A flat rectangular door in a mine is submerged froa one side in vater. The door dimensions are 2 n high, 1 n vide and the vater level is 1,5 m higher than the top of the door. The door has two hinges on the vertical edge, 160 mm from each corner and a sliding bolt on the other side in the niddle. Calculate the forces on the hinges and sliding bolt. Hint: Consider the door from a side view and from a plaa vies respectively and take moments about a point each time.)

Answers

Answer 1

Answer:

Force on the bolt = 24.525 kN

Force on the 1st hinge = 8.35 kN

Force on the 2nd hinge = 16.17 kN

Explanation:

Given:

height = 2 m

width =1 m

depth of the door from the water surface = 1.5 m

Therefore,

[tex]\bar{y}[/tex] =1.5+1 = 2.5 m

Hydrostatic force acting on the door is

[tex]F= \rho \times g\times \bar{y}\times A[/tex]

[tex]F= 1000 \times 9.81\times 2.5\times 2\times 1[/tex]

         = 49050 N

         = 49.05 kN

Now finding the Moment of inertia of the door about x axis

[tex]I_{xx}=\frac{1}{12}\times b\times h^{3}[/tex]

[tex]I_{xx}=\frac{1}{12}\times1\times 2^{3}[/tex]

               = 0.67

Now location of force, [tex]y^{*}[/tex]

[tex]y^{*}=\bar{y}+\frac{I_{xx}}{A\times \bar{y}}[/tex]

[tex]y^{*}=2.5+\frac{0.67}{2\times 1\times 2.5}[/tex]

             = 2.634

Therefore, calculating the unknown forces

[tex]F=F_{A}+R_{B}+R_{C} = 49.05[/tex]  ------------------(1)

Now since [tex]\sum M_{R_{A}}=0[/tex]

∴ [tex]R_{B}\times L+R_{C}\times L-F\times \frac{1}{2}=0[/tex]

  [tex]R_{B}+R_{C}-F\times \frac{1}{2}=0[/tex]

  [tex]R_{B}+R_{C}=\frac{F}{2}[/tex]

  [tex]R_{B}+R_{C}=24.525[/tex]        -----------------------(2)

From (1) and (2), we get

[tex]R_{A} = 49.05-24.525[/tex]

                = 24.525 kN

This is the force on the Sliding bolt

Taking [tex]\sum M_{R_{C}}=0[/tex]

[tex]F\times 0.706-R_{A}\times 0.84-R_{B}\times 1.68 = 0[/tex]

[tex]49.05\times 0.706-24.525\times 0.84-R_{B}\times 1.68 = 0[/tex]

[tex]R_{B}[/tex] =8.35 kN

This is the reaction force on the 1st hinge.

Now from (1), we get

[tex]R_{C}[/tex] =16.17 kN

This is the force on the 2nd hinge.

A Flat Rectangular Door In A Mine Is Submerged Froa One Side In Vater. The Door Dimensions Are 2 N High,

Related Questions

Atmospheric air at 25 °C and 8 m/s flows over both surfaces of an isothermal (179C) flat plate that is 2.75m long. Determine the heat transfer rate per unit from the plate for 3 width different values of the critical Reynolds number: 100,000; 500,000; and 1,000,000

Answers

Answer:

Re=100,000⇒Q=275.25 [tex]\frac{W}{m^2}[/tex]

Re=500,000⇒Q=1,757.77[tex]\frac{W}{m^2}[/tex]

Re=1,000,000⇒Q=3060.36 [tex]\frac{W}{m^2}[/tex]

Explanation:

Given:

For air      [tex]T_∞[/tex]=25°C  ,V=8 m/s

  For surface [tex]T_s[/tex]=179°C

     L=2.75 m    ,b=3 m

We know that for flat plate

[tex]Re<30\times10^5[/tex]⇒Laminar flow

[tex]Re>30\times10^5[/tex]⇒Turbulent flow

Take Re=100,000:

 So this is case of laminar flow

  [tex]Nu=0.664Re^{\frac{1}{2}}Pr^{\frac{1}{3}}[/tex]

From standard air property table at 25°C

  Pr= is 0.71  ,K=26.24[tex]\times 10^{-3}[/tex]

So    [tex]Nu=0.664\times 100,000^{\frac{1}{2}}\times 0.71^{\frac{1}{3}}[/tex]

Nu=187.32   ([tex]\dfrac{hL}{K_{air}}[/tex])

187.32=[tex]\dfrac{h\times2.75}{26.24\times 10^{-3}}[/tex]

     ⇒h=1.78[tex]\frac{W}{m^2-K}[/tex]

heat transfer rate =h[tex](T_∞-T_s)[/tex]

                           =275.25 [tex]\frac{W}{m^2}[/tex]

Take Re=500,000:

So this is case of turbulent flow

  [tex]Nu=0.037Re^{\frac{4}{5}}Pr^{\frac{1}{3}}[/tex]

[tex]Nu=0.037\times 500,000^{\frac{4}{5}}\times 0.71^{\frac{1}{3}}[/tex]

Nu=1196.18  ⇒h=11.14 [tex]\frac{W}{m^2-K}[/tex]

heat transfer rate =h[tex](T_∞-T_s)[/tex]

                             =11.14(179-25)

                           = 1,757.77[tex]\frac{W}{m^2}[/tex]

Take Re=1,000,000:

So this is case of turbulent flow

  [tex]Nu=0.037Re^{\frac{4}{5}}Pr^{\frac{1}{3}}[/tex]

[tex]Nu=0.037\times 1,000,000^{\frac{4}{5}}\times 0.71^{\frac{1}{3}}[/tex]

Nu=2082.6  ⇒h=19.87 [tex]\frac{W}{m^2-K}[/tex]

heat transfer rate =h[tex](T_∞-T_s)[/tex]

                             =19.87(179-25)

                           = 3060.36 [tex]\frac{W}{m^2}[/tex]

Describe how the diesel engine works.

Answers

Answer:

Diesel engine's working is based on internal combustion. Diesel engine can be categorized as two stroke diesel engines and 4 stroke diesel engines.

Let us look into the working of a 4 stroke diesel engine:

In a four stroke diesel engine the operation continues by rotating in cycle of 4 strokes or stages. In these 4 stages the piston moves up and down the crankcase twice or the crankshaft rotates twice. the four strokes are listed below:

1) Inlet: In this, the air mixture is made to enter through the inlet valve as the piston moves downwards.

2) Compression: Inlet valve is closed and the air mixture is compressed and the piston moves up. Fuel is injected into the heated air mixture through central injection valve and ignition takes place without the need of spark plug.

3) Expansion or Power: After ignition, mixture burns and due to expansion of gas, piston moves down, it drives the crankshaft to send power to the wheel.

4) Exhaust: This is the last stroke which results in the piston moving up to let out the exhaust gases

Moreover, in 2 stroke diesel engine, there is only one rotation of crankshaft and one stroke includes inlet and compression and the other includes expansion and exhaust

Describe the importance of ferrite and austenite stabilizing elements in steels

Answers

Answer:

The importance of ferrite and austenite stabilizing elements in steels .

Explanation:

Alloying -

The process which improves the properties of the steel by changing the chemical composition of the steel via adding some elements .

The properties can be improved by - Stabilizing Austenite and Stabilizing Ferrite .

Stabilizing austenite -

The process by which temperature is increased , in which Austenite exists .

Elements with the same crystal structure as of the austenite ( FCC ) raises its A4 value i.e. the temperature of the formation of austenite from its liquid phase and reduces the value of A3 .

Hence, the elements are -

Cobalt , Nickel , Manganese , Copper.

The examples of the Austenitic steels are -

Hadfield Steel ( 13% Mn , 1.2% Cr , 1% C ) and Austenitic Stainless steel.

Stabilizing ferrite –

The process by which temperature is decreased , in which austenite exists .

Elements with the same crystal structure as of the ferrite (BCC - Cubic body centered ) lowers its A4 value i.e. the temperature of the formation of austenite from its liquid phase and increases the value of A3 .These elements have lower solubility of carbon in austenite, that lead to increase in the amount of carbides in the steel.

Hence, the elements are -  

Aluminium , Silicon , Tungsten , Chromium , Molybdenum , Vanadium

The examples of the Ferritic steels are -

F-Cr alloys , transformer sheets steel ( 3% Si ).

Explain the Otto cycle of a 4 stroke engine.

Answers

Answer:

Otto cycle for 4 stroke engine:

Assumptions:

1.Air is a working fluid it will behave like ideal gas.

2.Mass of air is constant(close system)

3.All process is reversible process.

4.Specific heat of air does not depends on temperature.

4 stroke engine is an internal combustion engine.It works on 4 processes like intake ,compression,power and heat exhaust.To complete one cycle ,piston moves from top dead center to bottom dead center two times.

From the Otto cycle

Process 1-2 is isentropic  compression.

Process 2-3 is heat addition.

Process 3-4 is isentropic expansion.

Process 4-1 is heat rejection.

Petrol engine works on Otto cycle.  

Efficiency of cycle [tex]\eta[/tex]

[tex]\eta=\dfrac{W_{net}}{Q_{supply}}[/tex]

Final answer:

The Otto cycle is a four-step thermodynamic cycle used in four-stroke internal combustion engines to convert heat into work. It consists of the intake, compression, power, and exhaust strokes. The cycle helps in understanding engine efficiency and performance.

Explanation:

The Otto cycle is a thermodynamic cycle that is used in four-stroke internal combustion engines. It consists of four processes: intake, compression, power, and exhaust.

The intake stroke is when the mixture of fuel and air is drawn into the combustion chamber. The compression stroke compresses the mixture adiabatically, increasing its temperature and pressure. During the power stroke, the mixture is ignited, creating a rapid increase in pressure that pushes the piston down. Finally, the exhaust stroke expels the burnt gases from the combustion chamber.

The Otto cycle is an idealized representation of the processes that occur in an engine and it describes the thermodynamic changes that are involved in converting heat into work. It helps in understanding the efficiency and performance of four-stroke engines.

To select the center of a line what option must be selected? A. Ortho B. Dynamic input C. Object snap

Answers

Answer:

The correct answer is c. object snap  

Explanation:

In Autocad, the object snap is defined as a drawing aid that is used together with other different commands to help to draw accurately.  It also allows snapping onto a specific object location when there is a picking point. and thus, it helps to select the center of a line.

Heat transfer by is the fastest mode of heat transfer that requires no intervening medium. a)-conduction b)-convection c)-radiation d)-conduction and convection

Answers

Answer:

C. Radiation

Explanation:

Heat transfer through Conduction is a slow process and both Conduction and convection require material medium

Answer:

C radiation

Explanation:

How is entropy defined on a differential basis? (use an equation)?

Answers

Answer:

Differential entropy differ's from the normal entropy as in case of differential entropy random variable needs not to be discrete.

The differential concept of entropy is as follows

Let X be a random variable which is continuous

Let[tex]f(x)[/tex] be it's probability distribution function

We have differential entropy h(X) defined as

[tex]h(X)=-\int _{X}f(X)log[f(X)]dx[/tex]

The random variable 'X' need not to be discrete and it is continuous.

What is the quality of a two-phase liquid-vapor mixture of H20 at 20 °C with a specific volume of 10 m^3/kg?

Answers

Answer:

Quality of vapor is equal to 17.3%.

Explanation:

We know that if we know only one property in side the wet region then we will find the other property by using steam property table.

So pressure at saturation temperature 20°C

[tex]v_f= 0.001\frac{m^3}{Kg} ,v_g= 57.76\frac{m^3}{Kg}[/tex]

So specific volume v

[tex]v=v_f+x(v_g-v_f)\frac{m^3}{Kg}[/tex]  

Where x is quality of mixture

Now putting the values ,given that [tex]v=10m^3/kg[/tex]

[tex]10=0.001+x(57.76-0.001)\frac{m^3}{Kg}[/tex]  

x=0.173

So quality of vapor is equal to 17.3%.

In an adiabatic process, the temperature of the system remains constant. a)- True b)- False

Answers

Answer:

A. True

Explanation:

Assume that light of wavelength 6000A is coming from a star. What is the limit of resolution of a telescope whose objective has a diameter of 100 inch?

Answers

Answer:

θ=0.0288 radian

Explanation:

resolution limit is the minimum angular separation of  two sources that can be viewed  distinctly    by telescope

[tex]\theta =\frac{1.22\times \lambda}{D}[/tex]

[tex]\lambda=6000\times 10^{-8} cm=6 \times 10^{-5} cm[/tex]

[tex]d=100 inch=100\times 2.54=254cm[/tex]

[tex]\theta = \frac{1.22 \times 6 \times 10^{-5}}{254}[/tex]

θ=0.0288 radian

Maximum iorsional shear siress.? Select one: a)- occurs at the center of a shaft. b)- occurs at the outer surface of a shaft c)- occurs at the inner surface of a shaft.

Answers

Answer:

b). Occurs at the outer surface of the shaft

Explanation:

We know from shear stress and torque relationship, we know that

[tex]\frac{T}{J}= \frac{\tau }{r}[/tex]

where, T = torque

            J = polar moment of inertia of shaft

            τ = torsional shear stress

             r = raduis of the shaft

Therefore from the above relation we see that

            [tex]\tau = \frac{T.r}{J}[/tex]

Thus torsional shear stress, τ is directly proportional to the radius,r of the shaft.

When r= 0, then τ = 0

and when r = R , τ is maximum

Thus, torsional shear stress is maximum at the outer surface of the shaft.

A plate clutch has a single friction surface 9-in OD by 7-in ID. The coefficient of friction is 0.2 and the maximum pressure is 1.5 in-kip. Find the torque capacity using the uniform-pressure assumption.

Answers

Answer:

the torque capacity is  30316.369 lb-in

Explanation:

Given data

OD = 9 in

ID = 7 in

coefficient of friction = 0.2

maximum pressure = 1.5 in-kip = 1500 lb

To find out

the torque capacity using the uniform-pressure assumption.

Solution

We know the the torque formula for uniform pressure theory is

torque = 2/3 × [tex]\pi[/tex] × coefficient of friction × maximum pressure ( R³ - r³ )    .....................................1

here R = OD/2 = 4.5 in and r = ID/2 = 3.5 in

now put all these value R, r, coefficient of friction and  maximum pressure in equation 1 and we will get here torque

torque = 2/3 × [tex]\pi[/tex] × 0.2 × 1500 ( 4.5³ - 3.5³ )

so the torque =  30316.369 lb-in

What is Euler's equation?

Answers

Answer:

[tex]e^{ix} = cosx + i sinx[/tex]

Explanation:

In mathematics, Euler's formula is an equation in complex analysis, that gives a relationship between an exponential factor and the trigonometric functions.

The Euler equation is:

[tex]e^{ix} = cosx + i sinx[/tex]

Here,

e - base of the natural logarithm

i - imaginary unit

x - argument given in radians

sin , cos - trigonometric functions sine and cosine respectively.

In an apartment the interior air temperature is 20°C and exterior air temperatures is 5°C. The wall has inner and outer surface temperatures of 16°C and 6°C, respectively. The inner and outer convection heat transfer coefficients are 5 and 20 W/m2.K, respectively. Calculate the heat flux from the interior air to the wall, from the wall to the exterior air, and from the wall to the interior air. Is the wall under steady-state conditions?

Answers

Answer:

20 W/m², 20 W/m², -20 W/m²

Yes, the wall is under steady-state conditions.

Explanation:

Air temperature in room = 20°C

Air temperature outside = 5°C

Wall inner temperature = 16°C

Wall outer temperature = 6°C

Inner heat transfer coefficient = 5 W/m²K

Outer heat transfer coefficient = 20 W/m²K

Heat flux = Concerned heat transfer coefficient × (Difference of the temperatures of the concerned bodies)

q = hΔT

Heat flux from the interior air to the wall = heat transfer coefficient of interior air × (Temperature difference between interior air and exterior wall)

⇒ Heat flux from the interior air to the wall = 5 (20-6) = 20 W/m²

Heat flux from the wall to the exterior air = heat transfer coefficient of exterior air × (Temperature difference between wall and exterior air)

⇒Heat flux from the wall to the exterior air = 20 (6-5) = 20 W/m²

Heat flux from the wall to the interior air = heat transfer coefficient of interior air × (Temperature difference between wall and interior air)

⇒Heat flux from the wall and interior air = 5 (16-20) = -20 W/m²

Here the magnitude of the heat flux are same so the wall is under steady-state conditions.

An inventor claims to have devised a cyclical power engine that operates with a fuel whose temperature is 750 °C and radiates waste heat to a sink at 0 °C. He also claims that this engine produces 3.3 kW while rejecting heat at a rate of 4.4 kW. Is this claim valid?

Answers

Answer:

Yes

Explanation:

Given Data

Temprature of source=750°c=1023k

Temprature of sink =0°c=273k

Work produced=3.3KW

Heat Rejected=4.4KW

Efficiency of heat engine(η)=[tex]\frac{Work produced}{Heat supplied}[/tex]

and

Heat Supplied [tex]{\left (Q_s\right)}=Work Produced(W)+Heat rejected\left ( Q_r \right )[/tex]

[tex]{Q_s}=3.3+4.4=7.7KW[/tex]

η=[tex]\frac{3.3}{7.7}[/tex]

η=42.85%

Also the maximum efficiency of a heat engine operating between two different Tempratures i.e. Source & Sink

η=1-[tex]\frac{T_ {sink}}{T_ {source}}[/tex]

η=1-[tex]\frac{273}{1023}[/tex]

η=73.31%

Therefore our Engine Efficiency is less than the maximum efficiency hence the given claim is valid.

In solid rocket motor terminology, a sliver is: A. A basic geometric shape B. Leftover propellant C. A test article for propellant characterization D. A type of igniter

Answers

Answer:

In the question given out of the four options

option B. Leftover propellant

is correct.

Explanation:

Solid rocket motors have rocket engines that uses solid fuels or propellants such as HTPB and PBAN as the most commonly used binders.

These rockets always have the propellant in adequate amount can be powered for long enough without much fuel degradation and therefore are reliable and mostly used in military applications.

Since these have fuel or propellant storage and therefore to indicate it, solid rocket motor identifies the left over propellant as ' a silver' .

The Reynolds number is the major parameter that relates fluid flow momentum to friction forces. How is the Reynolds number defined? How does the boundary layer thickness vary with Reynolds number?

Answers

Answer:

Reynolds number determines whether a flow is laminar or turbulent flow.

Explanation:

Reynolds number is defined as ratio of inertia force to the viscous force. it is a dimension less  number. Reynolds number is used to describe the type of flow in a fluid whether it is laminar flow or turbulent flow. Reynolds number is denoted by Re.

When Reynolds number is in the range of 0 to 2000, the flow is considered to be laminar.

When Reynolds number is in the range of 2000 to 4000, the flow is considered to be transition.

And when Reynolds number is more than 4000, the flow is turbulent flow.

                     The boundary layer thickness for a fluid is given by

                                      δ = [tex]\frac{5\times x}{\sqrt{Re}}[/tex]

where δ is boundary layer thickness

           x is distance from the leading edge

           Re is Reynolds number

Thus from the above boundary layer thickness equation, we can see that the boundary layer thickness varies inversely to square root of reynolds number.

Why/how is a paperclip able to float on water?

Answers

Answer:

Water surface tension

Explanation:

The water around the paperclip forms a kind of elastic surface, deforming, in which the clip can stay afloat.

This is because the molecules that are on the surface of the water, already in contact with the air, try to cling to those that are next to them and those that are immediately below.

If we added even if it were just a drop of soap in the water, the clip would go to the bottom, because the soap has the ability to decrease the surface tension of the water.

Sam promises to pay Sandy $2,000 in four years and another $3,000 four years later for a loan of $2,000 from Sandy today. What is the interest rate that Sandy is getting? Assume interest is compounded monthly. A. 14.75% B. 16.72% C. 15.10% D. 18.08%

Answers

Answer:

the interest rate that Sandy is getting is (C.) 15.10%

Explanation:

Given data

in 4 year cash pay (p1)  = $2000

in 8 year cash pay (p2)  = $3000

time period (t1) = 4 years

time period (t2) =  8 years

loan value = $2000

To find out

interest rate

solution

first we know amount will be paid in first 4 year is

$2000 [tex](1+r/100)^{12t}[/tex]

$2000 [tex](1+r/100)^{48}[/tex]                  ...................1

now we calculate the next payment will paid after 4 year i.e.

$2000 [tex](1+r/100)^{12t}[/tex] - $2000  

$2000 [tex](1+r/100)^{48}[/tex]   - $2000  ..................2

after full time period of payment total amount will be paid by equation 1 and 2  i.e.

$3000 = $2000 [tex](1+r/100)^{48}[/tex] ×$2000 [tex](1+r/100)^{48}[/tex] - $2000

$3000 = $2000 ( [tex](1+r/100)^{48}[/tex] ×  [tex](1+r/100)^{48}[/tex] - 1 )   .....3

now we have solve   [tex](1+r/100)^{48}[/tex] this eqution

so we consider  [tex](1+r/100)^{48}[/tex] = A

so new equation will be by equation 3

$3000/$2000 = ( A - 1 ) × A

3/2 = A² - A

solve this equation we get  2A² - 2 A - 3 = 0 so A = 1.823

now we compute A again in  [tex](1+r/100)^{48}[/tex] = A

[tex](1+r/100)^{48}[/tex] = 1.823

so rate (r) = 1.258 % / month

and rate yearly = 1.258 ×12

the interest rate that Sandy is getting yearly 15.10 %

Explain the difference between thermal equilibrium and thermodynamic equilibriurm.

Answers

Answer:

A body is said to be in thermal equilibrium where all the system temperatures are the same.

A body is said to be in thermodynamic equilibrium if all three requirements of equilibrium are met

Explanation:

A body is said to be in thermal equilibrium where all the system temperatures are the same. In this case, there will be no temperature gradient between the system and the environment.

while, A body is said to be in thermodynamic equilibrium if all three requirements of equilibrium are met, i.e. mechanical equilibrium, chemical equilibrium and thermal equilibrium.

________is the frequency that an engineered system fails, expressed for example, in failures per hour.

Answers

Answer:

Failure Rate

Explanation:

Failure rate is the frequency with which an engineered system or component fails, expressed for example in failures per hour.

It is often denoted by the Greek letter λ (lambda) and is important in reliability theory.

Failure rate is usually time dependent, and an intuitive corollary is that the rate changes over time versus the expected life cycle of a system

Cutting and abrasive machining are the two major material processes. List the differences between Cutting tool and Abrasive machining tool.

Answers

Answer:

Explained

Explanation:

Cutting tools:

 1. Cutting tools can either be single point or multi point.

2. Cutting tools can have variety of material depending on use like ceramics, diamonds, metals, CBN, etc.

3.Cutting tools have definite shapes and geometry.

Abrasive machining tools

1. Abrasive tools are always multi point tools.

2. Abrasive tools composed of abrasives bounded in medium of resin or metal.

3. They do not have definite geometry of shape

Final answer:

Cutting tools engage materials with a sharp edge for aggressive material removal, while abrasive machining tools employ hard particles to wear away material for high precision and smoothness in finishing operations.

Explanation:

The differences between cutting tools and abrasive machining tools are fundamental in the processes they are used for and their operational principles. Cutting tools are typically used in operations like turning, milling, and drilling where the tool itself engages the material to be cut with a sharp edge, removing materials in the form of chips. These tools are often made of high-speed steel, carbide, ceramics, or other hard materials and are precisely shaped according to the specific cutting operation.

On the other hand, abrasive machining tools, which include grinding wheels, sandpaper, and abrasive belts, remove material through the action of hard, abrasive particles that are either bonded to the tool's surface or are used as loose grains. Abrasive machining is used for finishing surfaces to a high degree of smoothness, precision, and complex shapes that cutting tools cannot achieve. These tools are made of materials like aluminum oxide, silicon carbide, diamond, or cubic boron nitride.

To summarize, cutting tools use a sharp edge to remove material in a defined shape, while abrasive tools use hard particles to wear away material for finishing and shaping. Moreover, cutting tools are applied in more aggressive material removal processes and quicker operations like shaping or roughing out material, whereas abrasive machining is associated with finishing operations that require high precision and smoothness.

Convert 0.025 in into mm.

Answers

Answer:  0.025 in = 0.065 mm

Explanation:  To convert the value in inches to mm we have to multiply the inches by the conversion factor 25.4.

So, 0.025 × 25.4 = 0.065 mm (millimeter)

Conversion formula for calculation in (inch) into mm is:

      Value in mm = Value in in × 25.4

One inch is equal to the 25.4 mm.

Answer:

.025 inch = 0.635 mm

Explanation:

We know that 1 inch = 2.54 cm

also we know that 1 cm = 10 mm

Thus 1 inch = 2.54 x 10 mm  

=> 1 inch = 25.4 mm

Hence 0.025 inch = 25.4 x .025 mm

Thus .025 inch = 0.635 mm

If you know that the change in entropy of a cup of coffee where heat was added is 20 J/K, and that the temperature of the coffee is 250 K. what is the amount of heat added to the cup of coffee? a)-15 J b)-125J c)-600J d)-5000J d)-6000J

Answers

Answer:

5000J

Explanation:

Given in the question that

Heat added to the coffee cup is, ΔS = 20 J/K

The temperature of the coffee, T = 250 K

Now, using the formula for the entropy change

[tex]\bigtriangleup S=-\frac{\bigtriangleup H}{T}[/tex] ...........(1)

Where,

ΔS is the entropy change

ΔH is the enthalpy change

T is the temperature of the system

substituting the values in the equation (1)

we get

[tex]20=-\frac{\bigtriangleup H}{250}[/tex]

ΔH=250×20

ΔH=5000 J

A circuit has a source voltage of 15V and two resistors in series with a total resistance of 4000Ω .If RI has a potential drop of 9.375 V across it, what is the value of R2? (a) 2000Ω (b) 1500Ω (c) 1000Ω (d) 500Ω

Answers

Answer:

1500Ω

Explanation:

Given data

voltage = 15 V

total Resistance = 4000Ω

potential drop V = 9.375 V

To find out

R2

Solution

we know R1 +R2 = 4000Ω

So we use here Ohm's law to find out current I

current = voltage / total resistance

I = 15 / 4000 = 3.75 × [tex]10^{-3}[/tex] A

Now we apply Kirchhoffs Voltage Law for find out R2

R2 = ( 15 - V ) / current

R2 = ( 15 - 9.375 ) / 3.75 × [tex]10^{-3}[/tex]

R2 = 1500Ω

Explain why surface temperature increases when two bodies are rubbed against each other. What is the significance of temperature rise due to friction?

Answers

Answer:

The surface temperature increases when two bodies are rubbed against each other due to friction.

Explanation:

No object has a perfectly even surface. So, when two bodies with uneven surfaces are rubbed against each other, they experience friction.

Friction is a resistance experienced by the two bodies when they are moved against each other.

The friction between the two surfaces, converts the kinetic energy of the movement to the thermal energy.

Thus, resulting in rise in the surface temperature of the two bodies.

Therefore, when two bodies are rubbed against each other, the surface temperature increases due to friction.

Explain very briefly the traditional casting and non-traditional casting process.

Answers

Answer:

traditional casting --  sand casting

non traditional casting  - investment casting

Explanation:

Traditional casting is related to sand casting in which liquid is poured into mold cavity. once the poured material cool and solidify the casting is removed.

traditional casting is cheaper than non traditional casting . Mold use in traditional casting is very cheap .

 non traditional casting include investment casting, die casting , wax casting.  In this casting  fix dimension is provided unlike sand casting.  

Atmospheric pressure is measured to be 14.769 psia. a. What would be the equivalent reading of a water barometer (inches of H20)? b. What would be the equivalent reading of a Mercury barometer (mm of Hg)?

Answers

Answer:

(a) water height =408.66 in.

(b) mercury height=30.04 in.

Explanation:

Given: P=14.769 psi     ( 1 psi= 6894.76 [tex]\frac{N}{m^2}[/tex] )

we know that   [tex]P=\rho\times g\timesh[/tex]

where [tex]\rho =Density,g=9.81\frac{m}{s^2}[/tex]

     h=height.

Given that P=14.769 psi ⇒P= 101828.6 7[tex]\dfrac{N}{m^2}[/tex]

(a) [tex]P=\rho_{w}\times g\times h_{w}[/tex]  

     [tex]\rho_{w}=1000\frac{Kg}{m^3}[/tex]

⇒101828.67=[tex]1000\times 9.81\times h_{w}[/tex]

[tex]h_{w}[/tex]=10.38 m

So water barometer will read 408.66 in.            (1 m=39.37 in)

(b)  [tex]P=\rho_{hg}\times g\times h_{hg}[/tex]

     [tex]\rho_{hg}[/tex]=13600

So 101828.67=[tex]13600\times 9.81\times h_{hg}[/tex]

[tex]h_{hg}[/tex]=0.763 m

So mercury barometer will read 30.04 in.

_________ items are similar to the free issue items, but their access is limited. (CLO5) a)-Bin stock items free issue b)-Bin stock controlled issue c)-Critical or insurance spares d)-Rebuildable spares
e)-consumables

Answers

Answer:

a)-Bin stock items free issue

Explanation:

Bin stock items free issue items are similar to the free issue items, but their access is limited.

Bin stock items free issue items are similar to the free issue items, but their access is limited.

What are the qualities required for a refrigerant? What is meant by the term "flash chamber?"

Answers

Answer:

A good quality refrigerant should be eco friendly.

Explanation:

A refrigerant is a substance that can extract and transfer heat from body to another body or medium.

The desirable qualities required for a refrigerant are :

1. A refrigerant should not deplete ozone layer.

2. A good quality refrigerant should have a low boiling point.

3. It should also have a low melting point.

4. Thermal conductivity of the refrigerant should be high for fast heat transfer.

5. It should have low specific heat.

6. It should have high latent heat.

7. It should have low vapour density.

8. Refrigerant should have high critical pressure and temperature.

9. It should have high enthalpy of vapourization for maximum heat absorption.

10. Refrigerants should not be toxic in nature and non flammable.

11. It should have high coefficient of performance for the working temperature range.

12. It should be easily available and cheap.

Flash Chamber :

A flash chamber in the refrigeration system is also know as the mixing chamber. It is normally used in multistage refrigeration system and is placed in between the expansion valve and the evaporator.

The flash chamber sends only the liquid refrigerant to the evaporator by seperating the liquid from the vapour refrigerant in order to increase the efficiency.

Other Questions
Find all values of x that are NOT in the domain of h.If there is more than one value, separate them with commas.h(x) = x + 1 / x^2 + 2x + 1 A 2.10-mole sample of an ideal gas is allowed to expand at a constant temperature of 278 K. The initial volume is 14.5 L and the gas performs 945 J of work. What is the final volume of the container? Let the ideal-gas constant R = 8.314 J/(mol K).Answers:22.3 L19.5 L17.6 L28.4 L How many roots does the polynomial function, y = (x + 4)(x-2)(x+7) have?A. 3B. 1C. 2D. A Each sister bought a gift for their mom. Maggie spent 3 times as much as Karen. Karen spent half as much as Jasmine. Altogether, they spent $60. Then, solve your equation to determine how much each sister spent on their gift.Will mark the brainliest! What is the oldest retailer still operating in the u.S.? AB || CD. Find the measure of Pizza delivery times at Pizza Time are normally distributed with a mean time of 27 minutes and a standard deviation of 3 minutes. Using the empirical rule, approximately what percent of pizzas are delivered between 24 and 30 minutes? Find the enthalpy of neutralization of HCl and NaOH. 87 cm3 of 1.6 mol dm-3 hydrochloric acid was neutralized by 87 cm3 of 1.6 mol dm-3 NaOH. The temperature rose from 298 K to 317.4 K. The specific heat capacity is the same as water, 4.18 J/K g. A. -101.37 kJ B. -7.05 kJ C. 7055 kJ D. 10,1365 kJ Carbon 14 is an unstable isotope of carbon that decays very slowly. Compared to the common, stable carbon 12 isotope, carbon 14 has two additional ____________.(a) electrons(b) neutrons (c) protons(d) ions Men have XY (or YX) chromosomes and women have XX chromosomes. X-linked recessive genetic diseases (such as juvenile retinoschisis) occur when there is a defective X chromosome that occurs without a paired X chromosome that is not defective. Represent a defective X chromosome with lowercase x, so a child with the xY or Yx pair of chromosomes will have the disease and a child with XX or XY or YX or xX or Xx will not have the disease. Each parent contributes one of the chromosomes to the child. Complete parts a through d below. a. If a father has the defective x chromosome and the mother has good XX chromosomes, what is the probability that a son will inherit the disease? 0.333 What were some of the founding fathers' concerns with the inclusion of a "Bill of Rights"? What is an appeal to authority?A. An appeal to show that a higher power supports the ideaB. An appeal to show that an argument is morally justC. An appeal to show that an argument is reasonably soundD. An appeal to influence a readers feelings 6. Walking is not the most exciting form of exercise a person can take on for fitness. Yet it is low impact and requires no fancy equipment. That makes walking a simple activity for those new to exercise. Walking is less likely than other exercises to cause injury to leg tendons and muscles. All it requires is a good pair of sneakers-no cables, stylish outfits, or weights required. Of course, a person could increase the benefit of a workout by adding weights or speed walking.Which of the following statements supports the main idea in this paragraph? (5 points)a) Walking is boring.b) Walking has a low risk of injury.c) Walking requires sneakers in good condition.d) Walking is too easy for those who exercise regularly. Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.) f(x) = x3 x2 12x + 7, [0, 4] A scientist mixes water (containing no salt) with a solution that contains 35% salt. She wants to obtain 175 ounces of a mixture that is 20% salt. How many ounces of water and how many ounces of the 35% salt solution should she use? 5. After a signal is transmitted from the eyes through the optic nerve, which part of the brain processes thevisual information?LA. The frontal lobeB. The occipital lobeC. The limbic lobeD. The temporal lobe The acceleration of a particle is given by a = ks2 , where a is in meters per second squared, k is a constant, and s is in meters. Determine the velocity of the particle as a function of its position s. Evaluate your expression for s = 5 m if k = 0.1 m1 s2 and the initial conditions at time t = 0 are s0 = 3 m and v0 = 10 m /s One-third of Sharon's land hasfarm animals. One-fifth of the farmanimals are chickens. Whichmodel shows what fraction ofSharon's land has chickens? What is internal recruitment ? The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)n where R=0.08206 Latm/(Kmol), T is the absolute temperature, and n is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction:N2(g)+3H2(g)2NH3(g)for which n=2(1+3)=2. Part A:For the reaction 2A(g)+2B(g)C(g) Kc = 55.6 at a temperature of 313 C .Calculate the value of Kp.Express your answer numerically.Part B:For the reaction X(g)+2Y(g)3Z(g)Kp = 3.83102 at a temperature of 119 C .Calculate the value of Kc.