular momentum becomes

[tex]L_{f}=(\frac{1}{12}Ml^{2}+2mr_{f}^{2})\omega_{f}[/tex],

where [tex]r_{f}[/tex] is the distance from the fixed axis to the end of the rod (the final position of the rings).

Using conservation of angular momentum we get

[tex](\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}=(\frac{1}{12}Ml^{2}+2mr_{f}^{2})\omega_{f}[/tex].

thus

[tex]\omega_{f}=\frac{(\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}}{(\frac{1}{12}Ml^{2}+2mr_{f}^{2})}[/tex]

computing this last expresion we get

[tex]\omega_{f}=\frac{(\frac{1}{12}(2.55*10^{-2})(0.380)^{2}+2(0.200)(4.80*10^{-2})^{2})(35.0)}{(\frac{1}{12}(2.55*10^{-2})(0.380)^2+2(0.200)(0.19)^{2})}[/tex]

[tex]\omega_{f}=2.92\frac{rev}{min}[/tex].

B)

Again we use the conservation of angular momentum. The initial angular momentum if the same as before. The final angular momentum will be

[tex]L_{f}=(\frac{1}{12}Ml^{2})\omega_{f}[/tex],

this time we will not take into account the inertia moment of the rings because they are no longer part of the system (they leave the rod).

[tex](\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}=(\frac{1}{12}Ml^{2})\omega_{f}[/tex].

thus

[tex]\omega_{f}=\frac{(\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}}{(\frac{1}{12}Ml^{2})}[/tex]

computing this last expresion we get

[tex]\omega_{f}=\frac{(\frac{1}{12}(2.55*10^{-2})(0.380)^{2}+2(0.200)(4.80*10^{-2})^{2})(35.0)}{(\frac{1}{12}(2.55*10^{-2})(0.380)^2})[/tex]

[tex]\omega_{f}=140\frac{rev}{min}[/tex].

What hanging mass will stretch a 3.0-m-long, 0.32 mm - diameter steel wire by 1.3 mm ? The Young's modulus of steel is 20×10^10 N/m^2.

Answers

Answer:

0.71 kg

Explanation:

L = length of the steel wire = 3.0 m

d = diameter of steel wire = 0.32 mm = 0.32 x 10⁻³ m

Area of cross-section of the steel wire is given as

A = (0.25) πd²

A = (0.25) (3.14) (0.32 x 10⁻³)²

A = 8.04 x 10⁻⁸ m²

ΔL = change in length of the wire = 1.3 mm = 1.3 x 10⁻³ m

Y = Young's modulus of steel = 20 x 10¹⁰ Nm⁻²

m = mass hanging

F = weight of the mass hanging

Young's modulus of steel is given as

[tex]Y = \frac{FL}{A\Delta L}[/tex]

[tex]20\times 10^{10} = \frac{F(3)}{(8.04\times 10^{-8})(1.3\times 10^{-3})}[/tex]

F = 6.968 N

Weight of the hanging mass is given as

F = mg

6.968 = m (9.8)

m = 0.71 kg

A coil is made of 150 turns of copper wire wound on a cylindrical core. If the mean radius of the turns is 6.5 mm and the diameter of the wire is 0.4 mm, calculate the resistance of the coil!

Answers

Answer:

0.84 Ω

Explanation:

r = mean radius of the turn = 6.5 mm

n = number of turns of copper wire = 150

Total length of wire containing all the turns is given as

L = 2πnr

L =  2 (3.14)(150) (6.5)

L = 6123 mm

L = 6.123 m

d = diameter of the wire = 0.4 mm = 0.4 x 10⁻³ m

Area of cross-section of the wire is given as

A = (0.25) πd²

A = (0.25) (3.14) (0.4 x 10⁻³)²

A = 1.256 x 10⁻⁷ m²

ρ = resistivity of copper = 1.72 x 10⁻⁸ Ω-m

Resistance of the coil is given as

[tex]R = \frac{\rho L}{A}[/tex]

[tex]R = \frac{(1.72\times 10^{-8}) (6.123))}{(1.256\times 10^{-7}))}[/tex]

R = 0.84 Ω

A heavy fuel oil has a specific gravity of 0.918. How much will 100 gallons(300 liters) of this oil weigh? INCLUDE UNITS!

Answers

Answer:

275.4 kg

Explanation:

specific gravity = 0.918

Density = 0.918 g/cm^3 = 918 kg/m^3

Volume = 100 gallons = 300 litres = 300 x 10^-3 m^3 = 0.3 m^3

Mass = volume x density = 0.3 x 918 = 275.4 kg

Absolute pressure in tank is P1 = 260 kPa and local ambient absolute pressure is P2 =100 kPa. If liquid density in pipe is 13600 kg/m3 , compute liquid height, h=..?.. m ? Use g =10 m/s2

Answers

Answer:

1.176m

Explanation:

Local ambient pressure(P1) = 100 kPa

Absolute pressure(P2)=260kPa

Net pressure=absolute pressure-local ambient absolute pressure

Net pressure=P1(absolute pressure)-P2(local ambient absolute pressure)

Net pressure=260-100=160kPa

Pressure= ρgh

160kPa=13600*10*h

h=[tex]\frac{160000}{136000}[/tex]

h=1.176m

The shortest air column inside a resonator vibrates with a frequency of 250 Hz, if the next harmonic is 750 Hz, and the speed of sound is 343 m/s.
a. Is this resonator closed at one end or open at both ends? Explain.
b. Find the length of the resonator.

Answers

Answer:

Part a)

the two frequencies are in ratio of odd numbers so it must be closed at one end

Part b)

L = 34.3 cm

Explanation:

Part a)

Since the shortest frequency is known as fundamental frequency

It is given as

[tex]f_o = 250 Hz[/tex]

next higher frequency is given as

[tex]f_1 = 750 Hz[/tex]

since the two frequencies here are in ratio of

[tex]\frac{f_1}{f_o} = \frac{750}{250} = 3 : 1[/tex]

since the two frequencies are in ratio of odd numbers so it must be closed at one end

Part b)

For the length of the pipe we can say that fundamental frequency is given as

[tex]f_o = \frac{v}{4L}[/tex]

here we have

[tex]250 = \frac{343}{4(L)}[/tex]

now we will have

[tex]L = \frac{343}{4\times 250}[/tex]

[tex]L = 34.3 cm[/tex]

Which is not a simple harmonic motion (S.H.M.) (a) Simple Pendulum (b) Projectile motion (c) None (d) Spring motion

Answers

Answer:

b) Projectile MOTION

Explanation:

SHM is periodic motion or to and fro motion of a particle about its mean position in a straight line

In this type of motion particle must be in straight line motion

So here we can say

a) Simple Pendulum : it is a straight line to and fro motion about mean position so it is a SHM

b) Projectile motion : it is a parabolic path in which object do not move to and fro about its mean position So it is not SHM

d) Spring Motion : it is a straight line to and fro motion so it is also a SHM

So correct answer will be

b) Projectile MOTION

Final answer:

Projectile motion is not a simple harmonic motion because it does not meet the conditions for SHM.

Explanation:

Simple Harmonic Motion (SHM) is a special type of periodic motion where the restoring force is proportional to the displacement. The three conditions that must be met to produce SHM are: a linear restoring force, a constant force constant, and no external damping forces. Based on these conditions, the answer to the question is (b) Projectile motion, as it does not meet the conditions for SHM. A projectile follows a parabolic path and does not have a linear restoring force.

A 1500-kg car traveling east with a speed of 25.0 m/s collides at an intersection with a 2500-kg van traveling north at a speed of 20.0 m/s. Find the direction and magnitude of the velocity of the wreckage after the collision, assuming that the vehicles undergo a perfectly inelastic collision (i.e. they stick together).

Answers

From conservation of linear momentum, the magnitude of the velocity of the wreckage after collision is 15.6 m/s while its direction is 53 degrees.

COLLISION

There are four types of collision

Elastic collisionPerfectly elastic collisionInelastic collisionPerfectly inelastic collision

In elastic collision, both momentum and energy are conserved. While in inelastic collision, only momentum is conserved.

From the given question, the following parameters are given.

[tex]m_{1}[/tex] = 1500kg[tex]v_{1}[/tex] = 25 m/s[tex]m_{2}[/tex] = 2500 kg[tex]v_{2}[/tex] = 20 m/s

Since the collision is inelastic, they will both move with a common velocity after collision.

Horizontal component

[tex]m_{1}[/tex][tex]v_{1}[/tex] = ([tex]m_{1}[/tex] + [tex]m_{2}[/tex] ) V

1500 x 25 = (1500 + 2500) V

37500 = 4000V

V = 37500 / 4000

V = 9.375 m/s

Vertical component

[tex]m_{2}[/tex][tex]v_{2}[/tex] = ([tex]m_{1}[/tex] + [tex]m_{2}[/tex])V

2500 x 20 = (1500 + 2500)V

50000 = 4000V

V = 50000 / 4000

V = 12.5 m/s

The net velocity will be the magnitude of the velocity of the wreckage after collision

V = [tex]\sqrt{9.4^{2} + 12.5^{2} }[/tex]

V = [tex]\sqrt{244.61}[/tex]

V = 15.6 m/s

The direction will be

Tan Ф = 12.5 / 9.4

Ф = [tex]Tan^{-1}[/tex](1.329)

Ф = 53 degrees.

Therefore,  the magnitude of the velocity of the wreckage after collision is 15.6 m/s while its direction is 53 degrees.

Learn more about collision here: https://brainly.com/question/7694106

Final answer:

The velocity of the wreckage after the collision is 32.015 m/s in the direction 38.66° north of east.

Explanation:

This problem is related to the conservation of linear momentum which states the total momentum of an isolated system remains constant if no external forces act on it. Momentum is a vector quantity having both magnitude and direction. The total initial and final momentum in both horizontal (x) and vertical (y) directions must be equal.

Initial momentum of the car is (1500 kg)*(25.0 m/s) = 37500 kg*m/s in the east direction whereas initial momentum of the van is (2500 kg)*(20.0 m/s) = 50000 kg*m/s in the north direction.

Since the collision is perfectly inelastic, the two vehicles stick together after the collision and move as one. Therefore, the final momentum is the vector sum of the individual momenta. We therefore calculate the magnitude of the resultant velocity using Pythagoras theorem, √[(25.0 m/s)² + (20.0 m/s)²] = 32.015 m/s.

To find the direction of the final velocity, we use the tangent of the angle which is equal to the vertical component divided by the horizontal component, which gives us an angle of 38.66° north of east.

Learn more about Inelastic Collision here:

https://brainly.com/question/24616147

#SPJ3

A sign is held in equilbrium by 7 vertically hanging ropes attached to the ceiling. If each rope has an equal tension of 53 Newtons, what is the mass of the sign in kg?

Answers

Answer:

37.86 kg

Explanation:

The weight of sign board is equally divided on each rope. It means the tension in all the ropes is equal to the weight of the sign board in equilibrium condition.

Tension in each rope = 53 N

Tension in 7 ropes = 7 x 53 N = 371 N

Thus, The weight of sign = 371 N

Now, weight = m g

where m is the mass of sign.

m = 371 / 9.8 = 37.86 kg

A proton experiences a force of 3.5x 10^-9 N when separated from a second charge by a distance of 1.6 mm. a) What is the size of the second charge? b) How many fundamental charges make up this charge in part a)?

Answers

Answer:

(a) 6.22 x 10^-6 C

(b) 3.8 x 10^13

Explanation:

Let the second charge is q2 = q

q1 = 1.6 x 10^-19 C

F = 3.5 x 10^9 N

d = 1.6 mm = 1.6 x 10^-3 m

(a) Use the formula of Coulomb's law

F = K q1 x q2 / d^2

3.5 x 10^-9 = 9 x 10^9 x 1.6 x 10^-19 x q / (1.6 x 10^-3)^2

q = 6.22 x 10^-6 C

(b)

Let the number of electrons be n

n = total charge / charge of one electron

n = 6.22 x 10^-6 / (1.6 x 10^-19) = 3.8 x 10^13

A water trough is 8 m long and has a cross-section in the shape of an isosceles trapezoid that is 20 cm wide at the bottom, 80 cm wide at the top, and has height 60 cm. If the trough is being filled with water at the rate of 0.3 m3/min how fast is the water level rising when the water is 30 cm deep?

Answers

Answer:It is rising at a rate of [tex]7.5cm/min[/tex]

Explanation:

We have volume of trapezoid equals

[tex]V=Area\times Length\\\\V=\frac{1}{2}(a+b)h\times L[/tex]

Thus at any time 't' we have

[tex]V(t)=\frac{1}{2}(a(t)+b(t))h(t)\times L\\\\\therefore V(t)=\frac{1}{2}(20+b(t))\times h(t)\times L[/tex]

Differentiating both sides with respect to time we get

[tex]\frac{dV(t)}{dt}=\frac{1}{2}b'(t)h(t)L+\frac{1}{2}(20+b(t))\times h'(t)L[/tex]

Applying values we have

[tex]b(t)=20+h(t)\\b'(t)=h'(t)[/tex]

Thus we have

[tex]\frac{dV(t)}{dt}=\frac{1}{2}h'(t)h(t)L+\frac{1}{2}(20+20+h(t))\times h'(t)L\\\\2V'(t)=h'(t)L[h(t)+(40+h(t))]\\\\\therefore h'(t)=\frac{2V'(t)}{L(h(t)+(40+h(t)))}[/tex]

Applying values we get

[tex]h'(t)=0.075m/min=7.5cm/min[/tex]

A 16.0 kg sled is being pulled along the horizontal snow-covered ground by a horizontal force of 25.0 N. Starting from rest, the sled attains a speed of 1.00 m/s in 8.00 m. Find the coefficient of kinetic friction between the runners of the sled and the snow. You Answered

Answers

Answer:

[tex]\mu_k = 0.15[/tex]

Explanation:

according to the kinematic equation

[tex]v^{2} - u^{2} = 2aS[/tex]

Where

u is initial velocity  = 0 m/s

a = acceleration

S is distance = 8.00 m

final velocity = 1.0 m/s

[tex]a = \frac {v^{2}}{2S}[/tex]

[tex]a = \frac {1{2}}{2*8.6}[/tex]

a = 0.058 m/s^2

from newton second law

Net force = ma

[tex]f_{net} = ma[/tex]

F - f = ma

2[tex]5 - \mu_kN = ma[/tex]

[tex]25 - \mu_kmg = ma[/tex]

[tex]\frac {25 - ma}{mg} =\mu_k[/tex]

[tex]\frac {25 - 16*0.058}{16*9.81} = 0.15[/tex]

[tex]\mu_k = 0.15[/tex]

If a person is standing erect and flexes the trunk on the hip, the center of mass will move __________ and the line of gravity moves __________ within the base of support.

Answers

Answer:

anterior

anterior

Explanation:

In the given question is asked that

If a person is standing erect and flexes the trunk on the hip, the center of mass will move ___________ and the line of gravity moves___________ within the base of support.

The current answer to the blanks will be

anterior

anterior

hope this helps any further query can be asked in comment section.

What is the force on your eardrum if its area is 1.00 cm^2, and you are swimming 3.0 m below water level?

Answers

Answer:

Force on eardrum

       [tex]F=29400\times 1\times 10^{-4}=2.94N[/tex]

Explanation:

Force = Pressure x Area

Pressure = hρg

Height, h = 3 m

ρ = 1000 kg/m³

g = 9.8 m/s²

Pressure = hρg = 3 x 1000 x 9.8 = 29400 N/m²

Area = 1 cm²

Force on eardrum

       [tex]F=29400\times 1\times 10^{-4}=2.94N[/tex]

A 0.15 kg baseball is pushed with 100 N force. what will its acceleration be?

Answers

Answer:

The acceleration of the ball is 666.67 m/s²

Explanation:

It is given that,

Mass of the baseball, m = 0.15 kg

Applied force to it, F = 100 N

We need to find the acceleration of the ball. It can be calculated using Newton's second law of motion as :

F = ma

[tex]a=\dfrac{F}{m}[/tex]

[tex]a=\dfrac{100\ N}{0.15\ kg}[/tex]

[tex]a=666.67\ m/s^2[/tex]

So, the acceleration of the ball is 666.67 m/s². Hence, this is the required solution.

The acceleration of a particle is given by a = −ks2 , where a is in meters per second squared, k is a constant, and s is in meters. Determine the velocity of the particle as a function of its position s. Evaluate your expression for s = 5 m if k = 0.1 m−1 s−2 and the initial conditions at time t = 0 are s0 = 3 m and v0 = 10 m /s

Answers

Answer:

[tex]v = \sqrt{v_0^2 - \frac{2k}{3}(s^3 - s_0^3)}[/tex]

v = 9.67 m/s

Explanation:

As we know that acceleration is rate of change in velocity

so it is defined as

[tex]a = \frac{dv}{dt}[/tex]

[tex]a = v\frac{dv}{ds}[/tex]

here we know that

[tex]a = - ks^2 = v\frac{dv}{ds}[/tex]

now we have

[tex]vdv = - ks^2ds[/tex]

integrate both sides we have

[tex]\int vdv = -k \int s^2ds[/tex]

[tex]\frac{v^2}{2} - \frac{v_0^2}{2} = -k(\frac{s^3}{3} - \frac{s_0^3}{3})[/tex]

[tex]v^2 = v_0^2 - \frac{2k}{3}(s^3 - s_0^3)[/tex]

here we know that

[tex]v_0 = 10 m/s[/tex]

[tex]s_0 = 3 m[/tex]

[tex]v^2 = 10^2 - \frac{2(0.10)}{3}(5^3 - 3^3)[/tex]

[tex]v = 9.67 m/s[/tex]

A typical adult ear has a surface area of 2.90 × 10-3 m2. The sound intensity during a normal conversation is about 2.19 × 10-6 W/m2 at the listener's ear. Assume that the sound strikes the surface of the ear perpendicularly. How much power is intercepted by the ear?

Answers

Answer:

[tex]6.35\cdot 10^{-9} W[/tex]

Explanation:

The relationship between power and intensity of a sound is given by:

[tex]I=\frac{P}{A}[/tex]

where

I is the intensity

P is the power

A is the area considered

In this problem, we know

[tex]A=2.90\cdot 10^{-3}m^2[/tex] is the surface area of the ear

[tex]I = 2.19\cdot 10^{-6} W/m^2[/tex] is the intensity of the sound

Re-arranging the equation, we can find the power intercepted by the ear:

[tex]P=IA=(2.19\cdot 10^{-6} W/m^2)(2.90\cdot 10^{-3} m^2)=6.35\cdot 10^{-9} W[/tex]

Two forces are applied to a 5.0-kg crate; one is 3.0 N to the north and the other is 4.0 N to the east. The magnitude of the acceleration of the crate is: a. 1.0 m/s^2 b. 2.8 m/s^2 c.7.5 m/s^2 d. 10.0 m/s^2

Answers

Answer:

The acceleration of the crate is 1 m/s²

Explanation:

It is given that,

Mass of the crate, m = 5 kg

Two forces applied on the crate i.e. one is 3.0 N to the north and the other is 4.0 N to the east. So, there resultant force is :

[tex]F_{net}=\sqrt{3^2+4^2} =5\ N[/tex]

We need to find the acceleration of the crate. It is given by using the second law of motion as :

[tex]a=\dfrac{F_{net}}{m}[/tex]

[tex]a=\dfrac{5\ N}{5\ kg}[/tex]

a = 1 m/s²

So, the acceleration of the crate is 1 m/s². Hence, this is the required solution.  

The magnitude of the acceleration of a crate with forces of 3.0 N north and 4.0 N east applied to it is 1.0 m/s². This is found using the Pythagorean theorem to calculate the resultant force and Newton's Second Law to calculate acceleration.

The forces are 3.0 N to the north and 4.0 N to the east on a 5.0-kg crate. Since the forces are perpendicular, we can use the Pythagorean theorem to find the resultant force. The resultant force (Fr) is √(3.02 + 4.02) N, which is 5.0 N. According to Newton's Second Law, F = ma, hence acceleration (a) is Fr divided by the mass (m). Calculating acceleration: a = 5.0 N / 5.0 kg = 1.0 m/s2. Therefore, the correct answer is a. 1.0 m/s2.

A 2.7-kg cart is rolling along a frictionless, horizontal track towards a 1.1-kg cart that is held initially at rest. The carts are loaded with strong magnets that cause them to attract one another. Thus, the speed of each cart increases. At a certain instant before the carts collide, the first cart's velocity is +3.7 m/s, and the second cart's velocity is -1.6 m/s. (a) What is the total momentum of the system of the two carts at this instant? (b) What was the velocity of the first cart when the second cart was still at rest?

Answers

Answer:

Part a)

P = 8.23 kg m/s

Part b)

v = 3.05 m/s

Explanation:

Part a)

momentum of cart 1 is given as

[tex]P_1 = m_1v_1[/tex]

[tex]P_1 = (2.7)(3.7) = 9.99 kg m/s[/tex]

Momentum of cart 2 is given as

[tex]P_2 = m_2v_2[/tex]

[tex]P_2 = (1.1)(-1.6) = -1.76 kg m/s[/tex]

Now total momentum of both carts is given as

[tex]P = P_1 + P_2[/tex]

[tex]P = 8.23 kg m/s[/tex]

Part b)

Since two carts are moving towards each other due to mutual attraction force and there is no external force on two carts so here momentum is always conserved

so here we will have

[tex]P_i = P_f[/tex]

[tex](2.7 kg)v = 8.23[/tex]

[tex]v = 3.05 m/s[/tex]

Other Questions
if 3k is an even number integer which of the following cannot be an integer ?A : kB : k - 1 C : k/2 D : 3k An instructor at a major research university occasionally teaches summer session and notices that that there are often students repeating the class. Out of curiosity, she designs a random sample of students enrolled in summer sessions and counts the number repeating a class. She counts 105 students in the sample, of which 19 are repeating the class. She decides a confidence interval provides a good estimate of the proportion of students repeating a class. She wants a 95% confidence interval with a margin of error at most ????=0.025m=0.025 . She has no idea what the true proportion could be. How large a sample should she take? 250 1537 1500 400 Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.Match each exponential function to the description of its percent rate of change.22% growth12% decay12% growth22% decay2% decay2% growth20% growth20% decayRX) = 42(1.12)*Rx) = 44(0.88)*R(X) = 22(0.8)*RX) = 124(1.22)* A man, a distance d=3~\text{m}d=3 m from a target, throws a ball at an angle \theta= 70^\circ=70 above the horizontal. If the initial speed of the ball is v=5~\text{m/s}v=5 m/s, what height hh does the ball strike the building? Suppose that 15% of people dont show up for a flight, and suppose that their decisions are independent. how many tickets can you sell for a plane with 144 seats and be 99% sure that not too many people will show up.The book says to do this by using the normal distribution function and that the answer is selling 157 tickets. What is the first step in sketching the graph of a rational function? Provide an example of changes over the years that may have prompted the public to opt for this procedure to correct their vision Which equation can be used to find the volume of a sphere that has a radius of 9 inches Equipment was acquired on January 1, 2015, at a cost of $90,000. The equipment was originally estimated to have a salvage value of $5,000 and an estimated life of 10 years. Depreciation has been recorded through December 31, 2018, using the straight-line method. On January 1, 2019, the estimated salvage value was revised to $6,000 and the useful life was revised to a total of 8 years. Determine the depreciation expense for 2019. Mahnoor randomly selects times to walk into a local restaurant and observe the type of music being played. She found that the restaurant was playing country 111111 times, rock & roll 171717 times, and blues 888 times. Use the observed frequencies to create a probability model for the type of music the restaurant is playing the next time Mahnoor walks in. Input your answers as fractions or as decimals rounded to the nearest hundredth. Write the sum using summation notation, assuming the suggested pattern continues.25 + 36 + 49 + 64 + ... + n2 + ... What is perception? A. the set of distinctive pattern of thoughts, emotions, behaviors, and other complex characteristics that distinguish one individual from another B. a mental and neural state of readiness, organized through experience C. the way a person, thing, or situation is noticed, understood, and responded to by our senses D. the readiness of the psyche to act or react in a certain way (used parentheses due to "forbidden language")The figure Shows triangle ABC with medians (A F), BD, and CE. Segment (A F) is extended to H in such a way that segment GH is congruent to segment AG. Which conclusion can be made based on the given conditions?A) Segment GF is congruent to segment EGB) Segment GF is half the length of segment EBC) Segment GD is congruent to segment EGD) Segment GD is half the length of segment HC \sum_{n=1}^{\infty } ((-1^n)/n)x^nFind the interval of convergence. Marissa est en Mxico para escuela You Answered escuelaescuelaIncorrect or extra word . incorrect Marissa toma cuatro You answered (blank). incorrect La You answered (blank) de Marissa es arqueologa. incorrect La especializacin de Miguel es You answered (blank). incorrect A Miguel le gusta You answered (blank). incorrect Marissa You answered (blank) muy bien el espaol. incorrect Juan Carlos toma qumica con el You answered (blank) Morales. incorrect El profesor Morales ensea en un laboratorio sin You answered (blank). incorrect A Felipe le gusta estar You answered (blank) el reloj y la puerta. incorrect Maru You answered (blank) con su mam As you study two closely related predatory insect species, the two-spot and the three-spot avenger beetles, you notice that each species seeks prey at dawn in areas without the other species. However, where their ranges overlap, the two-spot avenger beetle hunts at night and the three-spot hunts in the morning. You have discovered an example of ________.A.Batesian mimicryB.character displacementC.resource partitioningD.mutualism Which of the following is an example of polygenic inheritance? Huntington disease in humans white and purple flower color in peas pink flowers in snapdragons skin pigmentation in humans the ABO blood group in humans the wavelength of light is 4000A then the number of waves in 1 mm is Sand falls from an overhead bin and accumulates in a conical pile with a radius that is always twotwo times its height. Suppose the height of the pile increases at a rate of 33 cm divided by scm/s when the pile is 1010 cm high. At what rate is the sand leaving the bin at that instant? A 99.5 N grocery cart is pushed 12.9 m along an aisle by a shopper who exerts a constant horizontal force of 34.6 N. The acceleration of gravity is 9.81 m/s 2 . If all frictional forces are neglected and the cart starts from rest, what is the grocery carts final speed? Answer in units of m/s. 003 (part 1 of 4) 10.0 points In the 1950s, an experimental train that had a mass of 36300 kg was powered across a level track by a jet engine that produced a thrust of 4.28 105 N for a distance of 586 m. Find the work done on the train. Answer in units of J. 004 (part 2 of 4) 10.0 points Find the change in kinetic energy. Answer in units of J. 005 (part 3 of 4) 10.0 points Find the final kinetic energy of the train if it started from rest. Answer in units of J. 006 (part 4 of 4) 10.0 points Find the final speed of the train assuming no friction. Answer in units of m/s.