A Carnot machine operates with 25% efficiency, whose heat rejection reservoir temperature is 300K. Determine the temperature at which the machine absorbs heat.

Answers

Answer 1

Answer:

The temperature at which observed heat is 400 K

Explanation:

Given data:

rejection reservoir temperature at exit [tex]T_{L}[/tex] is 300 k

the efficiency of a engine is  η = 25%

we know that efficiency of Carnot is given as

[tex]\eta = (1-\frac{T_{L}}{T_{H}})*100[/tex]

Putting all value to obtained  temperature at which observed heat

[tex]0.25 = (1-\frac{300}{T_{H}})[/tex]

[tex]T_{H}[/tex] = 400 K


Related Questions

The smallest crystal lattice defects is a) cracks b) point defects c) planar defects d) dislocations.

Answers

Answer:b) Point defects

Explanation: The point defect is the tiny defect that occurs in the lattice. It usually occurs when there is the atoms or ions missing in the lattice structure that creates a irregularity in the structure.The name point defect itself describes that the occurring defect is having a size of point thus is the smallest defect. Therefore option(b) is the correct option.

Air enters a compressor at 100 kPa, 10°C, and 220 m/s through an inlet area of 2 m2. The air exits at 2 MPa and 240°C through an area of 0.5 m2. Including the change in kinetic energy, determine the power consumed by this compressor, in kW.

Answers

Answer:

Power consume by compressor=113,726.87 KW

Explanation:

Given:[tex]P_{1}=100KPa ,V_{1}=200 m/s,T_{1}=283 K, A_{1} =2m^2[/tex]

 [tex]P_{2}=2000KPa ,T_{2}=513 K,A_{2}=0.5m^2[/tex]

Actually compressor is an open system, so here we will use first law of thermodynamics for open system .

We know that first law of thermodynamics for steady flow

[tex]h_{1}+\frac{V_{1} ^{2} }{2}+Q=h_{2}+\frac{V_{2} ^{2} }{2}+W[/tex]

We know that[tex]C_{p}=1.005\frac{Kj}{KgK}[/tex]and we take the air as ideal gas.

System is in steady state then mass flow rate in =mass flow rate out

Mass flow rate= [tex]density\times area\times velocity[/tex]

So mass flow rate =[tex]\rho _{1}V_{1}A_{1}[/tex]     ,[tex]\rho =\frac{P}{RT}[/tex]

                                   =1.23×200×2 Kg/s

                                  =541.17 Kg/s

[tex]\rho _{1}V_{1}A_{1}=\rho _{2}V_{2}A_{2}[/tex]

[tex]\rho _{2}=13.58\frac{Kg}{{m}^3}[/tex]  ,[tex]\rho =\frac{P}{RT}[/tex]

[tex]V_{2}[/tex]=80.07 m/s

Enthalpy of ideal gas h=[tex]C_{p}\times T[/tex]

So[tex] h_{1}=1.005\times283=284.41\frac{Kj}{Kg}[/tex]

             [tex]h_{2}=1.005\times513=515.56\frac{Kj}{Kg}[/tex]

Now by putting the values

[tex]284.41+\frac{220 ^{2} }{2000}+Q=515.56+\frac{80.07 ^{2} }{2000}+W[/tex]

Here Q=0 because heat transfer is zero here.

W= -210.15 KJ/kg

So power consume by compressor=541.17×210.15

                                                          =113,726.87 KW

How to called crystalline lattice changes at the temperature change a) oxidation; b) primary crystallization c) allotropy d) anisotropy.

Answers

Answer: (c)Allotropy

Explanation: Allotropy is defined as the feature of the material to exist in different chemical forms or state while being in the same physical state. So, allotropy responsible for maintenance of the crystalline lattices during the temperature changes and does not alter the physical state of it. It helps elements to exist in different forms by modifying the structure of the chemical state.

A 4.4 HP electric motor spins a shaft at 2329 rpm. Find: The torque load carried by the shaft is closest to: Select one: a)-27.06 ft*lb b. 19.24 ft*lb ? c)-31.17 ftlb d) 119.07 ftlb e)-9.92 ft*lb

Answers

Answer:

Load carried by shaft=9.92 ft-lb

Explanation:

Given:    Power P=4.4  HP

                    P=3281.08 W

Power:  Rate of change of work with respect to time is called power.

We know that P=[tex]Torque\times speed[/tex]

     [tex]\omega=\frac{2\pi N}{60}[/tex] rad/sec

So that P=[tex]\dfrac{2\pi NT}{60}[/tex]

So   3281.08=[tex]\dfrac{2\pi \times 2329\times T}{60}[/tex]

      T=13.45 N-m         (1 N-m=0.737 ft-lb)

 So T=9.92 ft-lb.

Load carried by shaft=9.92 ft-lb

What is Potential flow?

Answers

Answer: Potential flow states about the velocity field considering it as gradient of scalar function such as the velocity potential. It is considered same as irrotational flow.

Explanation:In the study of fluid dynamics , potential flow is stated as the term for describing about the velocity field taking it as the gradient of a scalar function. Therefore, potential flow is stated by an irrotational velocity field  and there is a irrotation because of the curl of the gradient of scalar quantity is zero.Potential flow is considered same as the irrotational flow that is the particles in the fluids that do not rotate.

Before cutting coarse screw threads, the operator should lubricate: A. The leadscrew and gearbox B. The ways and cross slide C. The carriage and half-nuts D. A1l of the above

Answers

Answer:

(d) all of the above

Explanation:

before cutting the screw threads the operator should lubricate all of the machine parts given in the option that is lead screw and gearbox , the ways and the cross slide and the carriage and half-nuts. we should use lubrication because it reduces the overall system friction and if friction is reduced then heat generated due to friction is also decreases which is beneficial

so option (D) will be correct because we need lubricate in all the given parts  

Convective heal transfer is defined as______

Answers

Answer: Convective heat transfer is defined as the transfer of heat from a particular place to another with the help of fluid movements.

Explanation: Convective heat also knows as convection that is transfer of heat from one place to another place by the help of fluid movements around the area having different temperatures. This process has many examples in everyday life to understand the process better.

Ex.- the melting of ice from solid to liquid form as it comes in contact of high temperature as heat surrounds the ice in form of air.

Air is compressed by a compressor from v1 = 1.0 m3/kg to v2 = 0.71 m3/kg in a reversible, isothermal process. The air temperature is maintained constant at 25 oC during this process as a result of heat transfer to the surroundings. Air moves through the compressor at a rate of m = 1 kg/s. a)- Determine the entropy change of the air per kg of air. b)- What is the power required by the compressor? c)- What is the rate at which entropy leave the compressor?

Answers

Answer:

(a)[tex]s_2-s_1[/tex]= -0.098 KJ/kg-K

(b)P= 29.8 KW

(c) [tex]S_{gen}[/tex]= -0.098 KW/K  

Explanation:

[tex]V_1=1m^3/kg,V_2=0.71m^3/kg,[/tex] mass flow rate= 1 kg/s.

T=25°C

Air treating as ideal gas

(a)

We know that entropy change for ideal gas between two states

 [tex]s_2-s_1=mC_v\ln \frac{T_2}{T_1}+mR\ln \frac{V_2}{V_1}[/tex]

Given that this is isothermal process so

 [tex]s_2-s_1=mR\ln \frac{V_2}{V_1}[/tex]

[tex]s_2-s_1=1\times 0.287\ln \frac{0.71}{1}[/tex]

[tex]s_2-s_1[/tex]= -0.098 KJ/kg-K

(b)

Power required

[tex]P=\dot{m}T\Delta S[/tex]

[tex]P=1\times (273+25)(s_2-s_1)[/tex]

[tex]P=1\times (273+25)(-0.098)[/tex]

P= -29.8 KW        (Negative sign means it is compression process.)

(c)

Rate of entropy generation [tex]S_{gen}[/tex]

[tex]S_{gen}=\dot{m}T\Delta S[/tex]  

[tex]S_{gen}[/tex]=1(-0.098)

 [tex]S_{gen}[/tex]= -0.098 KW/K  

A negative normal strain can be considered to increase or decrease volume depending on the coordinate system used. a)True b)- False

Answers

Answer:

The given statement "A negative normal strain can be considered to increase or decrease volume depending on coordinate system used" is

b) False

Explanation:

Normal strain refers to the strain due to normal stress which is when the applied stress is perpendicular to the surface.

Negative normal strain results in compression or contraction further leading to a decrease in volume while a positive normal strain results in elongation thus giving rise to an increase in volume.

A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by absorbing heat from geothermal water that enters the evaporator at 500C at a rate of 0.065 kg/s and leaves at 40°C. The refrigerant enters the evaporator at 20°C with a quality of 23 percent and leaves at the inlet pressure as saturated vapor. The refrigerant loses 300 W of heat to the surroundings as it flows through the compressor and the refrigerant leaves the compressor at 1.4 MPa at the same entropy as the inlet. Determine: (a) The degrees of subcooling of the refrigerant in the condenser, b)-The mass flow rate of the refrigerant . (c) The heating load and the COP of the pump, and d)-The theoretical minimum power input to the compressor for the same heating load.

Answers

Answer:2.88

Explanation:

The uniform wall thickness that is usually targeted for plastic injection molded parts is roughly: A. 0.5 mm B. 3 mm C. 7 mm D. 12 + mm

Answers

Answer:

B. 3 m

Explanation: For plastic injection moulded the thickness is generally between 2 mm to 3 mm

the wall is not too thick because during cooling process there should be defects so thickness of wall is no too high and there is also a problem if we use thicker wall that we need more material for moulding process so the thickness should be in between 2 to 3 mm which is in option B so option B will be the correct option

Describe ICP/OES in detail.

Answers

Answer:

ICP -OES stand for inductively coupled plasma optical emission spectroscopy

Explanation:

It is techniques that known as trace level technique which help to identify and quantify the element present in sample by using spectra emission.

The analysis process include desolvates, ionization and excitation of the sample. The sample is identify by analyzing the emission line from it and quantify by analyzing the intensity of same emission lines.

Answer:

ICP stands for Insane Clown Posse. It is a rap group. The group's members are Violent J and Shaggy 2 Do*e

Explanation:

A spherical, stainless steel (k 16 W m1 K-1) tank has a wall thickness of 0.2 cm and an inside diameter of 10 cm. The inside surface of the tank wall is held constant at 25 oC and the outside surface heat transfer coefficient is 6 W m2 K. Calculate the rate of heat loss from the tank when the outside air temperature is 15°C.

Answers

Answer:

the rate of heat loss is 2.037152 W

Explanation:

Given data

stainless steel K = 16 W [tex]m^{-1}K^{-1}[/tex]

diameter (d1) = 10 cm

so radius (r1)  = 10 /2 = 5 cm = 5 × [tex]10^{-2}[/tex]

radius (r2)  = 0.2 + 5 = 5.2 cm = 5.2 × [tex]10^{-2}[/tex]

temperature = 25°C

surface heat transfer coefficient = 6 6 W [tex]m^{-2}K^{-1}[/tex]

outside air temperature = 15°C

To find out

the rate of heat loss

Solution

we know current is pass in series from temperature = 25°C to  15°C

first pass through through resistance R1  i.e.

R1  = ( r2 -  r1 ) / 4[tex]\pi[/tex]  × r1 × r2 × K

R1  = ( 5.2 - 5 ) [tex]10^{-2}[/tex]  / 4[tex]\pi[/tex]  × 5 × 5.2 × 16 × [tex]10^{-4}[/tex]

R1  = 3.825 ×  [tex]10^{-3}[/tex]

same like we calculate for resistance R2 we know   i.e.

R2 = 1 / ( h × area )

here area = 4 [tex]\pi[/tex] r2²

area = 4 [tex]\pi[/tex] (5.2 × [tex]10^{-2}[/tex])²  =  0.033979

so R2 = 1 / ( h × area ) = 1 / ( 6 × 0.033979  )

R2 = 4.90499

now we calculate the heat flex rate by the initial and final temp and R1 and R2

i.e.

heat loss = T1 -T2 / R1 + R2

heat loss = 25 -15 / 3.825 ×  [tex]10^{-3}[/tex] + 4.90499

heat loss =  2.037152 W

A disk brake has two pads which cover 45 degrees of the disk. The outside radius is 6.0 inch and the inside radius is 4.0 inch. Assume a coefficient of friction of 0.4, and a max pressure, pa=100 psi. a) Find the force required to apply one pad. b) Find the torque capacity for both pads.

Answers

Answer:

f = 628.32 lb

t = 2513.28 lb-inc

Explanation:

given data:

θ = 45°

outside radius = 6 inch

inside radius = 4 inch

coefficient of friction = 0.4

max pressure = 100 psi

a) determine force required for applying one pad

f =    [tex] \frac{\theta }{360}* 2\pi *p_{max}*r_{i}(r_{o}-r_{i})[/tex]

f = [tex] \frac{45 }{360}* 2\pi *100*4(6-4)[/tex]

f = 628.32 lb

b) torque capacity (t)

t = [tex]\mu *f*r_{average}^{}[/tex]

t = 0.4 *628.32*5

torque = 1256.64 lb-inc

for both pad = 2 * 1256.64 =2513.28 lb-inc

An indirect contact heat exchanger operating at steady state contains a shell with a single tube through it. The fluid flowing through the tube enters at 1kg/s with and enthalpy of 100kJ/kg. It exits with an enthalpy of 500kJ/kg. The fluid flowing through the shell enters with a mass flow rate of 4kg/s and an enthalpy of 1000kJ/kg. Determine the enthalpy at the exit of the shell.

Answers

Answer:900 KJ/kg

Explanation:

Given data

mass flow rate of fluid through tube is=1 kg/s

Initial enthalpy of fluid through tube=100 KJ/kg

Final enthalpy of fluid through tube=500KJ/kg

mass flow rate of fluid through shell is=4 kg/s

Initial enthalpy of fluid through shell=1000 KJ/kg

Final enthalpy of fluid through shell=[tex]h_2[/tex]

since heat lost by Shell fluid is equal to heat gain by Tube fluid  

heat lost by Shell fluid=[tex]4\times c\left ( 1000-h_2\right )[/tex]

Heat gain by tube Fluid=[tex]1\times c\left ( 500-100\right )[/tex]

Equating both heats

[tex]4\times c[/tex][tex]\left ( 1000-h_2\right )[/tex]=[tex]1\times c\left ( 500-100\right )[/tex]

[tex]h_2[/tex]=900 KJ/kg

Why factor of safety is more than 2 in the gears ? What does effect ?

Answers

Answer:

explained

Explanation:

Gear is a  mechanical components designed for transfer of torque or power from one shaft to the other. Gear designing is a costly affair. The configuration and geometry of gears are such that its designing is tedious task. A lot of precision is required to design a gear. This is why factor of safety of gears are always kept higher.

The higher factor of safety accounts for durability of gears. Gears once made can used for about 200 hundred years. The wear and tear are less and the failure of gears is avoided. And hence whole machine failure can be avoided.  

Give two advantages of a four-high rolling mill opposed to a two-high rolling mill for the same output diameter.

Answers

Answer:

Four- high rolling mill                              Two-high rolling mill

1.Small roll radius.That is why required  1.High roll radius.That is  required low power.           .                    why required high power.

2.  Low roll separating force.                   2.High roll separating

                                                                        force

An oscillating mechanism has a maximum displacement of 3.2m and a frequency of 50Hz. At timet-0 the displacement is 150cm. Express the displacement in the general form Asin(wt + α).

Answers

Given:

max displacement, A = 3.2 m

f= 50 Hz

at t = 0, displacement, d = 150 cm = 1.5 m

Solution:

Displacement in the general form is represented by:

d = Asin(ωt ± α)

d = 3.2sin(2πft ± α)

d = 3.2sin(100πt ± α)                    

where,

A = 3.2 m,            

ω = 2πf = 100π

Now,

at t = 0,

1.5 = 3.2sin(100π(0) ± α )

1.5 = 3.2sinα

sin α = [tex]\frac{1.5}{3.2}[/tex] = 0.4687

α = [tex]sin^{-1}(0.46875)[/tex] = 27.95° = 0.488 radian

Now, we can express displacement in the form of 'Asin(wt + α)' as:

d = 3.2sin(100πt ± 0.488 )

A belt drive was designed to transmit the power of P=7.5 kW with the velocity v=10m/s. The tensile load of the tight side is twice of that of loose side, F1= 2F2. Please calculate the F1, Fe, and Fo.

Answers

Answer:

F₁ = 1500 N

F₂ = 750 N

[tex]F_{e}[/tex] = 500 N

Explanation:

Given :

Power transmission, P = 7.5 kW

                                      = 7.5 x 1000 W

                                      = 7500 W

Belt velocity, V = 10 m/s

F₁ = 2 F₂

Now we know from power transmission equation

P = ( F₁ - F₂ ) x V

7500 = ( F₁ - F₂ ) x 10

750 =  F₁ - F₂

750 = 2 F₂ - F₂      ( ∵F₁ = 2 F₂ )

∴F₂  = 750 N

Now F₁ = 2 F₂

        F₁ = 2 x F₂

        F₁ = 2 x 750

        F₁ = 1500 N   ,   this is the maximum force.

Therefore we know,

[tex]F_{max}[/tex] = 3 x [tex]F_{e}[/tex]

where [tex]F_{e}[/tex] is centrifugal force

 [tex]F_{e}[/tex] = [tex]F_{max}[/tex] / 3

                          = 1500 / 3

                         = 500 N

At any given state the specific internal energy of a gas is always greater its specific enthalpy. a)True b) False

Answers

Answer:

(b)False

Explanation:

We know that specific  Internal energy of gas u=[tex]C_v[/tex]T

      and specific enthalpy of gas h=[tex]C_p[/tex]T

If we take the case of air we know that

[tex]C_v[/tex]=0.707 KJ/Kg=K  , [tex]C_p[/tex]=1.005 KJ/Kg=K

If we take A fixed temperature T=300 K

so    u=212.1 KJ/ kg   ,h=301.5 KJ/kg

So we can say that specific enthaply of gas is always greater than its specific   internal energy.

                                 

     

Major processing methods for fiberglass composited include which of the following? Mark all that apply) a)- Open Mold b)- Closed Mold c)- Preforming d)- Postforming e)- None of the above f)- All the above

Answers

Answer:

it is f all of the above

Explanation:

let me know if im right

im not positive if im right but i should be right

Fluid enters a device at 4 m/s and leaves it at 2 m/s. If there is no change in the PE of tihe flow, and there is no heat and (non-flow) work across boundaries of the device, what is the increase in specific enthalpyof the fluid (hg-hi) in kJ/kg? Assume steady state operation of the device.

Answers

Answer:

[tex]h_2-h_1=6\times 10^{-3}\frac{KJ}{Kg}[/tex]

Explanation:

Now from first law for open system

[tex]h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}+w[/tex]

Here given  Q=0 ,w=0

So [tex]h_1+\dfrac{V_1^2}{2}=h_2+\dfrac{V_2^2}{2}[/tex]

[tex]V_1=4 m/s,V_2=2 m/s[/tex]

[tex]h_1+\dfrac{4^2}{2000}=h_2+\dfrac{2^2}{2000}[/tex]

[tex]h_2-h_1=6\times 10^{-3}[/tex]

So increase in specific enthalpy

[tex]h_2-h_1=6\times 10^{-3}\frac{KJ}{Kg}[/tex]

For water the critical temperature is 374 C, water at T- 400 C exist as vapor (____)

Answers

Answer:

The statement is False.

Explanation:

Critical temperature is defined as the temperature at and above which the liquid and the gaseous states are indistinguishable. This is the temperature at and above which the liquid cannot be liquefied.

Above critical temperature or pressure, the substance is in supercritical fluid (SCF) state. A supercritical fluid is the one in which liquid and gaseous state can not be distinguished. It can dissolve like liquids and can effuse like solids.

Water above its critical temperature exists in SCF state which is neither vapor nor liquid.

Thus, the statement is false.

Consider a falling mass(m) under gravity(9.8m/s). Initial velocity of the mass is 5 m/s upwards. Derive expressions for the velocity and the position of the mass(m) in terms of time and initial velocity/position of the mass. a) -How long will the mass take to reach the maximum height position? b)- What would be the maximum height the mass reach relative to its initial position?

Answers

Answer:

a) 0.51 s

b) 1.275m

Explanation:

using equation of linear motion

v=u+gt...........................(1)

[tex]v^{2} -u^{2}=2gh[/tex]...........(2)

[tex]s=ut+\frac{1}{2} gt^2[/tex].......(3)

a) as the ball is thrown upward -ve 'g' will be acting on the body

as the body reaches to the maximum height the final velocity(v) becomes

zero so from equation (1)

0=5-9.8t

[tex]t=\frac{5}{9.8}[/tex]

t=0.51s

b) Now for maximum height calculation using equation (2)

[tex]v^{2} -u^{2}=2gh[/tex]

v=0

[tex]h=\frac{-u^2}{2g}[/tex]

[tex]h=\frac{-5^2}{2\times-9.8}[/tex]

h=1.275m

Consider a fully developed flow in a circular pipe (negligible entrance effects), how does the convective heat transfer coefficient vary along the flow direction? a) Gradually decrease b) Gradually increase c) Remain constant d) There is not enough information to determine

Answers

Answer: A)  Gradually decrease

Explanation:

  The convection value of heat transfer rate are gradually decreasing with the flow of the heat. Flow in a circular pipe, flow direction does not change in the velocity path. The average of the coefficient of heat transfer and the number of pipes are needed and the effects are get neglected so that is why the flow are fully developed.

Which of the following is/are not a cutting tool material (mark all that apply)? a. High-speed steel b. Brass c. Coated carbide d. Diamond

Answers

Answer:

The correct option is : b. Brass

Explanation:

The cutting tool materials are materials that are used to make cutting tools. The cutting tools serve a very important roles in the machinery such as milling cutters. The materials used for making the cutting tools must be tougher and harder than the material that is being cut, at all temperatures.

Some of the cutting tool materials are tool steels (carbon tool steel and high speed steel), cemented carbides and super hard materials such as diamond.

Therefore, brass is not used for making cutting tool.

An aluminium alloy used for making cans is cold rolled into a strip of thickness 0.3mm and width 1m. It is coiled round a drum of diameter 15cm, and the outer diameter of the coil is 1m. In the cold rolled condition, the dislocation density is approximately 1015 m-2. Estimate: (i) The mass of aluminium on the coil; (ii) The total length of strip on the coil; (iii) The total length of dislocation in the coiled strip.

Answers

Answer:

1. Mass = 2070 kg

2.Total length of strip = 2556 m

3. Total length of dislocation = 7.67 X[tex]10^{14}[/tex] m

Explanation:

Given:

Aluminium coil thickness, t = 0.3 mm

                                              = 0.3 X [tex]10^{-3}[/tex] m

Width of the coil,w = 1 m

Drum diameter, d = 15 cm

                              = 0.15 m

Coil outer diameter, d = 1 m

Dislocation density = [tex]10^{15}[/tex] [tex]m^{2}[/tex]

1). Area of the coil, A = [tex]\frac{\pi }{4}\times[/tex] ( [tex]d_{coil} ^{2}[/tex]-[tex]d_{drum} ^{2}[/tex])

                           A = [tex]\frac{\pi }{4}\times (1^{2}-0.15^{2})[/tex]

                           A = 0.767 [tex]m^{2}[/tex]

Volume of the coil,V = A X w

                                  = 0.767 X 1

                                  = 0.767 [tex]m^{3}[/tex]

We know density of aluminum at STP = 2.7 X [tex]10^{3}[/tex]

Therefore, mass of the aluminum coil is,

Mass,m = Density of aluminium X Volume

             = 2.7 X [tex]10^{3}[/tex] X 0.767

             = 2070 kg

Mass = 2070 kg

2). Total length of trip of coil is given by

          L = Volume of coil / area of strip

             = [tex]\frac{0.767}{1\times 0.3\times 10^{-3}}[/tex]

              = 2556 m

Total length of strip = 2556 m

3). Total length of dislocation of the coiled strip = volume X dislocation density

                                                                             = 0.767 X [tex]10^{15}[/tex]

                                                                              = 7.67 X [tex]10^{14}[/tex]

Total length of dislocation = 7.67 X[tex]10^{14}[/tex] m

Discuss the importance of dust and fluff removal from spinning mills and how it is realised in air conditioning plants

Answers

Answer:

Removal of dust and fluff from spinning mill is important as it has adverse and detrimental effects on the health of the workers in these industries. Tiny and microscopic particles of various substances present in the surrounding air is transferred from one place to another and these causes various respiratory diseases and pose health hazards for the workers and make work environment unhealthy and hazardous thus affecting the over all efficiency and productivity.

Cotton dust , the major pollutant, when breathed in affetcs the lungs badly and workers experience symptoms such as respiratory problems, coughing, tightness in chest, etc.  Thus to ensure proper health of the workers spinning mills have been provided with powerful air conditioning to ensure purity of air, to maintain proper moisture levels and to ensure dust and fluff removal.

The dust and fluff laiden air is humidified, purified and then recirculated. Optimization of number of air changes/hour to clean air stream and prevent any health risk of the workers.

What is meant by thermodynamic property? How do you classify the property? Explain with specific examples.

Answers

Answer:

The condition of very system can be identified by some physical characteristics of the system known as Thermodynamic Property of the system. For example, pressure, temperature, volume, etc.

Explanation:

Thermodynamic properties are nothing but the physical characteristics of any body by which the physical condition of the body can be described. properties describes the different states of a system. They are macroscopic.

               Properties are of two types ---

Intensive property

Extensive property

Intensive Property : Those properties of a system which does not depend upon mass of the system are known Intensive property.

                               For example, pressure, temperature, density,specific volume, etc

Extensive Property : Properties that depends on the mass oh the system is called Extensive properties.

                               For example, energy, volume, etc.

Determine the constant speed at which the cable at A must be drawn in by the motor in order to hoist the load 6 m in 1.5s

Answers

Final answer:

To hoist a load 6 meters in 1.5 seconds, the cable must be drawn in by the motor at a constant speed of 4 meters per second.

Explanation:

The question asks to determine the constant speed at which a cable must be drawn in by a motor to hoist a load to a certain height within a given time frame. This can be solved by understanding the basic concepts of distance, speed, and time.

To find the constant speed, we use the formula:
Speed = Distance / Time. In this case, the distance is 6 meters (the height the load needs to be hoisted) and the time is 1.5 seconds.

Plugging the numbers into the formula gives:
Speed = 6m / 1.5s = 4 m/s.

Therefore, the cable must be drawn in by the motor at a constant speed of 4 meters per second to hoist the load 6 meters in 1.5 seconds.

Other Questions
Electric power is to be generated by installing a hydraulic turbine generator at a site 120 m below the free surface of a large water reservoir that can supply water at a rate of 2400 kg/s steadily. Determine the power generation potential. The function f(x) = -(x - 20)(x - 100) represents a company's monthly profit as a function of x, the number of purchaseorders received. Which number of purchase orders will generate the greatest profit?20O 60O 80O 100 write a C++ program to enter a text and count how many times one letter appear in the text? For each geometric sequence, write a recusive rule by finding the commom ratio by calculating the ration of consecutive terms. Write an exlicit rule for the sequence by writing each term as the product of the first tern and a power of the common ratio.n- 1, 2, 3, 4, 5An- 2, 6, 18, 54, 162 The length of an edge of a cube is 4 ft.What is the volume of the cube?Enter the answer.[1] ft3 When 23Na is bombarded with protons, the products are 20Ne and A. a neutron B. an alpha particle C. a deuteron D. a gamma ray particle E. two beta particles An earthquake 45 km from a city produces P and S waves that travel outward at 5000 m/s and 3000 m/s, respectively. Once city residents feel the shaking of the P wave, how much time do they have before the S wave arrives in seconds? Suppose a 95% confidence interval for turns out to be (1,000, 2,100). To make moreuseful inferences from the data, it is desired to reduce the width of the confidenceinterval. Which of the following will result in a reduced interval width?A. Increase the sample size.B. Decrease the confidence level.C. Both increase the sample size and decrease the confidence level.D. Both increase the confidence level and decrease the sample size. identify an equation in point-slope form for the line perpendicular to y=-1/2x+11 that passes through (4,-8). A. y+8=2(x-4)B. y+8+1/2(x-4)C.y-8=1/2(x+4)D.y-4=2(x+8) Nick observes thickening and discoloration or the nail of the index finger. Nick is most likely suffering from Suppose that you have been hired to analyze the impact on employment from the imposition of a minimum wage in the labor market. Further suppose that you estimate the supply and demand functions for labor, where L stands for the quantity of labor (measured in thousands of workers) and W stands for the wage rate (measured in dollars per hour): Demand: L D = 100 - 3W Supply: L S = 7W. First, calculate the free-market equilibrium wage and quantity of labor. The competitive market equilibrium wage is $ _______ per hour. (Enter your response as an integer.) The competitive market equilibrium quantity of labor is ______ thousand workers. (Enter your response as an integer.) Now suppose the proposed minimum wage is $ 12. How large will the surplus of labor in this market be? With a minimum wage of $ 12 per hour, the surplus will be ______ thousand workers. (Enter your response as an integer.) bad road use has a direct impact on the physical and social What is the scale factor of LMN to OPQ? In 1995, 70% of all children in the U.S. were living with both parents. If 25 children were selected at random in the U.S., what is the probability that at most 10 of them will be living with both of their parents? Round your answer to 4 decimal places. 10. A worker covers a distance of 40 km from his house to his place ofwork, and 10 km towards his house back. Then the displacementcovered by the worker in the whole trip is The equation y=mx+b is the slope-intercept form of a linear equation. Solve y=mx+b for m In a short story, the character Cammie meets someone named Greg through a social media website. The two hit it off and decide to meet one another in person. Cammie's brother finds out about the meeting and becomes concerned that Cammie will soon spend more time with Greg than with him. He sends Cammie an email pretending to be Greg, cancelling their meetingand saying he never wants to speak to her again. What character type doesCammie's brother represent?A. ProtagonistB. AntagonistC. FoilD. Narrator what is the slope of the lineA: -3B: 1C:0 D: undefined Find a solution of the linear inequality. y > 4x - 5 Divide. Reduce the answer to lowest terms.3/8 divided by 1/7