A graduate weighs 35.825 g. When 10 mL of water are measured in it, the weight of the graduate and water is 45.835 g. Calculate the weight of the water and express any deviation from 10 g as a percentage of error.

Answers

Answer 1

Answer:

Calculated weight of water = 10.01 g

percentage error = 0.1%

Step-by-step explanation:

Given:

Weight of graduate = 35.825 g

Weight of graduate + Water = 45.835 g

Now,

The weight of water = ( Weight of graduate + Water ) - Weight of graduate

or

The weight of water = 45.835 - 35.825

or

The weight of water = 10.01 g

Now,

The percentage of error = [tex]\frac{\textup{Calculated value - Actual value}}{\textup{Actual value}}\times100[/tex]

or

The percentage error = [tex]\frac{\textup{10.01 - 10}}{\textup{10}}\times100[/tex]

or

The percentage error = 0.1%

Answer 2

The weight of the water is 10.010 g, and the percentage of error from the expected 10 g is 0.1%

To calculate the weight of the water and express any deviation from 10 g as a percentage of error, follow these steps:

1. Calculate the weight of the water:

  The weight of the water can be determined by subtracting the weight of the empty graduate from the weight of the graduate with water.

[tex]\[ \text{Weight of water} = \text{Weight of graduate and water} - \text{Weight of empty graduate} \][/tex]

  Given:

  - Weight of empty graduate = 35.825 g

  - Weight of graduate with water = 45.835 g

[tex]\[ \text{Weight of water} = 45.835 \, \text{g} - 35.825 \, \text{g} = 10.010 \, \text{g} \][/tex]

2. Calculate the deviation from 10 g:

[tex]\[ \text{Deviation} = \text{Weight of water} - 10 \, \text{g} \][/tex]

3. Calculate the percentage of error:

[tex]\[ \text{Percentage of error} = \left( \frac{\text{Deviation}}{10 \, \text{g}} \right) \times 100\% \][/tex]

[tex]\[ \text{Percentage of error} = \left( \frac{0.010 \, \text{g}}{10 \, \text{g}} \right) \times 100\% = 0.1\% \][/tex]

Therefore, the weight of the water is 10.010 g, and the percentage of error from the expected 10 g is 0.1%.


Related Questions

One milligram of streptomycin sulfate contains the antibiotic activity of 650 μg of streptomycin base. How many grams streptomycin sulfate would be the equivalent of 1 g of streptomycin base?

Answers

Answer:

1.538 g of streptomycin sulfate

Step-by-step explanation:

As we know, we have 650 μg of streptomycin base in 1 milligram of streptomycin sulfate.

If we convert everithing to grams:

650 μg= 0.00065 g of Streptomycin base for every 0.001 grams of Streptomycin Sulfate so we have :0.001 grs Streptomycin Sulfate/0.00065 gr Streptomycin base=1.538 gr Streptomycin Sulfate/Streptomycin base

Now if we want 1 gram of Streptomycin base we will need:

1 g of Streptomycin base*1.538 gr Streptomycin Sulfate/Streptomycin base= 1.538 gr Streptomycin Sulfate

S is the set of ordered pairs of integers and (x1, x2) R(y1, y2) means that x1= y1and x2≤ y2
Demonstrate whether R exhibits the reflexive property or not.
Demonstrate whether R exhibits the symmetric property or not.
Demonstrate whether R exhibits the transitive property or not.

Answers

Answer:

R is reflexive

R is not symmetric

R is transitive

Step-by-step explanation:

R is reflexive.

To show this, we have to verify that for any pair of integers [tex](x_1,x_2)[/tex]

[tex](x_1,x_2)R(x_1,x_2)[/tex].

But this is obvious because

[tex]x_1=x_1[/tex] and [tex]x_2\leq x_2[/tex].

R is not symmetric.

To show it, we need to find two pairs [tex](x_1,x_2)[/tex] and [tex](y_1,y_2)[/tex] such that

[tex](x_1,x_2)R(y_1,y_2)[/tex]

but [tex](y_1,y_2) \not \mathrel{R} (x_1,x_2)[/tex]

For example (1,1) and (1,2).

[tex](1,1)R(1,2)[/tex] for 1=1 and [tex]1\leq 2[/tex] but  

[tex](1,2) \not \mathrel{R} (1,1)[/tex] because [tex]2\not \leq 1[/tex]

Finally, R is transitive.

If we take 3 pairs of integers [tex](x_1,x_2), (y_1,y_2)[/tex] and [tex](z_1,z_2)[/tex]

Such that

[tex](x_1,x_2)R(y_1,y_2)[/tex] and [tex](y_1,y_2)R(z_1,z_2)[/tex] then

[tex]x_1=y_1[/tex] and [tex]x_2\leq y_2[/tex]

[tex]y_1=z_1[/tex] and [tex]y_2\leq z_2[/tex]

But then,

[tex]x_1=z_1[/tex] and [tex]x_2\leq z_2[/tex]

So  

[tex](x_1,x_2)R(z_1,z_2)[/tex].

Use a proof by contradiction to prove that the sum of two odd integers is even CM

Answers

Answer:

The sum of two odd integers is even

Step-by-step explanation:

Proof by contradiction:

We are going to assume that the sum of two odd integers is odd.

An odd integer is written as 2p+1 where p is an integer and an even integer is written as 2p where p is an integer

So, if the sum of two odd integers is odd we would have

[tex](2k+1) + (2p+1) = 2r+1\\2k+1+2p+1=2r+1\\2k+2p+2=2r+1\\2(k+p+1)=2r+1[/tex]

The left side of the equation is clearly an even number while the right side of the equation is odd. Therefore, our hypothesis is wrong and we can conclude that the sum of two odd integers is even.

Suppose you pick 6 different numbers in [10]. Prove that 2 of the numbers are next to each other. (Hint: use the pigeonhole principle. What are the pigeons and what are the holes?)

Answers

Step-by-step explanation:

We are picking 6 numbers from the numbers 1,2,3,4,5,6,7,8,9,10. Since we care about numbers being next to each other, we might think of the 10 numbers as being distributed in 5 boxes (which you can think of as the holes):

|   1 2   |   3 4   |   5 6   |   7 8   |   9 10  |

So on the first box we have the numbers 1 and 2, on the second box we have the numbers 3 and 4, and so on. Since we are picking 6 numbers from those 10 numbers, that means we'll have to pick 6 boxes (and inside each box we pick a number), but we only have 5 available boxes, so by the pigeonhole principle, we'll have to pick 1 same box at least two times. Since on each picked box we'll need to pick a number, on this box which was picked two times, we will have to pick both of its numbers. And so those 2 numbers inside that box will be next to each other (meaning they're consecutive numbers).

Evaluate 4P3

24

7

10

12

Answers

Answer:

  24

Step-by-step explanation:

4P3 = 4!/(4-3)! = 4·3·2 = 24

Suppose you are in a game show and there are 10 doors in front of you. You know that there is a prize behind one of them, and nothing behind the other 9. You have to choose a door containing the prize in order to win the prize. However, before you choose, the game show host promises that rather than immediately opening the door of your choice to reveal its contents, he will open one of the other 9 doors to reveal that it is an empty door. He will then give you the option to change your choice. You may assume that the host is completely impartial – not malicious in any way. For instance, if you choose door 3, he will open one door, say door 5, to reveal that it is empty. Should you continue with door 3 or choose another door? Please compute the probability of finding the prize behind your chosen door before the game show host reveals that one door is empty, and the probability of you finding the prize by changing to a different door after seeing the revealed empty door.

Answers

Answer:

The probabilities are [tex]\frac{1}{10}[/tex] and [tex]\frac{9}{80}[/tex]

Step-by-step explanation:

There are 10 doors. 9 of wich have no prizes and 1 with the prize. So the probability to choose the winner one is 1 out of 10. So:

The probability of finding the prize behind your chosen door before the game show host reveals that one door is empty is [tex]\frac{1}{10}[/tex].

Now. If the game show host opens one of the other 9 doors to reveal that it is an empty door, there are 2 posibilities:

1) Do not change your chosen door: In this case the probability reamins the same, [tex]\frac{1}{10}[/tex].

2) Change your chosen door. Lets compute the probability to loose: There are two posibilities.

  2a) If your initial door is the one with the prize. In this case you are going to loose (because you will change your door). The probability for this to happen is [tex]\frac{1}{10}[/tex].

 2b) If your initial door is not the one with the prize (the probability of this is  [tex]\frac{9}{10}[/tex]). In this case we will loose if, after the game show host opens an empty door, we choose an empty door. The probability of choosing an empty door in this case is [tex]\frac{7}{8}[/tex].

So the probability to loose is:

[tex]\frac{1}{10}+\frac{7}{8}\frac{9}{10}=\frac{1}{10}+\frac{63}{80}=\frac{71}{80}[/tex]

Then, the probability to win is [tex]1-\frac{71}{80}=\frac{9}{80}>\frac{1}{10}[/tex]

In conclusion: Changing the door improves the probability to win.

A pot is being used to boil off 1 kg of water. The specific energy required to cause the phase change is 2297 kJ/kg. Assuming the stovetop supplies 20 kJ/s to the water and the liquid is at boiling temperature, how long will it take to vaporize half of the water? Report your answer in seconds to the nearest whole number don't knou 2 attemots

Answers

Answer:

58 seconds

Step-by-step explanation:

Given:

Initial mass of water = 1 kg

Specific energy = 2297 kJ/kg

Heat supplied by the stove = 20 kJ/s

Now,

Half water is to be vaporized i.e 0.5 kg

Thus, heat required for vaporizing 0.5 kg water = mass × specific heat

or

heat required for vaporizing 0.5 kg water = 0.5 × 2297 = 1148.5 kJ

Therefore,

time taken to provide the required heat = [tex]\frac{\textup{Heat required}}{\textup{Heat supplied per second}}[/tex]

or

time taken to provide the required heat = [tex]\frac{\textup{1148.5 kJ}}{\textup{20 kJ/s}}[/tex]

or

time taken to provide the required heat = 57.425 ≈ 58 seconds

It will take approximately 58 seconds to vaporize half a kilogram of water with a heat supply of 20 kJ/s.

The question is asking how long it will take to vaporize half a kilogram of water with a heat supply of 20 kJ/s, assuming the water is at its boiling point and the specific energy required for the phase change is 2297 kJ/kg. To calculate the time required, we can use the formula:

Time (s) = Amount of energy required (kJ) / Energy supply rate (kJ/s).

Since it takes 2297 kJ to vaporize 1 kg, half of this amount is required to vaporize 0.5 kg, which is 1148.5 kJ. Hence, the time taken can be calculated as follows:

Time (s) = 1148.5 kJ / 20 kJ/s = 57.425 s.

So, it would take approximately 58 seconds to vaporize half of the water.

The slope f′(x) at each point (x,y) on a curve y=f(x) is given, along with a point (a,b) on the curve. Use this information to find f(x). f′(x) = 4x/(1 + 7x^2) (0,10) NOTE: OF absolute value symbols, | | , are needed for the answer, then use abs(expression). For example, ln|x| must be entered as ln(abs(x))

Answers

[tex]f'(x)=\dfrac{4x}{1+7x^2}[/tex]

Integrating gives

[tex]f(x)=\displaystyle\int\frac{4x}{1+7x^2}\,\mathrm dx[/tex]

To compute the integral, substitute [tex]u=1+7x^2[/tex], so that [tex]\frac27\,\mathrm du=4x\,\mathrm dx[/tex]. Then

[tex]f(x)=\displaystyle\frac27\int\frac{\mathrm du}u=\frac27\ln|u|+C[/tex]

Since [tex]u=1+7x^2>0[/tex] for all [tex]x[/tex], we can drop the absolute value, so we end up with

[tex]f(x)=\dfrac27\ln(1+7x^2)+C[/tex]

Given that [tex]f(0)=10[/tex], we have

[tex]10=\dfrac27\ln1+C\implies C=10[/tex]

so that

[tex]\boxed{f(x)=\dfrac27\ln(1+7x^2)+10}[/tex]

Consider a particle moving around a circle with a radius of 38cm. It rotates from 10 degrees to 100 degrees in 11 seconds. Calculate the instantaneous velocity of the particle.

Answers

Step-by-step explanation:

Given that,

Radius of circle, r = 38 cm = 0.38 m

It rotates form 10 degrees to 100 degrees in 11 seconds i.e.

[tex]\theta_i=10^{\circ}=0.174\ rad[/tex]

[tex]\theta_f=100^{\circ}=1.74\ rad[/tex]

Let [tex]\omega[/tex] is the angular velocity of the particle such that, [tex]\omega=\dfrac{\omega_f-\omega_i}{t}[/tex]

[tex]\omega=\dfrac{1.74-0.174}{11}[/tex]

[tex]\omega=0.142\ rad/s[/tex]

We need to find the instantaneous velocity of the particle. The relation between the angular velocity and the linear velocity is given by :

[tex]v=r\times \omega[/tex]

[tex]v=0.38\times 0.142[/tex]

v = 0.053 m/s

So, the instantaneous velocity of the particle is 0.053 m/s. Hence, this is the required solution.  

A low-strength children’s/adult chewable aspirin tablet contains 81 mg of aspirin per tablet. How many tablets may be prepared from 1 kg of aspirin?

Answers

Answer:

12,345 tablets may be prepared from 1 kg of aspirin.

Step-by-step explanation:

The problem states that low-strength children’s/adult chewable aspirin tablets contains 81 mg of aspirin per tablet. And asks how many tablets may be prepared from 1 kg of aspirin.

Since the problem measures the weight of a tablet in kg, the first step is the conversion of 81mg to kg.

Each kg has 1,000,000mg. So

1kg - 1,000,000mg

xkg - 81mg.

1,000,000x = 81

[tex]x = \frac{81}{1,000,000}[/tex]

x = 0.000081kg

Each tablet generally contains 0.000081kg of aspirin. How many such tablets may be prepared from 1 kg of aspirin?

1 tablet - 0.000081kg

x tablets - 1kg

0.000081x = 1

[tex]x = \frac{1}{0.000081}[/tex]

x = 12,345 tablets

12,345 tablets may be prepared from 1 kg of aspirin.

What is 7810 divided by 215 is?

Answers

The answer is 7810/215=36.3

Answer:

36.3255814 or 36 (when rounded)

Step-by-step explanation:

Calculator

One side of a triangular lot is 150 ft and the angel oppiste this side is 55 degrees. Another angel is 63 degrees. Determine how much fencing is needed to enclose it.

Answers

Answer:

474.84 ft of fencing is needed

Step-by-step explanation:

We know that the angles of a triangle sum up 180º. We already know 2 of the triangle's angles (55º and 63º). Therefore the third angle measures:

180 - 55 - 63 = 62.

To know how much fencing is needed, we need the perimeter of the triangle, so we need to find out how much the other sides of the lot measure.

We will use law of sins to solve this problem.

First we solve for y:

[tex]\frac{150}{sin55}= \frac{y}{sin63}  \\y=150 (sin63)/(sin55)\\y=133.65/.8191\\y=163.16[/tex]

Now we solve for the other side of the lot, x:

[tex]\frac{150}{sin55}=\frac{x}{sin62}\\  x=150(sin62)/(sin55)\\x=150(.8829)/.8191\\x=132.435/.8191\\x=161.68[/tex]

Now that we have the measures of all the sides we sum them up

total fencing needed= 150 + 163.16 + 161.68 = 474.84

A scientist is looking at 1000 germs under a microscope
andfinds that the germs double in number every 4 hours.
Using,
how many germs will there be in 7 hours.

Answers

Answer:

3500

Step-by-step explanation:

Number of germs that a scientist can see under a microscope = 1000 germs

We need to find how many germs will there be in 7 hours if the germs double in number every 4 hours .

It's given that the germs double in number every 4 hours .

So, increase in number of germs in one hour = [tex]\frac{2}{4}=\frac{1}{2}[/tex]

Increase in number of germs in seven hours = [tex]\frac{7}{2}[/tex]

Therefore , number of germs in 7 hours = Increase in number of germs in seven hours × Number of germs initially

= [tex]\frac{7}{2}\times 1000=7\times 500=3500[/tex]

So, number of germs in 7 hours if the germs double in number every 4 hours = 3500

After 7 hours, there will be 2000 germs.

To calculate how many germs there will be in 7 hours, we need to understand the concept of exponential growth. In this scenario, the germs double every 4 hours.

Initial Number of Germs: You start with 1000 germs.

Doubling Time: The germs double every 4 hours. This means that after each 4-hour period, the population multiplies by 2.

Calculating How Many Doubling Periods in 7 Hours:

In 7 hours, there are 1 full 4-hour doubling period and 3 additional hours left.After the first 4 hours, the population doubles:
[tex]1000 \times 2 = 2000 \text{ germs}[/tex]In the remaining 3 hours, we cannot apply another full doubling since it takes 4 hours to double.

Final Count:

So after 7 hours, the total number of germs will be 2000 germs. The additional 3 hours will not lead to another doubling of the population.

Find the solution of the given initial value problem:

(a) y' + 2y = te^{-2t}, y(1) = 0

(b) t^{3}y' + 4t^{2}y = e^{-t}, y(-1) = 0

Answers

Answer:

[tex](a)\ y(t) =\ 4.e^{2(1-t)}\ +\ \dfrac{t^2e^{-2t}}{4}[/tex]

[tex](b)\ y(t)=\ (1-t)e^{-t}\ -\ 2e[/tex]

Step-by-step explanation:

(a) [tex]y'\ +\ 2y\ =\ te^{-2t},\ y(1)\ =\ 0[/tex]

 [tex]=>\ (D+2)y\ =\ te^{-2t}[/tex]

To find the complementary function

   D+2 = 0

=> D = -2

So, the complementary function can by given by

[tex]y_c(t)\ =\ C.e^{-2t}[/tex]

Now, to find particular integral

  [tex](D+2)y_p(t)\ =\ te^{-2t}[/tex]

[tex]=>y_p(t)\ =\ \dfrac{ te^{-2t}}{D+2}[/tex]

              [tex]=\ \dfrac{ te^{-2t}}{-2+2}[/tex]

               = not defined

So,

[tex]y_p(t)\ =\ \dfrac{ t^2e^{-2t}}{D^2}[/tex]

           [tex]=\ \dfrac{t^2e^{-2t}}{(-2)^2}[/tex]

           [tex]=\ \dfrac{t^2e^{-2t}}{4}[/tex]

So, complete solution can be given by

    [tex]y(t)\ =\ y_c(t)\ +\ y_p(t)[/tex]

[tex]=> y(t) =\ C.e^{-2t}\ +\ \dfrac{t^2e^{-2t}}{4}[/tex]

As given in question

[tex]=>\ y(1)\ =\ C.e^{-2}\ +\ \dfrac{1^2e^{-2}}{4}[/tex]

[tex]=>\ 0\ =\ C.e^{-2}\ +\ \dfrac{1^2e^{-2}}{4}[/tex]

[tex]=>\ C\ =\ 4e^2[/tex]

Hence, the complete solution can be give by

[tex]=>\ y(t) =\ 4e^2.e^{-2t}\ +\ \dfrac{t^2e^{-2t}}{4}[/tex]

[tex]=>\ y(t) =\ 4.e^{2(1-t)}\ +\ \dfrac{t^2e^{-2t}}{4}[/tex]

(b) [tex]t^{3}y'\ +\ 4t^{2}y\ =\ e^{-t},\ y(-1)\ =\ 0[/tex]

[tex]=>\ y'\ +\ 4t^{-1}y\ =\ t^{-3}e^{-t}[/tex]

Integrating factor can be given by

[tex]I.F\ =\ e^{\int (4t^{-1})dt}[/tex]

     [tex]=\ e^{log\ t^4}[/tex]

     [tex]=\ t^4[/tex]

Now , the solution of the given differential equation can be given by

[tex]y(t)\times t^4\ =\ \int t^{-3}e^{-t}t^4dt\ +\ C[/tex]

[tex]=>\ y(t)\ =\ \int t.e^{-t}dt\ +\ C[/tex]

         [tex]=\ (1-t)e^{-t}\ +\ C[/tex]

According to question

[tex]y(-1)\ =\ (1-(-1))e^1\ +\ C[/tex]

[tex]=>\ 0\ =\ 2e\ +\ C[/tex]

[tex]=>\ C\ =\ -2e[/tex]

Now, the complete solution of the given differential equation cab be given by

[tex]y(t)\ =\ (1-t)e^{-t}\ -\ 2e[/tex]

Answer:

a. [tex]y(t)=\frac{t^2e^{-2t}}{2}-\frac{1}{2}e^{-2t}[/tex]

b.[tex]y=-t^{-3}e^{-t}-t^{-4}e^{-t}[/tex]

Step-by-step explanation:

We are given that

a.[tex]y'+2y=te^{-2t},y(1)=0[/tex]

Compare with [tex]y'+P(t)y=Q(t)[/tex]

We have P(t)=2,Q(t)=[tex]te^{-2t}[/tex]

Integration factor=[tex]\int e^{2dt}=e^{2t}[/tex]

[tex]y\cdot I.F=\int Q(t)\cdot I.F dt+C[/tex]

Substitute the values then, we get

[tex]y\cdot e^{2t}=\int te^{-2t}\cdot e^{2t} dt+C[/tex]

[tex]y\cdot e^{2t}=\int tdt+C[/tex]

[tex]ye^{2t}=\frac{t^2}{2}+C[/tex]

Substitute the values x=1 and y=0

Then, we get [tex]0\cdot e^2=\frac{1}{2}+C[/tex]

[tex]C=-\frac{1}{2}[/tex]

Substitute the value in the given function

[tex]ye^{2t}=\frac{t^2}{2}-\frac{1}{2}[/tex]

[tex]y=\frac{t^2}{2}e^{-2t}-\frac{1}{2}e^{-2t}[/tex]

Hence, [tex]y(t)=\frac{t^2e^{-2t}}{2}-\frac{1}{2}e^{-2t}[/tex]

b.[tex]t^3y'+4t^2y=e^{-t},y(-1)=0[/tex]

[tex]y'+\frac{4}{t}y=\frac{e^{-t}}{t^3}[/tex]

[tex]P(t)=\frac{4}{t},Q(t)=\frac{e^{-t}}{t^3}[/tex]

I.F=[tex]\int e^{\frac{4}{t}dt}=e^{4lnt}=e^{lnt^4}=t^4[/tex]

[tex]y\cdot \frac{t^4}=\int e^{-t}\frac{t^4}{t^3} dt+C[/tex]

[tex]y\cdot t^4=\int te^{-t}dt+C[/tex]

[tex]yt^4=-te^{-t}+\int e^{-t} dt+C[/tex]

[tex]u\cdot v dt=u\int vdt-\int (\frac{du}{dt}\cdot \int vdt)dt[/tex]

[tex]yt^4=-te^{-t}-e^{-t}+C[/tex]

Substitute the values x=-1,y=0 then, we get

[tex]0=-(-1)e-e+C[/tex]

[tex]C+e-e=0[/tex]

C=0

Substitute the value of C then we get

[tex]yt^4=-te^{-t}-e^{-t}[/tex]

[tex]y=-t^{-3}e^{-t}-t^{-4}e^{-t}[/tex]

If P and Q are predicates over some domain, and if it is true that Vx(P(x)V Q(x)), must VxP(x) v VæQ(x) also be true? Explain.

Answers

Answer:

It is not true

Step-by-step explanation:

Suppose your domain is the integer numbers. Define

P(x)="x is even"

Q(x)="x is odd"

So we have that the predicate [tex]\forall x(P(x) \vee Q(x))[/tex] is always true because the integers are always even or odd. But the predicate [tex]\forall x P(x) \vee \forall x Q(x)[/tex] means that all the integer numbers are even or all the integer numbers are odd, which is false. So we can't deduce [tex]\forall x P(x) \vee \forall x Q(x)[/tex] from [tex]\forall x(P(x) \vee Q(x))[/tex].

You have a large jar that initially contains 30 red marbles and 20 blue marbles. We also have a large supply of extra marbles of each color. Draw a marble out of the jar. If it's red, put it back in the jar, and add three red marbles to the jar from the supply of extras. If it's blue, put it back into the jar, and add five blue marbles to the jar from the supply of extras. Do this two more times. Now, pull a marble from the jar, at random. What's the probability that this last marble is red? What's the probability that we actually drew the same marble all four times?

Answers

Answer:

There is a 57.68% probability that this last marble is red.

There is a 20.78% probability that we actually drew the same marble all four times.

Step-by-step explanation:

Initially, there are 50 marbles, of which:

30 are red

20 are blue

Any time a red marble is drawn:

The marble is placed back, and another three red marbles are added

Any time a blue marble is drawn

The marble is placed back, and another five blue marbles are added.

The first three marbles can have the following combinations:

R - R - R

R - R - B

R - B - R

R - B - B

B - R - R

B - R - B

B - B - R

B - B - B

Now, for each case, we have to find the probability that the last marble is red. So

[tex]P = P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6} + P_{7} + P_{8}[/tex]

[tex]P_{1}[/tex] is the probability that we go R - R - R - R

There are 50 marbles, of which 30 are red. So, the probability of the first marble sorted being red is [tex]\frac{30}{50} = \frac{3}{5}[/tex].

Now the red marble is returned to the bag, and another 3 red marbles are added.

Now there are 53 marbles, of which 33 are red. So, when the first marble sorted is red, the probability that the second is also red is [tex]\frac{33}{53}[/tex]

Again, the red marble is returned to the bag, and another 3 red marbles are added

Now there are 56 marbles, of which 36 are red. So, in this sequence, the probability of the third marble sorted being red is [tex]\frac{36}{56}[/tex]

Again, the red marble sorted is returned, and another 3 are added.

Now there are 59 marbles, of which 39 are red. So, in this sequence, the probability of the fourth marble sorted being red is [tex]\frac{39}{59}[/tex]. So

[tex]P_{1} = \frac{3}{5}*\frac{33}{53}*\frac{36}{56}*\frac{39}{59} = \frac{138996}{875560} = 0.1588[/tex]

[tex]P_{2}[/tex] is the probability that we go R - R - B - R

[tex]P_{2} = \frac{3}{5}*\frac{33}{53}*\frac{20}{56}*\frac{36}{61} = \frac{71280}{905240} = 0.0788[/tex]

[tex]P_{3}[/tex] is the probability that we go R - B - R - R

[tex]P_{3} = \frac{3}{5}*\frac{20}{53}*\frac{33}{58}*\frac{36}{61} = \frac{71280}{937570} = 0.076[/tex]

[tex]P_{4}[/tex] is the probability that we go R - B - B - R

[tex]P_{4} = \frac{3}{5}*\frac{20}{53}*\frac{25}{58}*\frac{33}{63} = \frac{49500}{968310} = 0.0511[/tex]

[tex]P_{5}[/tex] is the probability that we go B - R - R - R

[tex]P_{5} = \frac{2}{5}*\frac{30}{55}*\frac{33}{58}*\frac{36}{61} = \frac{71280}{972950} = 0.0733[/tex]

[tex]P_{6}[/tex] is the probability that we go B - R - B - R

[tex]P_{6} = \frac{2}{5}*\frac{30}{55}*\frac{25}{58}*\frac{33}{63} = \frac{49500}{1004850} = 0.0493[/tex]

[tex]P_{7}[/tex] is the probability that we go B - B - R - R

[tex]P_{7} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{33}{63} = \frac{825}{17325} = 0.0476[/tex]

[tex]P_{8}[/tex] is the probability that we go B - B - B - R

[tex]P_{8} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{30}{65} = \frac{750}{17875} = 0.0419[/tex]

So, the probability that this last marble is red is:

[tex]P = P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6} + P_{7} + P_{8} = 0.1588 + 0.0788 + 0.076 + 0.0511 + 0.0733 + 0.0493 + 0.0476 + 0.0419 = 0.5768[/tex]

There is a 57.68% probability that this last marble is red.

What's the probability that we actually drew the same marble all four times?

[tex]P = P_{1} + P_{2}[/tex]

[tex]P_{1}[/tex] is the probability that we go R-R-R-R. It is the same [tex]P_{1}[/tex] from the previous item(the last marble being red). So [tex]P_{1} = 0.1588[/tex]

[tex]P_{2}[/tex] is the probability that we go B-B-B-B. It is almost the same as [tex]P_{8}[/tex] in the previous exercise. The lone difference is that for the last marble we want it to be blue. There are 65 marbles, 35 of which are blue.

[tex]P_{2} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{35}{65} = \frac{875}{17875} = 0.0490[/tex]

[tex]P = P_{1} + P_{2} = 0.1588 + 0.0490 = 0.2078[/tex]

There is a 20.78% probability that we actually drew the same marble all four times


Assume that 155 students are surveyed and every student takes at least one of the following languages. The results of the survey are as follows:

90 take French.

83 take German.

42 take French and German.

41 take German and Russian.

22 take French as their only foreign language.

22 take French, Russian, and German.

(1) How many take Russian?

(2) How many take French and Russian but not German?

Answers

Answer:

91 people take Russian

26 people take French and Russian but not German

Step-by-step explanation:

To solve this problem, we must build the Venn's Diagram of this set.

I am going to say that:

-The set A represents the students that take French.

-The set B represents the students that take German

-The set C represents the students that take Russian.

We have that:

[tex]A = a + (A \cap B) + (A \cap C) + (A \cap B \cap C)[/tex]

In which a is the number of students that take only Franch, A \cap B is the number of students that take both French and German , A \cap C is the number of students that take both French and Russian and A \cap B \cap C is the number of students that take French, German and Russian.

By the same logic, we have:

[tex]B = b + (B \cap C) + (A \cap B) + (A \cap B \cap C)[/tex]

[tex]C = c + (A \cap C) + (B \cap C) + (A \cap B \cap C)[/tex]

This diagram has the following subsets:

[tex]a,b,c,(A \cap B), (A \cap C), (B \cap C), (A \cap B \cap C)[/tex]

There are 155 people in my school. This means that:

[tex]a + b + c + (A \cap B) + (A \cap C) + (B \cap C) + (A \cap B \cap C) = 155[/tex]

The problem states that:

90 take Franch, so:

[tex]A = 90[/tex]

83 take German, so:

[tex]B = 83[/tex]

22 take French, Russian, and German, so:

[tex]A \cap B \cap C = 22[/tex]

42 take French and German, so:

[tex]A \cap B = 42 - (A \cap B \cap C) = 42 - 22 = 20[/tex]

41 take German and Russian, so:

[tex]B \cap C = 41 - (A \cap B \cap C) = 41 - 22 = 19[/tex]

22 take French as their only foreign language, so:

[tex]a = 22[/tex]

Solution:

(1) How many take Russian?

[tex]C = c + (A \cap C) + (B \cap C) + (A \cap B \cap C)[/tex]

[tex]C = c + (A \cap C) + 19 + 22[/tex]

[tex]C = c + (A \cap C) + 41[/tex]

First we need to find [tex]A \cap C[/tex], that is the number of students that take French and Russian but not German. For this, we have to go to the following equation:

[tex]A = a + (A \cap B) + (A \cap C) + (A \cap B \cap C)[/tex]

[tex]90 = 22 + 20 + (A \cap C) + 22[/tex]

[tex](A \cap C) + 64 = 90[/tex].

[tex](A \cap C) = 26[/tex]

----------------------------

The number of students that take Russian is:

[tex]C = c + 26 + 41[/tex]

[tex]C = c + 67[/tex]

------------------------------

Now we have to find c, that we can find in the equation that sums all the subsets:

[tex]a + b + c + (A \cap B) + (A \cap C) + (B \cap C) + (A \cap B \cap C) = 155[/tex]

[tex]22 + b + c + 20 + 26 + 19 + 22 = 155[/tex]

[tex]b + c + 109= 155[/tex]

[tex]b + c = 46[/tex]

For this, we have to find b, that is the number of students that take only German. Then we go to this eqaution:

[tex]B = b + (B \cap C) + (A \cap B) + (A \cap B \cap C)[/tex]

[tex]B = b + 19 + 20 + 22[/tex]

[tex]B = b + 61[/tex]

[tex]b + 61 = 83[/tex]

[tex]b = 22[/tex]

-------

[tex]b + c = 46[/tex]

[tex]c = 46 - b[/tex]

[tex]c = 24[/tex]

The number of people that take Russian is:

[tex]C = c + 67[/tex]

[tex]C = 24 + 67[/tex]

[tex]C = 91[/tex]

91 people take Russian

(2) How many take French and Russian but not German?

[tex](A \cap C) = 26[/tex]

26 people take French and Russian but not German

JY is a 58 year old male who was hospitalized for a total knee replacement. He was given unfractionated heparin and developed heparin-induced thrombocytopenia (HIT). Argatroban was ordered at a dose of 2 mcg/kg/min. The pharmacy mixes a concentration of 100 mg argatroban in 250 mL of DSW. JY weighs 85 kg. How many mL/hour should the nurse infuse to provide the dose? Round to the nearest whole number. .

Answers

Answer:

The nurse infuse [tex]26ml/hr[/tex] to provide the dose.

Step-by-step explanation:

Argatroban was ordered at a dose of 2 mcg/kg/min.

JY weighs 85 kg.

So, Argatroban was ordered= [tex]2 \times 85[/tex]

                                              = [tex]170mcg/min.[/tex]

Convert the dose in mg/hr

1 hr = 60 minutes and 1 mg = 1000 mcg

So, Dose in ml/hr = [tex]170 \times \frac{60}{1000}[/tex]

                             = [tex]10.2 mg/hr[/tex]

Now to find in 250 mL of DSW. JY weighs 85 kg. How many mL/hour should the nurse infuse to provide the dose?

The nurse infuse to provide the dose = [tex]\text{Dose ordered} \times \frac{\text{volume available}}{\text{Dose available}}[/tex]

The nurse infuse to provide the dose = [tex]10.2 mg/hr \times \frac{250 ml}{100 mg}[/tex]

The nurse infuse to provide the dose = [tex]26ml/hr[/tex]

Hence The nurse infuse [tex]26ml/hr[/tex] to provide the dose.

Ima Neworker requires 30 minutes to produce her first unit of output. If her learning curve rte is 65%, how many units will be produced before the output rate exceeds 12 units per hour?

Answers

Final answer:

To find when Ima Neworker's rate will exceed 12 units per hour, given a learning curve rate of 65%, we analyze the improvement in production rate from the initial 2 units per hour up to the target, using the learning curve concept.

Explanation:

The question relates to the concept of a learning curve, which represents how new workers or processes improve in efficiency as experience is gained. Ima Neworker can produce her first unit in 30 minutes (which is half an hour), so when she starts, her production rate is 2 units per hour. The question asks how many units will be produced before her production rate exceeds 12 units per hour, given a learning curve rate of 65%. This means that each time the cumulative production doubles, the time taken to produce each unit falls to 65% of the previous time.

Since the initial production rate is 2 units per hour, we want to know how many units she has to produce before her production rate exceeds 12 units per hour. 12 units per hour is 6 times faster than her initial rate, and we can reference a learning curve table or use the formula to calculate the necessary doubling periods required to achieve this.

To determine when Ima Neworker's production rate exceeds 12 units per hour, we use a 65% learning curve. By calculations, production time per unit drops below 5 minutes per unit between producing 8 and 16 units, indicating she exceeds the rate at around 12 units. Thus, she will need to produce approximately 12 units before reaching this threshold.

Calculating Production Using a Learning Curve

Ima Neworker requires 30 minutes to produce her first unit, which translates to 2 units per hour initially. The learning curve rate of 65% indicates that with each doubling of previously produced units, the time required to produce another unit will be 65% of the time it took for the previous set.

Step-by-Step Calculation

Initial production time for the first unit: 30 minutes (0.5 hours)After producing the first unit, producing 2 units will take 0.65 × 0.5 = 0.325 hoursProducing 4 units: 0.65 × 0.325 = 0.21125 hoursProducing 8 units: 0.65 × 0.21125 = 0.1373125 hoursProducing 16 units: 0.65 × 0.1373125 = 0.089253125 hours

We need to produce units such that Ima's production rate exceeds 12 units per hour, meaning she should produce a unit in less than 1/12 hours (5 minutes).

At 8 units, the time per unit is about 8.24 minutes (0.1373125 hours), still above the target.At 16 units, the time per unit is about 5.36 minutes (0.089253125 hours), which is below the target.

Thus, Ima will need to produce more than 8 but fewer than 16 units. By interpolation, it will be close to 12 units when her rate exceeds 12 units per hour.

John sells hot dogs from a cart outside an office building 5 days a week. If the price of a hot dog is $3, what is John’s weekly revenue from hot dogs if he sells 47 each day.

Answers

Answer:

John’s weekly revenue from hot dogs = [tex]\$705[/tex]

Step-by-step explanation:

John  sells hot dogs from a cart outside an office building 5 days a week .

Price of a hot dog = [tex]\$3[/tex]

Number of hot dogs sold each day = 47

So, total number of hot dogs sold on 5 days = 5 × Number of hot dogs sold each day = 5 × 47 = [tex]235[/tex]

We need to find John’s weekly revenue from hot dogs if he sells 47 each day.

John’s weekly revenue from hot dogs = Price of a hot dog × total number of hot dogs sold on 5 days = 3 × 235 = [tex]\$705[/tex]

A random sample of 50 consumers taste tested a new snack food. Their responses were coded (0: do not like; 1: like, 2: indifferent) and recorded below: a. Test H0: p = 0.5 against Ha: p > 0.5, where p is the proportion of customers who do not like the snack food (n=17). Use α = 0.10. b. Find the observed significance level of your test.

Answers

Answer:

The level of significance observed is 0.99154

Step-by-step explanation:

Assuming that in a sample of size 50 people stated that they do not like the snack (p = 17/50), you have:

Proportion in the null hypothesis [tex]\pi_0=0.5[/tex]

Sample size [tex]n=50[/tex]

Sample proportion [tex]p=17/50=0.34[/tex]

The expression for the calculated statistic is:

[tex] = \frac{(p - \pi_0)\sqrt{n}}{\sqrt{\pi_0(1-\pi_0)}}[/tex]

[tex]= \frac{(0.34 - 0.5)\sqrt{50}}{\sqrt{0.34(0.66)}} = -2,38833[/tex]

The level of significance observed is obtained from the value of the statistic calculated:

[tex]P(Z>Z_{calculated}) = 0.99154[/tex]

use grouping symbols to make each equation true


1. 9 + 3 - 2 + 4 = 6


2. 4^2 - 5 x 2 + 1 = 1

Answers

Answer:

1. 9 + 3 - ( 2 + 4) = 6

2. 4^2 - (5 x (2 + 1)) = 1

Step-by-step explanation:

Here we must follow order of operations - that is commonly expressed as PEDMAS - First do parenthesis, then exponents, then divisions and multiplications from left to right and finally addition and subtraction from left to right.

If we follow this rule on 1)

9+3-2+4= 12-2+4= 10+4 = 14

Sow lets do it by parts

9+3-2+4= 12-2+4

if we can subtract 6 from 12 we would arrive to 6. This can be done id 2 and 4 are added first by  12-(2+4). So the result would be at:

9 + 3 - ( 2 + 4) = 6

In 2)

4^2 - 5 x 2 + 1 = 16-5x2+1 = 16-10 + 1 = 6+1 = 7

4^2 is always the first operation

16-5x2+1

Now if from 16 we subtract 15 we would obtain 1 so  5x2+1 must be equal 15 that can be done if we express it as:

16- 5x2+1    

16- (5*(2+1)) = 5x3 = 15

So we have at the end:  

4^2 - (5 x (2 + 1)) = 16 - 15 = 1

Verify that the function(s) solve the following differential equations (DES): a) y' = -5y; y = 3e-5x b) y' = cos(3x); y = į sin(3x) + 7 c) y' = 2y; y = ce2x , where c is any real number. d) y" + y' – 6y = 0 ; yı = (2x, y2 = (–3x e) y" + 16y = 0; yı = cos(4x), y2 = sin(4x)

Answers

Answer:

In the step-by-step explanation, the verifications are made.

Step-by-step explanation:

a) [tex]y' = -5y[/tex]

This one can be solved by the variable separation method

[tex]y' = -5y[/tex]

[tex]\frac{dy}{dx} = -5y[/tex]

[tex]\frac{dy}{y} = -5dx[/tex]

[tex]\int \frac{dy}{y}  = \int {-5} \, dx[/tex]

[tex]ln y = -5x + C[/tex]

[tex]e^{ln y} = e^{-5x + C}[/tex]

[tex]y = Ce^{-5x}[/tex]

The value of C is the value of y when x = 0. If [tex]y(0) = 3[/tex], then we have the following solution:

[tex]y = 3e^{-5x}[/tex]

b) [tex]y' = cos(3x)[/tex]

This one can also be solved by the variable separation method

[tex]y' = cos(3x)[/tex]

[tex]\int y' \,dy  = \int {cos(3x)} \, dx[/tex]

[tex]y = \frac{sin(3x)}{3} + K[/tex]

K is also the value of y, when x = 0. So, if [tex]y(0) = 7[/tex], we have the following solution.

[tex]y = \frac{sin(3x)}{3} + 7[/tex]

c) [tex]y' = 2y[/tex]

Another one that can be solved by the variable separation method

[tex]y' = 2y[/tex]

[tex]\frac{dy}{dx} = 2y[/tex]

[tex]\frac{dy}{y} = 2dx[/tex]

[tex]\int \frac{dy}{y}  = \int {2} \, dx[/tex]

[tex]ln y = 2x + C[/tex]

[tex]e^{ln y} = e^{2x + C}[/tex]

[tex]y = Ce^{2x}[/tex]

C is any real number depending on the initial conditions.

d) [tex]y'' + y' - 6y = 0[/tex]

Here, the solution depends on the roots of the following equation:

[tex]r^{2} + r - 6 = 0[/tex]

[tex]r = \frac{-1 \pm 5}{2}[/tex]

[tex]r = -3[/tex] or [tex]r = 2[/tex].

So the solution is

[tex]y(t) = c_{1}e^{-3t} + c2e^{2t}[/tex]

The values of [tex]c_{1}, c_{2}[/tex] depends on the initial conditions.

e) [tex]y'' + 16y = 0[/tex]

Again, we find the roots of the following equation:

[tex]r^{2} + 16 = 0[/tex]

[tex]r^{2} = -16[/tex]

[tex]r = \pm 4i[/tex]

So we have the following solution

[tex]y(t) = c_{1}cos(4t) + c_{2}sin(4t)[/tex]

The values of [tex]c_{1}, c_{2}[/tex] depends on the initial conditions.

Solve the following circle graph problems.

If savings are represented by 45° on a circle graph showing all expenses, and the total expenses are $1440, how much go into savings?

Select one:

a. $240

b. $120

c. $180

d. $300

Answers

Answer:

$180 go into savings

Step-by-step explanation:

Given : Savings are represented by 45° on a circle graph showing all expenses.

Total expenses are $1440

To Find : How much go into savings?

Solution:

Total angle of expense = 360°

Savings = [tex]\frac{\text{Saving angle}}{\text{Total angle}} \times 1440[/tex]

            = [tex]\frac{45}{360} \times 1440[/tex]

            = [tex]180[/tex]

Hence $180 go into savings

Consider the quadratic function f(x) = -x^2 + 1x + 12. Determine the following: (enter all numerical answers as integers, fractions, or decimals): The smallest -intercept is 2 = The largest x-intercept is z = The y-intercept is y = The vertex is ( The line of symmetry has the equation Preview

Answers

Answer and Explanation:

Given : The quadratic function [tex]f(x)=-x^2+x+12[/tex]

To find : Determine the following ?

Solution :

The x -intercept are where f(x)=0,

So, [tex]-x^2+x+12=0[/tex]

Applying middle term split,

[tex]-x^2+4x-3x+12=0[/tex]

[tex]-x(x-4)-3(x-4)=0[/tex]

[tex](x-4)(-x-3)=0[/tex]

[tex]x=4,-3[/tex]

The x-intercepts are (4,0) and (-3,0).

The smallest x-intercept is x=-3

The largest x-intercept is x=4

The y -intercept are where x=0,

So, [tex]f(0)=-(0)^2+0+12[/tex]

[tex]f(0)=12[/tex]

The y-intercept is y=12.

The quadratic function is in the form, [tex]y=ax^2+bx+c[/tex]

On comparing, a=-1 , b=1 and c=1 2

The vertex of the graph is denote by (h,k) and the formula to find the vertex is

For h, The x-coordinate of the vertex is given by,

[tex]h=-\frac{b}{2a}[/tex]

[tex]h=-\frac{1}{2(-1)}[/tex]

[tex]h=\frac{1}{2}[/tex]

For k, The y-coordinate of the vertex is given by,

[tex]k=f(h)[/tex]

[tex]k=-h^2+h+12[/tex]

[tex]k=-(\frac{1}{2})^2+\frac{1}{2}+12[/tex]

[tex]k=-\frac{1}{4}+\frac{1}{2}+12[/tex]

[tex]k=\frac{-1+2+48}{4}[/tex]

[tex]k=\frac{49}{4}[/tex]

The vertex of the function is [tex](h,k)=(\frac{1}{2},\frac{49}{4})[/tex]

The x-coordinate of the vertex i.e. [tex]x=-\frac{b}{2a}[/tex] is the axis of symmetry,

So, [tex]x=-\frac{b}{2a}=\frac{1}{2}[/tex] (solved above)

The axis of symmetry is [tex]x=\frac{1}{2}[/tex].

How many grams are 2.7x10-^4 grams

Answers

Answer:

0,00027 grams!

Step-by-step explanation:

This is a scientific notation problem.

When a number is followed by a [tex]10^{-1}[/tex], it means that said number has one zero at the beginning.

In this case, the number is followed by [tex]10^{-4}[/tex], so that means that 2.7 has four zeros at the beginning. So, 2.7x[tex]10^{-4}[/tex] grams is equal to 0,00027 grams! (always the comma goes after the first zero).

The expression "2.7x10^-4 grams" is already given in grams, using scientific notation, and does not require a unit conversion since it is already in the unit we are interested in (grams). To understand what this quantity represents in standard decimal form, let's break down the scientific notation:

Scientific notation is a way of expressing very large or very small numbers in a compact form. The notation "2.7x10^-4" means that you take the number 2.7 and multiply it by 10 raised to the power of -4.

The term "10^-4" means "1 divided by 10 to the 4th power," which is the same as 0.0001 (1 followed by 4 zeros in the denominator).

To convert "2.7x10^-4" to its decimal form, you would perform the multiplication:

2.7 × 0.0001 = 0.00027

So, "2.7x10^-4 grams" is equal to 0.00027 grams in standard decimal notation.


use cramers Rule to solve the following system:
5x - 3y + z = 6
2y - 3z = 11
7x + 10y = -13

Answers

Answer:

The solution to the system is [tex]x=1[/tex],[tex]y=-2[/tex] and [tex]z=-5[/tex]

Step-by-step explanation:

Cramer's rule defines the solution of a system of equations in the following way:

[tex]x= \frac{D_x}{D}[/tex], [tex]y= \frac{D_y}{D}[/tex] and [tex]z= \frac{D_z}{D}[/tex] where [tex]D_x[/tex], [tex]D_y[/tex] and [tex]D_z[/tex] are the determinants formed by replacing the x,y and z-column values with the answer-column values respectively. [tex]D[/tex] is the determinant of the system. Let's see how this rule applies to this system.

The system can be written in matrix form like:

[tex]\left[\begin{array}{ccc}5&-3&1\\0&2&-3\\7&10&0\end{array}\right]\times \left[\begin{array}{c}x&y&z\end{array}\right] = \left[\begin{array}{c}6&11&-13\end{array}\right][/tex]

Then each of the previous determinants are given by:

[tex]D_x = \left|\begin{array}{ccc}6&-3&1\\11&2&-3\\-13&10&0\end{array}\right|=199[/tex] Notice how the x-column has been substituted with the answer-column one.

[tex]D_y = \left|\begin{array}{ccc}5&6&1\\0&11&-3\\7&-13&0\end{array}\right|=-398[/tex] Notice how the y-column has been substituted with the answer-column one.

[tex]D_z = \left|\begin{array}{ccc}5&-3&6\\0&2&11\\7&10&-13\end{array}\right|=-995[/tex]

Then, substituting the values:

[tex]x= \frac{D_x}{D}=\frac{199}{199}\\ x=1[/tex]

[tex]x= \frac{D_y}{D}=\frac{-398}{199}\\ y=-2[/tex]

[tex]x= \frac{D_z}{D}=\frac{-995}{199}\\ x=-5[/tex]

A vial contains 80 mg of drug in 2 mL of injection. How many milliliters of the injection should be administered to obtain 0.02 g of the drug?

Answers

Answer:

0.5mL of the injection should be administered to obtain 0.02 g of the drug.

Step-by-step explanation:

First step: The first step of this problem is the conversion of 0.02g to mg.

Each gram has 1000 miligrams. So:

1g - 1000mg

0.02g - xmg

x = 1000*0.02

x = 20mg

Final step:

A vial contains 80 mg of drug in 2 mL of injection. How many mL should be administered to obtain 0.02 g = 20mg of the drug.

This can be solved as a rule of three problem.

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease.

In this step, as the dose of the injection increases, so the quantity of the drug. So the relationship between the measures is direct. So:

80 mg - 2mL

20 mg - xmL

80x = 40

[tex]x = \frac{40}{80}[/tex]

x = 0.5mL

0.5mL of the injection should be administered to obtain 0.02 g of the drug.

Final answer:

To obtain 0.02 grams of the drug, the required volume to administer from the vial containing 80 mg in 2 mL is 0.5 mL.

Explanation:

To solve this problem, we need to determine how many milliliters contain 0.02 grams of the drug. First, convert the amount we want from grams to milligrams since our given concentration is in milligrams: 0.02 grams is equal to 20 milligrams.

Given that the vial contains 80 mg of drug in 2 mL, we can calculate the volume required for 20 mg. The formula we will use is:

(desired dose / concentration of vial) × volume of vial = required volume

(20 mg / 80 mg) × 2 mL = 0.5 mL

Therefore, to obtain 0.02 grams (20 mg) of the drug, the required volume to administer would be 0.5 mL.

A random variable x is uniformly distributed over the interval (-4, 6). Find the standard deviation of x. (Note: Uniform distribution is a distribution where the PDF value is the same across all x values)

Answers

Answer:

The standard deviation of x is 2.8867

Step-by-step explanation:

The standard deviation of variable x that follows a uniform distribution is calculated as:

[tex]s = \sqrt{\frac{(b-a)^{2} }{12} }[/tex]

Where (a,b) is the interval where x is defined.

So, replacing a by -4 and b by 6, the standard deviation is:

[tex]s = \sqrt{\frac{(6-(-4))^{2} }{12} }[/tex]

[tex]s = \sqrt{\frac{(10)^{2} }{12} }[/tex]

[tex]s=\sqrt{\frac{100}{12} }[/tex]

[tex]s=\sqrt{8.3333}[/tex]

[tex]s=2.8867[/tex]

Replacement times for CD players are normally distributed
with=5.5
years (66 months) and
= 1.5 years (18 months). Find the probabilitythat a randomly
selected CD player will have a replacement time orMORE THAN 7
YEARS.

Answers

Answer:

0.04

Step-by-step explanation:

X~N(μ=14.2; σ=0.9), a=7

[tex]P(X>7)=1-P(X\leq 7)[/tex]

[tex]P(0\leq X\leq a)=P(\frac{0-\mu}{\sigma} \leq \frac{X-\mu}{\sigma}\leq \frac{a-\mu}{\sigma}), Z= \frac{X-\mu}{\sigma}=P(0\leq X\leq a)=P(\frac{0-\mu}{\sigma} \leq \frac{X-\mu}{\sigma}\leq \frac{a-\mu}{\sigma}), Z= \frac{X-\mu}{\sigma}[/tex]

[tex]P(0\leq X\leq 7) = P(\frac{0-5.5}{1.5} \leq Z\leq \frac{7-5.5}{1.5}) = \Phi(1.66)-\Phi(-3.66) = \Phi(1.66) -(1-\Phi(3.66)) = 0.95-(1-0.99)=0.96[/tex]

P(X>7)=1-0.96=0.04

Other Questions
please help me! thanks in advance trying to raise my grade Choose all the statements that are true about this sequence.60, 66, 72, 78The value of the first term is 1.This is an arithmetic sequence.The value of the third term is 72.The sequence starts at 60 and adds 4 repeatedly.The sequence starts at 66 and adds 6 repeatedlyThere are four terms in this sequence.The sequence starts at 60 and adds 6 repeatedly. 3-(-9)-10+6what is the answer?show work Create an array from 0 to 10 by steps of 0.5 If you had a 0.650 L solution containing 0.0120 M of Zn2+(aq), and you wished to add enough 1.34 M NaOH(aq) to precipitate all of the metal, what is the minimum amount of the NaOH(aq) solution you would need to add? Assume that the NaOH(aq) solution is the only source of OH(aq) for the precipitation. Which represents polygenic inheritance of traits?a cow that has red and white dominant coloringa mix of blue, green, and brown eye colorsa plant that has pink flowers produced from a plant that has red flowers and a plant that has white flowersa plant that has green seeds produced from a plant that has yellow seeds and a plant that has green seeds A charge 4q is at the origin, and a charge of -3q is on the positive x-axis at x = a. Where would you place a third charge so it would experience zero net electric force? (Note: Either enter your answer as an unevaluated expression, e.g., (3/2 + sqrt(3))a, or if evaluated, use 2 decimal places.) Your expression should be in terms of the given variable. The if/else if statement is actually a form of the __________ if statement. Find n 5|6n+15|+2=-43 How did the Ice Age affect the Homo Sapiens and what did they need to survive? Suppose you have a gift certificate worth $20 for one long-distance phone call. If the charge is $1.10 for the first minute and $0.42 for each additional minute, what is the longest that you can talk? NEED HELP PLEASEChallenge One - FAFSAUsing the information from the About Us section, answer the following questions.What is FAFSA? Who is eligible?What does Federal Student Aid do? Describe all six goals.When do I complete the FAFSA form?Define the following terms.work studyfederal student aid programsfederal student loanOn the FAFSA website, locate the information detailing Types of Aid, and answer the following questions.What are the foursources of aid described on the website?What are the three types of federal student aid?Go to the section on state aid, and identify the state agency you can contact.Back at the home page, find the grants and scholarships information by clicking on What Types of Aid Can I Get?, then answer the following questions.What are the four types of federal grants available?Why are grants and scholarships called "gift aid"?Why would you have to pay a grant back?Challenge Two - ScholarshipsIn one to two paragraphs: Research your college, community, and state to find various scholarships. Find three scholarships for which you qualify, then describe the requirements and provider for each. Which of these scholarships is the most probable for you to receive? Why?Challenge Three - LoansCreate a chart comparing private and federal loans, and include the definition of each, payment plan, and benefits. Which one fits your needs most closely? Why?Challenge Four - Work-study ProgramsIn one to two paragraphs, research work-study programs. Identify the qualifications, types of jobs, payment plan, and other details about this funding program.Challenge Five - Nontraditional FundingMake a quick list of five other ways you might pay for college that have not been discussed in this project. Research to see what is available in your area and at your chosen institution of higher learning.Make sure you answer all parts of the challenge and use the correct website from the federal government. You may bullet or write paragraphs for answers. Compared with 31P, the radioactive isotope 32P has a.a. different atomic number.b. One more proton.c. One more electron.d. One more neutron. These are selected account balances on December 31, 2014.Land $100,000Land (held for future use) 150,000Buildings 800,000Inventory 200,000Equipment 450,000Furniture 100,000Accumulated Depreciation 300,000What is the total amount of property, plant, and equipment that will appear on the balance sheet? What is the first step in simplifying ____________ technique in business analytics categorizes, characterizes, consolidates, and classify data to convert it into useful information for the purpose of understanding and analyzing business performance. Mr. Chen has heard about a Medical Savings Account (MSA), but wants to know if it is just about saving money, or if he will get insurance coverage for his health care expenditures as well. Which of the following is equal to 1 meter? . Which substance is the limiting reactant when 2 g of S reacts with 3 g of O2 and 4 g of NaOH according to the following chemical equation: 2 S (s) + 3 O2 (g) + 4 NaOH (aq) 2 Na2SO4 (aq) + 2 H2O (l) a) S (s)b) O2 (g) c) NaOH (aq)d) none of these substances is the limiting reactant. how does erucamide make substances scratch resistant?