A car accelerates with a = 0.01s m/s^2 with sin meters. The car starts at t = 0 at s = 100 m with v = 12 m/s. Determine the speed at s = 420 m and the time to get there.

Answers

Answer 1

Answer:

Part 1) Speed at s = 420 meters =12.26 m/s

Part 2) Time required to cover the distance = 26 seconds

Explanation:

This problem can be solved using third equation of kinematics as follows

[tex]v^2=u^2+2as[/tex]

where

'v' is the final velocity

'u' is the initial velocity

'a' is the acceleration of the car

's' is the distance covered between change in velocities

Now during the time at which the car moves it cover's a distance of 420 m-100 m=320 meters

Thus applying values in the above equation we get

[tex]v^2=12^{2}+2\times 0.01\times 320\\\\v^2=150.4\\\\\therefore v=12.26m/s[/tex]

The time to reach this velocity  can be found using first equation of kinematics as

[tex]v=u+at\\\\\therefore t=\frac{v-u}{a}\\\\t=\frac{12.26-12}{0.01}=26seconds[/tex]


Related Questions

The 10mm diameter rod is made of Kevlar 49. Determine the change in
length and the change in diameter.
Lenght of the rod = 100mm
Therefore there are two 80KN forces are pulling the rod from both
sides.

Answers

Answer:

0.815 mm

Explanation:

The rod in made of Kevlar 49, so it has an Young's modulus of

E = 125 GPa

The stiffness of a rod is given by:

k = E * A / L

k = E * π/4 * d^2 / L

So:

k = 125*10^9 * π/4 * 0.01^2 / 0.1 = 98.17 MN/m

Of the pulling forces only one is considered because when you pull on something there is always another force on the other side of equal magnitude and opposite direction to maintain equilibrium.

Hooke's law:

Δl = P/k

Δl = 80*10^3 / 98.17*10^6 = 0.000815 m = 0.815 mm

The pressure and temperature at the beginning of compression of a cold air-standard Diesel cycle are 100 kPa and 300K, respectively. At the end of the heat addition, the pressure is 7.2 MPa and the temperature is 2250 K. Assume constant specific heats evaluated at 300 K. Determine the cut-off ratio. There is a +/- 5% tolerance.

Answers

Answer:

Cut off ratio=2.38

Explanation:

Given that

[tex]T_1=300K[/tex]

[tex]P_1=100KPa[/tex]

[tex]P_2=P_3=7200KPa[/tex]

[tex]T_3=2250K[/tex]

Lets take [tex]T_1[/tex] is the temperature at the end of compression process

For air γ=1.4

[tex]\dfrac{T_2}{T_1}=\left(\dfrac{P_2}{P_1}\right)^{\dfrac{\gamma -1}{\gamma}}[/tex]

[tex]\dfrac{T_2}{300}=\left(\dfrac{7200}{100}\right)^{\dfrac{1.4-1}{1.4}}[/tex]

[tex]T_2=1070K[/tex]

At constant pressure

[tex]\dfrac{T_3}{T_2}=\dfrac{V_3}{V_2}[/tex]

[tex]\dfrac{2550}{1070}=\dfrac{V_3}{V_2}[/tex]

[tex]\dfrac{V_3}{V_2}=2.83[/tex]

So cut off ratio

[tex]cut\ off\ ratio =\dfrac{V_3}{V_2}[/tex]

Cut off ratio=2.38

Determine the factor of safety for a 9 foot long hollow steel
column 3.5 inches on a side that has a wall thickness of 0.225
inches and is loaded with a 22 kip load. Use the steel E of 29 *10
^6 psi and assume the column is pin connected at each end.

Answers

Answer:

factor of safety for A36 structural steel is 0.82

Explanation:

given data:

side of column = 3.5 inches

wall thickness = 0.225 inches

load P = 22 kip

Length od column = 9 ft

we know that critical stress is given as

[tex]\sigma_{cr} = \frac{\pi^2 E}{(l/r)^2}[/tex]

where

r is radius of gyration[tex] = \sqrt{\fra{I}{A}}[/tex]

Here I is moment od inertia [tex]= \frac{b_1^2}{12} - \frac{b_2^2}{12}[/tex]

[tex] I == \frac{3.5^2}{12} - \frac{3.05^2}{12} = 5.294 in^4[/tex]

For hollow steel area is given as [tex]A = b_1^2 -b_2^2[/tex]

[tex]A = 3.5^2 -3.05^2 = 2.948 in^2[/tex]

critical stress [tex]\sigma_{cr} = = \frac{\pi^2\times 29\times 10^6}{((9\times12)/(1.34))^2}[/tex]

[tex]\sigma_{cr} =  44061.56 lbs/inc^2[/tex]

considering Structural steel A36

so A36[tex] \sigma_y = 36ksi[/tex]

factor of safety  [tex]= \frac{yield\ stress}{critical\  stress}[/tex]

factor of safety =[tex]\frac{36\times10^3}{44061.56} = 0.82[/tex]

factor of safety for A36 structural steel is 0.82

Final answer:

The student's query involves calculating the factor of safety for a hollow steel column, but without complete material strength data, the calculation cannot be precisely done.

Explanation:

The student's question pertains to determining the factor of safety for a hollow steel column with specified dimensions, material properties (steel E), and loading conditions. To calculate the factor of safety for the column, we would need to compare the column's actual stress under load to its maximum allowable stress. However, due to insufficient data about material yield strength or ultimate strength and considering the provided information does not match the examples given, this calculation cannot be accurately completed without further specifics on the steel's properties.

An element has two naturally occurring isotopes, isotope 1 with an atomic weight of 78.918 amu and isotope 2 with an atomic weight of 80.916 amu. If the average atomic weight for the element is 79.903 amu, calculate the fraction of occurrences of these two isotopes.

Answers

Answer:

The fraction of isotope 1 is 50.7 % and fraction  fraction of isotope 1 is 49.2 %.

Explanation:

Given that

Weight of isotope 1 = 78.918 amu

Weight of isotope 2 = 80.916 amu

Average atomic weight= 79.903 amu

Lets take fraction of isotope 1 is x then fraction of isotope 2 will be 1-x.

The total weight will be summation of these two isotopes

79.903 = 78.918 x + 80.916(1-x)

By solving above equation

80.916 - 79.903 = (80.916-78.918) x

   x=0.507

So the fraction of isotope 1 is 50.7 % and fraction  fraction of isotope 1 is 49.2 %.

A petrol engine produces 20 hp using 35 kW of heat transfer from burning fuel. What is its thermal efficiency, and how much power is rejected to the ambient surroundings?

Answers

Answer:

efficiency =42.62%

AMOUNT OF POWER REJECTED IS 20.080 kW

Explanation:

given data:

power 20 hp

heat energy = 35kW

power production = 20 hp = 20* 746 W = 14920 Watt   [1 hp =746 watt]

[tex]efficiency = \frac{power}{heat\ required}[/tex]

[tex]efficiency = \frac{14920}{35*10^3}[/tex]

                [tex]= 0.4262*10^100[/tex]

                 =42.62%

b) [tex]heat\ rejected = heat\ required - amount\ of\ power\ generated[/tex]

                           [tex]= 35*10^3 - 14920[/tex]

                           = 20.080 kW

AMOUNT OF POWER REJECTED IS 20.080 kW

A closed rigid tank contains water initially at 10,000 kPa and 520ºC and is cooled to a final temperature of 270° C. Determine the final pressure of the water.

Answers

Answer:

final pressure is 6847.41 kPa

Explanation:

given data:

[tex]P_1 =  10,000 kPa[/tex]

[tex]T_1 =520\ degree\ celcius = 793 K[/tex]

[tex]T_2  = 270 degree celcius = 543 K[/tex]

as we can see all temperature are more than 100 degree, it mean this condition is refered to superheated stream

for ischoric process we know that

[tex]\frac{P_1}{T_1} =\frac{P_2}{T_2}[/tex]

[tex]\frac{10*10^6}{793} = \frac{P_2}{543}[/tex]

[tex]P_2 = 6.84741*10^6 Pa[/tex]

final pressure is 6847.41 kPa

Describe the physics associated with the concept of thermal resistance.

Answers

Answer:

Thermal resistance:

  Thermal resistance is the property which oppose the the heat transfer.It is the property for measurement of heat flow.

As we know that heat transfer take place from the high temperature to low temperature.Heat transfer Q given as

[tex]Q=\dfrac{\Delta T}{R_{th}}[/tex]

Where Δt is the temperature difference

[tex]{R_{th}}[/tex] is the thermal resistance.

Connection:

1. Series connection

 [tex]R_{total}={R_1}+{R_2}+{R_1}----{R_n}[/tex]

2. Parallel connection

[tex]\dfrac{1}{R_{total}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}-----\dfrac{1}{R_n}[/tex]

What is the ideal cooling system for low horsepower motor? For example1hp motor

Answers

Answer:

Air cooling.

Explanation:

Low power motors are supposed to be low cost, and they dissipate little heat. Therefore a low cost solution is ideal.

Air cooling can be achieved with very little cost. Fins can be added to a cast motor casing and a fan can be places on the shaft to use a small amount of the motor power to move air to cool it.

A 25 lb sacrificial Mg anode is attached to the steel hull of a container ship. If the anode completely corrodes within 3 months, what is the average current produced by the anode?

Answers

Answer:

The average current will be of 6.36 A.

Explanation:

The anode capacity of magnesium is C = 550 A*h/lb

A month has 30 days.

A day has 24 hours.

Therefore 3 months have:

t = 3 * 30 * 24 = 2160 hours.

The average current is then:

I = C * m / t

I = 550 * 25 / 2160 = 6.36 A

The average current will be of 6.36 A.

A cylindrical tank with a radius of 2-m is filled with oil and water. The water has a density of rho = 1000 kg/m3 while the oil has a density of rho = 800 kg/m^3 . If the depth of the water is 2.5 m, and the pressure difference between the top of the oil and the bottom of the water is 80 kPa, determine the depth of the oil, in m. Assume that gravity is 9.81 m/s^2 .

Answers

Answer:

Height of oil is 7.06 meters.

Explanation:

The situation is shown in the attached figure

The pressure at the bottom of the tank as calculated by equation of static pressure distribution is given by

[tex]P_{bottom}=P_{top}+\rho _{water}gh_{water}+\rho _{oil}gh_{oil}\\\\\therefore g(\rho _{water}h_{water}+\rho_{oil}h_{oil})=P_{bottom}-P_{top}[/tex]

Applying the given values we get

[tex]P_{bottom}=P_{top}+\rho _{water}gh_{water}+\rho _{oil}gh_{oil}\\\\\therefore g(1000\times 2.5+800\times h_{oil})=80\times 10^{3}\\\\\therefore 800\times h_{oil}=\frac{80\times 10^{3}}{9.81}-2500\\\\\therefore 800\times h_{oil}=5654.94\\\\\therefore h_{oil}=7.06m[/tex]

The velocity of a point mass that moves along the s-axis is given by s' = 40 - 3t^2 m/s, where t is in seconds. Find displacement of the particle from t = 2 s to t 6 s.

Answers

Answer:

The displacement is -48m.

Explanation:

Velocity is the rate of change of displacement. So, the instantaneous displacement is calculated by the integration of velocity function with respect to time. Displacement in range of time is calculated by integrating the velocity function with respect to time with in time range.  

Given:

Velocity along the s-axis is

[tex]s{}'=40-3t^{2}[/tex]

time range is t=2s to t=6s.

Calculation:

Step1

Displacement in the time range t=2s to t=6s is calculated as follows:

[tex]\frac{\mathrm{d}s}{\mathrm{d}t}=40-3t^{2}[/tex]

[tex]ds=(40-3t^{2})dt[/tex]

Step2

Integrate the above equation with respect to time with the lower limit as 2 and upper limit as 6 as follows:

[tex]\int ds=\int_{2}^{6}(40-3t^{2})dt[/tex]

[tex]s=(40\times6-40\times2)-3(\frac{1}{3})(6^{3}-2^{3})[/tex]

s=160-208

s=-48m

Thus, the displacement is -48m.

Final answer:

The displacement of a point mass moving along the s-axis from t = 2 s to t = 6 s, with a given velocity function s' = 40 - 3t^2 m/s, is calculated by integrating the velocity to get the position function and then evaluating it between the two time limits, resulting in a displacement of 152 meters.

Explanation:

The question requires finding the displacement of a point mass moving along the s-axis between t = 2 s and t = 6 s. The velocity is given as s' = 40 - 3t^2 m/s. To find the displacement, we will integrate the velocity function with respect to time from 2 to 6 seconds.

To integrate s' = 40 - 3t^2, we get:

Integral of 40 dt is 40tIntegral of -3t^2 dt is -t^3


The displacement (s) is thus
s = 40t - t^3 evaluated from t = 2 to t = 6. Inserting the limits, we subtract the value at t = 2 from the value at t = 6:

s(6) - s(2) = (40(6) - 6^3) - (40(2) - 2^3) = 240 - 216 - 80 + 8 = 152 m

So, the displacement of the particle from t = 2 s to t = 6 s is 152 meters.

What is the resultant force on one side of a 25cm diameter circular plate standing at the bottom of 3m of pool water?

Answers

Final answer:

The resultant force on one side of a 25cm diameter circular plate at the bottom of 3m of pool water is approximately 1447 Newtons, calculated using the principles of fluid pressure and hydrostatic force.

Explanation:

The question asks for the resultant force on one side of a 25cm diameter circular plate at the bottom of 3m of pool water. To calculate this, we first need to understand that the pressure exerted by a fluid in a static situation is given by the equation P = ρgh, where ρ is the density of the fluid (water in this case, which is approximately 1000 kg/m³), g is the acceleration due to gravity (approximately 9.8 m/s²), and h is the depth of the fluid above the point of interest (3m in this case).

To find the force exerted by the water on the plate, we also need the area of the plate, which can be derived from its diameter (D = 0.25m). The area (A) of a circle is given by πD²/4, which in this case gives us an area of approximately 0.0491 square meters. The force (F) exerted by the water can then be calculated using the equation F = P*A.

Substituting the values into the equations gives us a pressure (P) of 29430 Pa and, subsequently, a resultant force of approximately 1447 Newtons. This represents the sum of all the hydrostatic forces acting perpendicularly to the surface area of the circular plate due to the water pressure at the depth of 3 meters.

A rigid tank with a volume of 0.5 m3 contains air at 120 kPa and 300 K. Find the final temperature after 20 kJ of heat is added to the air using (a) constant specific heats and (b) ideal gas tables.

Answers

Answer:

T=340. 47 K

Explanation:

Given that

Volume of tank =0.5 [tex]m^3[/tex]

Pressure P=120 KPa

Temperature T=300 K

Added heat ,Q= 20 KJ

Given that air is treated as ideal gas and specific heat is constant.

Here tank is rigid so we can say that it is constant volume system.

We know that specific heat at constant volume for air

[tex]C_v=0.71\ \frac{KJ}{kg.K}[/tex]

We know that for ideal gas

P V = m R T

For air R=0.287 KJ/kg.K

P V = m R T

120 x 0.5 = m x 0.287 x 300

m=0.696 kg

[tex]Q=mC_v\Delta T[/tex]

Lets take final temperature of air is T

Now by putting the values

[tex]Q=mC_v\Delta T[/tex]

[tex]20=0.696\times 0.71\times (T-300)[/tex]

T=340. 47 K

So the final temperature of air will be 340.47 K.

The velocity of a particle along the s-axis is given by v = 14s^7/6 where s is in millimeters and v is in millimeters per second. Determine the acceleration when s is 5.5 millimeters.

Answers

Answer:

The acceleration is [tex]2220.00m/s^{2}[/tex]

Explanation:

We know that the acceleration is given by

[tex]a=v\frac{dv}{ds}........................(i)[/tex]

The velocity as a function of position is given by [tex]v=14\cdot s^{7/6}[/tex]

Thus the acceleration as obtained from equation 'i' becomes

[tex]a=14\cdot s^{7/6}\times \frac{d}{ds}(14\cdot s^{7/6})\\\\a=14\cdot s^{7/6}\times \frac{7}{6}\times 14\cdot s^{1/6}\\\\a=\frac{686}{3}\cdot s^{8/6}[/tex]

Hence acceleration at s = 5.5 equals

[tex]a(5.5)=\frac{686}{3}\times (5.5)^{8/6}\\\\\therefore a=2220.00mm/s^{2}[/tex]

Given two resistors R1=40 ohm and R2=30 ohm connected in series, what is the total resistance of this configuration? Enter the value in the box below without the unit. Round the result to two decimal places if necessary. For example if the answer is 10.333 ohm, put 10.33 in the box.

Answers

Answer:

Rt=70.00 ohm

Explanation:

ohm's theory tells us that the connected resistors in series add up directly

Rt=R1+R2+R3+R4.......

Therefore, for this case, the only thing we should do is add the resistance directly

Rt=R1+R2

Rt=40.00 ohm+30.00 Ohm.

Rt=70.00 ohm

the total resistance of this configuration is 70.00 ohm

Discuss the difference between the observed and calculated values. Is this error? If yes, what is the source?

Answers

Final answer:

Measurement error is the difference between observed and calculated values, including both random and systematic errors. Adjusting parameters such as K can help fit experimental data to models, with potential errors addressed through improved methods and investigation of discrepancies.

Explanation:

The difference between the observed and calculated values is known as measurement error or observational error. This error can be classified into two types: random error, which occurs naturally and varies in an unpredictable manner, and systematic error, which is consistent and typically results from a flaw or limitation in the equipment or the experimental design. To identify the sources of these errors, one can compare the experimental data with calculated models and adjust parameters, such as the constant K, to find the best fit.

If the experimental values do not match the accepted values, sources of error should be investigated and procedures modified to improve accuracy. For example, in a physics experiment, one could compare the experimental acceleration to the standard acceleration due to gravity (9.8 m/s²) and identify factors contributing to any discrepancy. Common sources of error might include environmental factors, instrument calibration issues, or procedural mistakes.

What is the definition of a fluid?

Answers

Answer: Basically it's a substance with no shape and it's one of the different states of water.

Explanation:

You are to define and illustrate the following in regards to a 4 bar linkage mechanism: a) Illustrate and briefly define an open-loop 4 bar linkage system. b) illustrate and briefly define a closed-loop 4 bar linkage system.

Answers

Answer:

Answered

Explanation:

Open- loop 4 bar linkage system:

Open- loop 4 bar linkages are not mechanically constrained, meaning in this type of linkages the degree of freedom is are more than 1.

DOF> 1 example = industrial robots, epicyclic gear trains etc.

Closed loop four bar linkage system:

These types are linkages are mechanically constrained and have degree of freedom as one. examples,  four bar chains,  slider crank mechanism.

DOF=1

An air-conditioned room at sea level has an indoor design temperature of 80°F and a relative humidity of 60%. Determine a) Humidity ratio, b) Enthalpy, c) Density, d) Dew point, and e) Thermodynamic wet bulb temperature (Use Psychrometric charts)

Answers

Answer:

a)Humidity ratio =0.013  kg/kg

b) Enthalpy=60.34 KJ/kg

c) Density = 1.16 [tex]Kg/m^3[/tex]

d) Dew point temperature = 64.9°F

e) Wet bulb temperature = 69.53°F

Explanation:

Given that

Dry bulb temperature = 80°F

relative humidity = 60%

Given air is at sea level it means that total pressure will 1 atm.

So P= 1 atm.

As we know that psychrometric charts are always drawn at constant pressure.

Now from charts

We know that dry bulb temperature line is vertical and relative humidity line is curve and at that point these two line will meet ,will us property all property.

a)Humidity ratio =0.013  kg/kg

b) Enthalpy=60.34 KJ/kg

c) Density = 1.16 [tex]Kg/m^3[/tex]

d) Dew point temperature = 64.9°F

e) Wet bulb temperature = 69.53°F

Is refrigerator with an ice-maker an open or a closed system? Explain your answer

Answers

Answer:

Open system

Explanation:

In refrigerator there is a interaction between refrigerator and environment.

In refrigerator heat moves from the system to the outer environment means there is transfer of heat from one system to environment.

We know that whenever there is transfer of energy or mass from system then it is known as pen system

So refrigerator is a open system

Evaluate each of the following and express with an appropriate prefix: (a) (430 kg)^2 (b) (0.002 mg)^2, and (c) (230 m)^3

Answers

Final answer:

The expressions squared or cubed with appropriate metric prefixes are: (a) 184.9 Mg^2, (b) 4 x 10^-18 kg^2, and (c) 12.167 km^3. Metric prefixes are used for clarity in representing large quantities.

Explanation:

The question deals with the operation of squaring and cubing given quantities and expressing them with the appropriate metric prefixes. Let's evaluate each expression step by step:

(a)
(430 kg)^2: To square 430 kg, we multiply 430 kg by itself: (430 kg
* 430 kg) = 184,900 kg2, which can be expressed as 184.9 Megagrams2 (Mg2), since 1 Megagram is equivalent
to 1,000 kilograms.(b) (0.002 mg)^2: To square 0.002 mg, we first convert milligrams to kilograms then square it: (0.002 mg
* 0.002 mg) = 4 x 10-12
mg2. Since there are 1,000,000,000 micrograms (
μg) in a gram, and 1,000 grams in a kilogram, we can
convert it to 4 x 10-18 kg2.(c) (230 m)^3: To cube 230 m, we calculate 230 m * 230 m * 230 m = 12,167,000
m3 or 12.167 Kilometers3 (km3), since 1
Kilometer is 1,000 meters.

It is important to use the proper metric prefixes when
expressing large numbers to ensure clarity and avoid confusion.

The primary heat transfer mechanism that warms me while I stand next to a campfire is: a)- Conduction b)- Impeadance c)- Convection d)- Radiation

Answers

Answer:

convection because it make the surrounding air warm. hence make you feel warm without getting physically connect to it.

Explanation:

convection because it make the surrounding air warm. hence make you feel warm without getting physically connect to it.

Convection is the transition of heat between distinct temperature fields by moving fluid (liquid or gas). Dry air is less thick than moist air and in the presence of a temperature difference, convection currents can form.

There is 200 kg. of saturated liquid water in a steel tank at 97 C. What is the pressure and volume of the tank?

Answers

Answer:

[tex]V = 0.208 m^3[/tex]

saturated pressure  = 0.91 bar 0r 91 kPa

Explanation:

Given data:

Mass of liquid water 200 kg

Steel tank temperature is 97 degree celcius = 97°C

At T = 97 degree celcius,  saturated pressure  = 0.91 bar 0r 91 kPa

And also for saturated liquid

Specific volume [tex]\nu[/tex] is 0.00104 m^3/kg

Volume of tank is given as

[tex]V = \nu * m[/tex]

[tex]V = 0.00104 * 200[/tex]

[tex]V = 0.208 m^3[/tex]

A disk with radius of 0.4 m is rotating about a centrally located axis with an angular acceleration of 0.3 times the angular position theta. The disk starts with an angular velocity of 1 rad/s when theta = 0. Determine the magnitudes of the normal and tangential components of acceleration of a point P on the rim of the disk when theta has completed one revolution.

Answers

Answer:

a₁= 1.98 m/s²   : magnitud of the normal acceleration

a₂=0.75  m/s²  : magnitud of the tangential acceleration

Explanation:

Formulas for uniformly accelerated circular motion

a₁=ω²*r : normal acceleration     Formula (1)

a₂=α*r:    normal acceleration     Formula (2)

ωf²=ω₀²+2*α*θ                             Formula (3)

ω : angular velocity

α : angular acceleration

r  : radius

ωf= final angular velocity

ω₀ : initial angular velocity

θ :   angular position theta

r  : radius

Data

r =0.4 m

ω₀= 1 rad/s

α=0.3 *θ , θ= 2π

α=0.3 *2π= 0,6π rad/s²

Magnitudes of the normal and tangential components of acceleration of a point P on the rim of the disk when theta has completed one revolution.

We calculate ωf with formula 3:

ωf²= 1² + 2*0.6π*2π =1+2.4π ²= 24.687

ωf=[tex]\sqrt{24.687}[/tex] =4.97 rad/s

a₁=ω²*r = 4.97²*0.4 = 1.98 m/s²    

a₂=α*r = 0,6π * 0.4 = 0.75  m/s²  

How does fouling affects the performance of a heat exchanger?

Answers

Answer:

Fouling :

  When rust or undesired material deposit in the surface of heat exchanger,is called fouling of heat exchanger.

Effect of heat exchanger are as follows"

1.It decreases the heat transfer.

2.It increases the thermal resistance.

3.It decreases the overall heat transfer coefficient.

4.It leads to increase in pressure drop.

5.It increases the possibility of corrosion.

Draw and label a typical true stress-strain curve for a ductile material.

Answers

Answer:

this is a typical stress-strain curve for a ductile material

Explanation:

A: proportional limit

B:Elastic limit

C:upper yield point

D:lower yield point

E:ultimate strength

F:rupture strength

Is CO, an air pollutant? How does it differ from other emissions resulting from the combustion of fossil fuels?

Answers

Answer:

Explanation:

CO, carbon monoxide is a toxic gas. It casues asphixiation on people and animals by interfering with hemoglobin, not allowing blood to transport oxygen to the cells in the body.

The normal emissions resulting from the combustion  of fussil fuels are CO2 (carbon dioxide) and H2O (water). Carbon monoxide is formed by an incomplete combustion of fossil fuels or carbon containing fuels in general, this not only produces toxic gas, but also is an inefficient combustion that wastes energy.

If the local atmospheric pressure is 14.6 psia, find the absolute pressure (in psia) in a column of glycerin (rho = 74.9 lbm/ft^3) at depth of 27in.

Answers

Answer:

52.2538 psia

Explanation:

The absolute pressure at depth of 27 inches can be calculated by:

Pressure = Local pressure + Gauge pressure

Also,

[tex]P_{gauge}=\rho\times g\times h[/tex]

Where,

[tex]\rho[/tex] is the density of glycerin ([tex]\rho=74.9\ lbm/ft^3[/tex])

g is the gravitational acceleration = 32.1741 ft/s²

h = 27 in

Also, 1 in = 1/12 ft

So,

h = 27 / 12 ft = 2.25 ft

So,

[tex]P_{gauge}=74.9\times 32.1741\times 2.25\ lbf/ft^2=5422.1402\ lbf/ft^2[/tex]

Also,

1 ft = 12 inch

1 ft² = 144 in²

So,

[tex]P_{gauge}=5422.1402\ lbf/ft^2=\frac {5422.1402\ lbf}{144\ in^2}=37.6538\ lbf/in^2=37.6538\ psia[/tex]

Local pressure = 14.6 psia

So,

Absolute pressure = 14.6 psia + 37.6538 psia=52.2538 psia

In a reversing 2-high mill, a series of cold rolling process is used to reduce the thickness of a plate from 45mm down to 20mm. Roll diameter is 600mm and coefficient of friction between rolls and strip 0.15. The specification is that the draft is to be equal on each pass. Determine a) Minimum number of passes required? b) Draft for each pass?

Answers

Answer:

Explanation:

Given

Initial Thickness=45 mm

Final thickness=20 mm

Roll diameter=600 mm

Radius(R)=300 mm

coefficient of friction between rolls and strip ([tex]\nu [/tex])=0.15

maximum draft[tex](d_{max})=\nu ^2R[/tex]

[tex]=0.15^2\times 300=6.75 mm[/tex]

Minimum no of passes[tex]=\frac{45-20}{6.75}=3.70\approx 4[/tex]

(b)draft per each pass

[tex]d=\frac{Initial\ Thickness-Final\ Thickness}{min.\ no.\ of\ passes}[/tex]

[tex]d=\frac{45-20}{4}=6.25 mm[/tex]

For a rod of annealed AISI 1018 steel with a cross sectional area of 0.65 in^2?; what is the maximum tensile load Pmax that should be placed on it given a design factor of 3 to avoid yielding?

Answers

Answer:

maximum tensile load Pmax is 11.91 ksi

Explanation:

given data

area = 0.65 in²

design factor of safety = 3

to find out

what is the maximum tensile load Pmax

solution

we know here area is 0.65 in² and FOS = 3

so by steel table for rod of annealed AISI 1018 steel table we know σy = 55 ksi

so

we use here design factor formula that is

[tex]\frac{ \sigma y}{FOS}  = \frac{Pmax}{area}[/tex]  .............1

put here all these value we get Pmax in equation 1

[tex]\frac{55}{3}  = \frac{Pmax}{0.65}[/tex]

Pmax = 11.91 ksi

so maximum tensile load Pmax is 11.91 ksi

Other Questions
Kylie wants to maintain a good formal relationship with her clients. Which networking site can she use to remain connected with her clients? Seven times five times six plus eight Please help me ASAP!Please this is due soon and i don't have all day.Can someone please help me find the percentage change in mass of each section, using the formula% change in mass = change in mass/starting mass 100%Round to the nearest hundredth!Before-1. 7.83 g2. 7.4 g3. 7.3 g4. 7.49 g5. 7.4 g6. 7.89 gAfter1. 8.268 g2. 7.24 g3. 6.51 g4. 7.0 g5. 7.24 g6. 8.51 g Lina purchased a prepaid phone card for $15. Long distance calls cost 16 cents a minute using this card. Linda used her card only once to make a long distance call. If the remaining redit on her card if $10.52, how many minutes did her call last? Jack enters into a contract with Jills Farm to provide water for Jills irrigation needs. Jack fails to deliver. Jill initiates a suit against Jack, asking the court to order Jack to perform. Jill is the: What was the subject of the most debate between large and small states at the constitutional convention? Despite the disintegration of the Abbasid Caliphate, Islam continued to spread across Afro-Eurasia in the period 1200-1450 primarily because of which of the following?A. The conquest of the Christian Crusader States in the LevantB.The activities of Sufi missionariesC.The voyages of the Muslim eunuch Zheng HeD. The translation activities of Muslim scholars the earth rotates about its axis once every 23 hours, 56 minutes and 4 seconds. Approximate the number of radians the earth rotates in one second. ___________, such as smart phones and social media, fundamentally change the nature of an industry and can be influential enough to create or destroy whole companies. Write a program that prompts the user to enter the minutes (e.g., 1 billion), and displays the number of years and days for the minutes. For simplicity, assume a year has 365 days. Here is a sample run: Enter the number of minutes: 1000000000 1000000000 minutes is approximately 1902 years and 214 days In a sample of 408 new websites registered on the Internet, 37 were anonymous (i.e., they shielded their name and contact information). (a) Construct a 95 percent confidence interval for the proportion of all new websites that were anonymous. (Round your answers to 4 decimal places.) Please define the specific heat of material? - 2x - 147 = 123 + 7x High levels of LDL cholesterol in the bloodstream can be the result of familial hypercholesterolemia, an inherited condition that displays incomplete dominance. In a family with a severely affected father and an unaffected mother, what percentage of their children are expected to have higher than normal blood cholesterol? Jan buys 3 bags of beads. Each bag contains 7 beads. Draw a bar diagram and write an addition equation and a multiplication equation to show how many beads Jan buys. How are the equation related? Find the answer to the problem -5/6 + (-1/12) Write 41,405,000 in Engineering Notation with 3 significant figures. The _____ establishes that the destination device is present on the network, verifies active service, and informs the destination device that it intends to establish a communication session. Which two statements best show the effect of the Congress of Vienna on Europe?It resulted in an agreement to suppress nationalism.It helped Britain gain control over France.It led to a decrease in the number of republics.It caused frequent revolts in Latin American countries. Your co-worker, Bill, comes into the office and tells you that he is going to play "hooky" and go golfing, believing that the boss will think he is out calling on clients. When your boss comes in, he asks you where Bill is and you reply, "I saw him in the office earlier this morning, but I haven't seen him lately." What would Kant call this misleading statement?