A hospital claims that the proportion, p, of full-term babies born in their hospital that weigh more than 7 pounds is 36%. In a random sample of 170 babies born in this hospital, 56 weighed over 7 pounds. Is there enough evidence to reject the hospital's claim at the level of significance?

Answers

Answer 1

Answer:

Claim :The proportion, p, of full-term babies born in their hospital that weigh more than 7 pounds is 36%.

n =  170

x = 56

We will use one sample proportion test  

[tex]\widehat{p}=\frac{x}{n}[/tex]

[tex]\widehat{p}=\frac{56}{170}[/tex]

[tex]\widehat{p}=0.3294[/tex]

The proportion, p, of full-term babies born in their hospital that weigh more than 7 pounds is 36%.

[tex]H_0:p \neq 0.36 \\H_a:p= 0.36[/tex]

Formula of test statistic =[tex]\frac{\widehat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]

                                       [tex]=\frac{0.3294-0.36}{\sqrt{\frac{0.36(1-0.36)}{170}}}[/tex]

                                        =−0.8311

Now refer the p value from the z table

P-Value is .202987 (Calculated by online calculator)

Level of significance α = 0.05

Since p value < α

So we reject the null hypothesis .

Hence the claim is true


Related Questions

A computer assembling company receives 24% of parts from supplier X, 36% of parts from supplier Y, and the remaining 40% of parts from supplier Z. Five percent of parts supplied by X, ten percent of parts supplied by Y, and six percent of parts supplied by Z are defective. If an assembled computer has a defective part in it, what is the probability that this part was received from supplier Z?

Answers

Answer:

There is a 33% probability that this party was received from supplier Z.

Step-by-step explanation:

This can be formulated as the following problem:

What is the probability of B happening, knowing that A has happened.

It can be calculated by the following formula

[tex]P = \frac{P(B).P(A/B)}{P(A)}[/tex]

Where P(B) is the probability of B happening, P(A/B) is the probability of A happening knowing that B happened and P(A) is the probability of A happening.

-In your problem, we have:

P(A) is the probability of a defective part being supplied. For this probability, we have:

[tex]P(A) = P_{1} + P_{2} + P_{3}[/tex]

In which [tex]P_{1}[/tex] is the probability that the defective product was chosen from supplier X(we have to consider the probability of supplier X being chosen). So:

[tex]P_{1} = 0.24*0.05 = 0.012[/tex]

[tex]P_{2}[/tex] is the probability that the defective product was chosen from supplier Y(we have to consider the probability of supplier Y being chosen). So:

[tex]P_{2} = 0.36*0.10 = 0.036[/tex]

[tex]P_{3}[/tex] is the probability that the defective product was chosen from supplier Z(we have to consider the probability of supplier Z being chosen). So:

[tex]P_{2} = 0.40*0.06 = 0.024[/tex]

So

[tex]P(A) = P_{1} + P_{2} + P_{3} = 0.012 + 0.036 + 0.024 = 0.072[/tex]

P(B) is the probability of the supplier chosen being Z, so P(B) = 0.4

P(A/B) is the probability of the part supplied being defective, knowing that the supplier chosen was Z. So P(A/B) = 0.06.

So, the probability that this part was received from supplier Z is:

[tex]P = \frac{0.4*0.06}{0.072} = 0.33[/tex]

There is a 33% probability that this party was received from supplier Z.

4. The salaries of a school cook, custodian, and bus driver are in the ratio 2:4:3. If their
combined monthly salaries for November total $8,280, what is the monthly salary for each
person?

Answers

Answer:

cook: $1840custodian: $3680bus driver: $2760

Step-by-step explanation:

There are a total of 2+4+3 = 9 "ratio units", so each one is worth ...

  $8,280/9 = $920

Multiplying the ratio by $920, we get ...

  cook : custodian : bus driver = $920 × (2 : 4 : 3) = $1840 : $3680 : $2760

Final answer:

The monthly salaries for the school cook, custodian, and bus driver are $1,840, $3,680, and $2,760, respectively.

Explanation:

To find the monthly salary for each person, we need to first determine the common ratio between their salaries. The given salaries are in the ratio 2:4:3. We can assign a constant to the ratio, such as 2x:4x:3x.

Next, we can set up an equation using the given information that the combined monthly salaries total $8,280:

2x + 4x + 3x = 8,280

9x = 8,280

To solve for x, we can divide both sides of the equation by 9:

x = 920

Now, we can find the monthly salary for each person by substituting x back into the ratio:

School cook's monthly salary: 2x = 2(920) = $1,840

Custodian's monthly salary: 4x = 4(920) = $3,680

Bus driver's monthly salary: 3x = 3(920) = $2,760

a number has seven digits. all the digits are 6 except the hundred-thousands' digit, which is 2, and the thousands' digit, which is 4. what is the number?

Answers

Answer:

264,666.

Step-by-step explanation:

We have been given that a number has seven digits.

All digits are 6 except the hundred-thousands' digit.

Hundred thousands: 100,000.

The hundred thousand's digit is 2, so its value would be 200,000.

We have been given that thousands's digit is 4, so its value would be:

4 thousands: 4,000

The number with given hundred thousand's and thousands's digit would be 204,000.

Since all digits are 6 except the hundred-thousands' digit, therefore, our number would be 264,666.

2. In an experiment with a mass attached to a spring, a student measures the period of the oscillation t as follows: 1.94 s, 1.96 s, 2.01 s, 1.98 s, 2.02 s, 2.00 s, 1.99 s, 2.01 s, 1.98 s, 1.97 s. a) What is the average and b) standard deviation? Use the instructions for excel to find statistics on a set of similar numbers, round to the correct # sig figs. Zeroes to the right do. ALWAYS include units for a number that has units. These statistics have the same units all the way throug

Answers

Answer: a) The average of this set of numbers is 1.98 s. b) the standard deviation is 0.02 s.

Step-by-step explanation: The average is calculated by adding all numbers found in the experiment divided by the number of values. [tex]average = \frac{Sumxi}{n}[/tex]

The standard deviation is given by the square root of the squared sum of the difference between each number and the average divided by the total number of values. For instance, std deviation = [tex]\frac{sqrt{(1.94-1.98)^{2}+(1.96-1.98)^2+(2.01-1.98)^2...}}{11}[/tex] and that is done with all 11 terms of data minus the average to find the standard deviation.

In excel, the average of a certain set of numbers (displayed in cells A1 to A5) can be found by the commands =average(A1:A5). The standard deviation can be found by the commands =stdedv.p(A1:A5) in which p is the population. You can decrease decimals by clicking on the icon displayed in the Ribbon.

Assume that the sales of a certain appliance dealer can be approximaed y sraig were $6000 in 1982 and $ 64,000 in 1987. Let x - O represent 1982 Find the equation giving yearly alesSand then use it to predict the yearly sales in 1990.

Answers

Answer:

[tex]y=11,600x+6,000[/tex]

Yearly sales in 1990: $98,800.

Step-by-step explanation:

We have been given that the sales of a certain appliance dealer can be approximated by a straight line. Sales were $6000 in 1982 and $ 64,000 in 1987.

If at 1982, [tex]x=0[/tex] then at 1987 x will be 5.

Now, we have two points (0,6000) and (5,64000).

[tex]\text{Slope}=\frac{64,000-6,000}{5-0}[/tex]

[tex]\text{Slope}=\frac{58,000}{5}[/tex]

[tex]\text{Slope}=11,600[/tex]

Now, we will represent this information in slope-intercept form of equation.

[tex]y=mx+b[/tex], where,

m = Slope,

b = Initial value or y-intercept.

We have been given that at [tex]x=0[/tex], the value of y is 6,000, so it will be y-intercept.

Substitute values:

[tex]y=11,600x+6,000[/tex]

Therefore, the equation [tex]S=11,600x+6,000[/tex] represents yearly sales.

Now, we will find difference between 1990 and 1982.

[tex]1990-1982=8[/tex]

To find yearly sales in 1990, we will substitute [tex]x=8[/tex] in the equation.

[tex]S=11,600(8)+6,000[/tex]

[tex]S=92,800+6,000[/tex]

[tex]S=98,800[/tex]

Therefore, the yearly sales in 1990 would be $98,800.

To review the solution to a similar problem, consult Interactive Solution 1.43. The magnitude of a force vector is 86.4 newtons (N). The x component of this vector is directed along the +x axis and has a magnitude of 72.3 N. The y component points along the +y axis. (a) Find the angle between and the +x axis. (b) Find the component of along the +y axis.

Answers

We have a vector [tex]\vec F[/tex] with a magnitude [tex]F[/tex] of 86.4 N.

a. Let [tex]\theta[/tex] be the angle [tex]\vec F[/tex] makes with the positive [tex]x[/tex]-axis. The [tex]x[/tex]-component of [tex]\vec F[/tex] is

[tex]F_x=(86.4\cos\theta)\,\mathrm N[/tex]

and has a magnitude of 72.3 N, so

[tex]72.3=86.4\cos\theta\implies\cos\theta=0.837\implies\theta=\boxed{33.2^\circ}[/tex]

b. The [tex]y[/tex]-component of [tex]\vec F[/tex] is

[tex]F_y=(86.4\cos33.2^\circ)\,\mathrm N=\boxed{47.3\,\mathrm N}[/tex]

a) The angle between the vector and the +x axis is approximately 33.196°.

b) The component of the force along the +y axis is approximately 47.304 newtons.

Vector analysis of a given force

In this question we should apply the concepts of magnitude and direction of a vector to solve each part. The magnitude ([tex]\|\vec F\|[/tex]), in newtons, is a application of Pythagorean theorem and direction ([tex]\theta[/tex]), in degrees, is an application of trigonometric functions.

a) The angle between the vector and the component along the x axis ([tex]F_{x}[/tex]), in newtons, is found by means of the following expression:

[tex]\theta = \cos^{-1} \frac{F_{x}}{\|\vec F\|}[/tex] (1)

([tex]\|\vec F\| = 86.4\,N[/tex], [tex]F_{x} = 72.3\,N[/tex])

[tex]\theta = \cos^{-1} \left(\frac{72.3\,N}{86.4\,N} \right)[/tex]

[tex]\theta \approx 33.196^{\circ}[/tex]

The angle between the vector and the +x axis is approximately 33.196°. [tex]\blacksquare[/tex]

b) The magnitude of the +y component of the vector force ([tex]F_{y}[/tex]), in newtons, is determined by the following Pythagorean expression:

[tex]F_{y} = \sqrt{(\|\vec F\|)^{2}-F_{x}^{2}}[/tex] (2)

([tex]\|\vec F\| = 86.4\,N[/tex], [tex]F_{x} = 72.3\,N[/tex])

[tex]F_{y} = \sqrt{(86.4\,N)^{2}-(72.3\,N)^{2}}[/tex]

[tex]F_{y} \approx 47.304\,N[/tex]

The component of the force along the +y axis is approximately 47.304 newtons. [tex]\blacksquare[/tex]

To learn more on vectors, we kindly invite to check this verified question: https://brainly.com/question/13188123

Weinstein, McDermott, and Roediger (2010) conducted an experiment to evaluate the effectiveness of different study strategies. One part of the study asked students to prepare for a test by reading a passage. In one condition, students generated and answered questions after reading the passage. In a second condition, students simply read the passage a second time. All students were then given a test on the passage material and the researchers recorded the number of correct answers. a. Identify the dependent variable for this study. b. Is the dependent variable discrete or continuous? c. What scale of measurement (nominal, ordinal, interval, or ratio) is used to measure the dependent variable?

Answers

Answer:

Dependent variable: number of correct answers

Step-by-step explanation:

The dependent variable is the number of correct answers, because it is the variable that the researchers were recording as response in the experiment.

As it is a counting, it can only take finite values (0 correct answers, 1 correct answer, 2 correct answers and so on). Then, it can be classified as a discrete variable. Discrete values always represent exact quantities that can be counted. For example, number of passengers per car, or number of cows per acre.  

Discrete variables can be divided into nominal (they haven’t an order or a hierarchy, as in the example of cows/acre), ordinal (they follow a natural order or hierarchy), interval (they can be divided into classes) or ratio (they represent relative quantities).  

The number of correct answers is an ordinal variable, because they have a natural hierarchy. 1 correct answer it’ s better than 0, and 2 corrects answers are better than 1 and 0. Then, you can order your results: 0, 1, 2, 3, 4, etc.

T F IfA and B are similar matrices, then AT=BT

Answers

Answer:

Step-by-step explanation:

We know that for two similar matrices [tex]A[/tex] and [tex]B[/tex] exists an invertible matrix [tex]P[/tex] for which

[tex][tex]B = P^{-1} AP[/tex][/tex]

∴ [tex]B^{T} = (P^{-1})^{T} A^{T} P^{T} \\[/tex]

Also [tex]P^{-1}P = I\\[/tex]

and [tex](P^{-1})^{T} = (P^{T})^{-1}[/tex]

∴[tex](P^{-1})^{T}P^{T} = I[/tex]

so, [tex]B^{T} = (P^{-1})^{T} A^{T} P^{T} = (P^{T})^{-1}A^{T} P^{T}\\B^{T} = A^{T} I\\B^{T} = A^{T}[/tex]

Calculate:

5,500 milliliters(mL) =__liters (L)

Answers

Answer:

5.5 liters

Step-by-step explanation: there are 1000 milliliters in a liter, so divide 5,500/1000

Answer:

5.5 liters

Step-by-step explanation:

because 5500 millilitres is 5.5 liters

x + y = 40
x + 10 = 60

What is the value of x? Of y?

Answers

Answer:

x = 50

y = -10

Step-by-step explanation:

x + y = 40

x + 10 = 60

60 - 10 =x

60 - 10 = 50

x = 50

50 + y = 40

40 - 50 = y

40 - 50 = -10

y = -10

Hey!

------------------------------------------------

Solve for x:

x + y = 40

x + y - y = 40 - y

x = 40 - y

50 - 10 = 40

50 + (-10) = 40

x = 50

y = -10

------------------------------------------------

Solve for x:

x + 10 = 60

x + 10 - 10 = 60 - 10

x = 50

------------------------------------------------

Hope This Helped! Good Luck!

Prove that for all x and y in Z, x +3y is a multiple of 7 iff 3x +2y is a multiple of 7. Might be helpful to calculate 2(3x +2y)+(x +3y) and/or 4(x +3y)+(3x +2y).

Answers

Proof :

First, it is important to have in mind that a number [tex] m \in \mathbb{Z} [/tex] is a multiple of [tex]n\in\mathbb{Z} [/tex] iff there exists [tex]k\in\mathbb{Z}[/tex] such that  [tex] m = n \cdot k[/tex].

Also, you have to prove a logical equivalence. To this end, it is possible to prove two logical implications.

Step-by-step explanation:

1.) Let x, y be integers such that x + 3y is a multiple of 7. You have to prove that 3x +2y is a multiple of 7.

In effect, by hypothesis there exists k [tex]\in\mathbb{Z}[/tex] such that  x + 3y = 7 k .   So, you get  

[tex]\begin{equation*} 4(x+3y) + (3x + 2y) = 7x + 14y = 7 (x + 2y) \ \mbox{(direct computations and factoring)}\end{equation*} [/tex].

Therefore, 4(x +3y) + (3x +2y) is a multiple of 7. Then,

[tex](3x + 2y) = 7 (x + 2y) - 4(x + 3y) = 7 (x+2y) - 4 \cdot 7 k = 7 (x + 2y -4k) \ \mbox{(factoring)}[/tex].

Given that x,y,k are integers, then x + 2y - 4k is an integer  and hence, 3x + 2y is a multiple of 7.

To finish, it remains to prove its reciprocal statement.

2.) Let x, y be integers such that 3x + 2y is a multiple of 7. You have to prove that  x +3y  is a multiple of 7. Reasoining as before ,   there exists q [tex]\in\mathbb{Z}[/tex] such that 3x + 2y = 7 \cdot  q.  Thus,

 [tex]$$ \begin{equation*} 2(3x+2y) + (x + 3y) = 7x + 7y = 7 (x + y) \ \mbox{direct computations and factoring} \\\end{equation*} $$[/tex] Thus, [tex] 2(3x +2y) + (x +3y)[/tex] is a multiple of 7.

On the other hand,  using the hypothesis [tex] $$ \begin{equation*}   (x + 3y) = 7 (x + y) - 2(3x + 2y) = 7 (x+y) - 2 \cdot 7 q = 7 (x + y -2q) \ \mbox{(factoring)} \end{equation*} $$    [/tex] .

Finally, thanks that [tex]x,y,q [/tex] are integer numbers, then [tex] x + y - 2q[/tex] is a integer number and therefore, [tex] 3x + 2y [/tex] is a multiple of 7.

                                                                               

The following data are direct solar intensity measurements (watts/m2 ) on different days at a location in southern Spain: 562, 869, 708, 775, 775, 704, 809, 856, 655, 806, 878, 909, 918, 558, 768, 870, 918, 940, 946, 661, 820, 898, 935, 952, 957, 693, 835, 905, 939, 955, 960, 498, 653, 730, and 753. Calculate the sample mean and sample standard deviation. Prepare a dot diagram of these data. Indicate where the sample mean falls on this diagram. Give a practical interpretation of the sample mean.

Answers

Answer:

Mean: 810.51

Standard deviation: 128.32

Step-by-step explanation:

First, we calculate the sample mean. We have 35 data samples, so we compute it as [tex]\displaystyle \frac{562 + .... + 753}{35}[/tex].

In general, given a set of n samples [tex]\{ X_1,...,X_n\}[/tex], we calculate the sample mean as

[tex]\displaystyle \bar{X} = \sum_{i=1}^n \frac{X_i}{n}[/tex].

For the standard deviation [tex]\sigma[/tex], we first begin by calculating it's square. It can be obtained from the formula

[tex]\displaystyle \sigma ^2 = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{n-1}[/tex]

By taking square root after computing the right hand side, we attain the desired value.

The attached image shows the dot diagram of this sample. The bottom pink vertical line shows the mean, and the two horizontal pink lines have a lenght of [tex]\sigma[/tex].

The standard deviation means "The average expected distance a new sample will be from the mean".  That's why usually, data samples which are denser around the mean have smaller standard deviations (as opposed to distributions who have a lot of values far away from the mean, which will make the standard deviation grow bigger).

A pawnshop with a monthly interest rate of 3.15 percent would have an annual interest rate of percent. (Round your answer to 2 decimal places.) Multiple Choice 3.15 31.50 3780 18.90 6.30

Answers

Annual is 1 year.

1 year has 12 months.

Multiply the monthly rate by 12:

3.15 x 12 = 37.80%

The average number of points you scored in the first 9 basketball games of the season was 23. What do you need in the 10th game to get your average to n? OA. n-23 OB, 10n-207 O C. 9n-23 D. 207-9n

Answers

Answer:

B. 10n-207

Step-by-step explanation:

Given,

The average number of points of 9 games = 23,

∵ Sum of observations = their average × number of observations

So, the total points for 9 games = 9 × 23 = 207,

Now, if the average of 10 games is n,

Then the total points for 10 games = 10n,

Hence, the number of points earned in 10th game = the total points for 10 games - the total points for 9 games

= 10n - 207

i.e. OPTION B is correct.

The correct option is (B) 10n-207. To raise the average points per game to 'n' after the 10th basketball game, one would need to score '10n - 207' points in the 10th game, based on the previous average of 23 points in the first 9 games.

To solve the problem, we need to use the formula for calculating an average. The average score after 10 games would be the total points scored divided by 10. If the first 9 games had an average of 23 points, the total points from these games is 9 × 23 = 207.

To get an average of n after the 10th game, the total points should be 10× n. Therefore, the points needed in the 10th game would be the difference between 10 × n and the sum score from the first 9 games (207). That gives us the equation 10n - 207 for the number of points needed in the 10th game.

There are N passengers in a plane with N assigned seats (N is a positive integer), but after boarding, the passengers take the seats randomly. Assuming all seating arrangements are equally likely, what is the probability that no passenger is in their assigned seat? Compute the probability when N → [infinity]

Answers

The probability that no passenger is in their assigned seat is 0.6321.

Given data:

There are N passengers in a plane with N assigned seats (N is a positive integer), but after boarding, the passengers take the seats randomly.

The probability that no passenger is in their assigned seat is often referred to as the "surprising" or "paradoxical" result.

The problem is analyzed for a specific case with N = 3 passengers.

Passenger 1 sits in Seat 1: In this case, the remaining two passengers have a 1/2 chance of sitting in their assigned seats.

Passenger 1 sits in Seat 2: Again, the remaining two passengers have a 1/2 chance of sitting in their assigned seats.

Passenger 1 sits in Seat 3: In this case, the remaining two passengers will definitely sit in their assigned seats.

Now, calculate the probability for each scenario and find the overall probability that no passenger is in their assigned seat:

Scenario 1: Probability = 1/3 * 1/2 = 1/6

Scenario 2: Probability = 1/3 * 1/2 = 1/6

Scenario 3: Probability = 1/3

Overall Probability = Probability of Scenario 1 + Probability of Scenario 2 + Probability of Scenario 3

= 1/6 + 1/6 + 1/3

= 1/2

Thus, for N = 3, the probability that no passenger is in their assigned seat is 1/2.

Now, consider the case when N → ∞ (approaching infinity).

In this scenario, the probability can be calculated as follows:

Probability = 1 - 1/e

Hence, as N approaches infinity, the probability that no passenger is in their assigned seat approaches 1 - 1/e, or approximately 0.6321.

To learn more about probability, refer:

https://brainly.com/question/17089724

#SPJ4

Final answer:

The derangement problem questions the probability that no passenger sits in their assigned seat, which asymptotically approaches 1/e (approximately 0.3679) as the number of seats and passengers approaches infinity.

Explanation:

The student's question is about calculating the probability that no passenger is seated in their assigned seat on a plane where passengers sit randomly, especially when the number of passengers (and seats) approaches infinity. This is known as the derangement problem or a problem of calculating permutations where no element appears in its original position. A specific case of permutations without fixed points is termed as a derangement, and the probability of a derangement occurring in a permutation of N elements approaches 1/e where e is Euler's number, approximately equal to 2.71828. Through an approximation known as the asymptotic probability, when N → [infinity], this probability approaches 1/e, which is approximately 0.3679 or 36.79%.

4,275.50= 391/2 of ____

Answers

Answer:

The required value for the blank is 21.8696

Step-by-step explanation:

Consider the provided information,

4,275.50= 391/2 of ____

Replace blank with x.

4,275.50 = 391/2 of x

Use sign of multiplication for "of".

[tex]4,275.50 = \frac{391}{2} \times x[/tex]

Solve the above expression for x.

[tex]x=\frac{4,275.50\times 2}{391} [/tex]

[tex]x=21.8696 [/tex]

Thus, the required value for the blank is 21.8696


Use the row operations tool to solve the following system of equations, obtaining the solutions in fraction form.

12x + 2y + z = 4
3x + 3y - 4z = 5
2x - 2y + 4z = 1
Give the values for x, y, and z with the fractions reduced to lowest terms (for example 4/7 rather than 8/14).
x = ____
y = ____
z = ____

Answers

Answer:

[tex]x=\frac{45}{4},  y=-\frac{201}{4}, z=-\frac{61}{2}[/tex]

Step-by-step explanation:

We start by putting our equation in a matricial form:

[tex]\left[\begin{array}{cccc}12&2&1&4\\3&3&-4&5\\2&-2&4&1\end{array}\right][/tex]

Then, we multiply the second row by 4 and substract the first row:

[tex]\left[\begin{array}{cccc}12&2&1&4\\0&10&-17&16\\2&-2&4&1\end{array}\right][/tex]

Now, multiply the third row by 6 and substract the first row:

[tex]\left[\begin{array}{cccc}12&2&1&4\\0&10&-17&16\\0&-14&23&2\end{array}\right][/tex]

Next, we will add [tex]\frac{7}{5}[/tex] times the second row to the third row:

[tex]\left[\begin{array}{cccc}12&2&1&4\\0&10&-17&16\\0&0&\frac{-4}{5}&\frac{122}{5}\end{array}\right][/tex]

Now we can solve [tex]\frac{-4}{5} z=\frac{122}{5}[/tex] to obtain

[tex]z=-\frac{61}{2}[/tex]

Then [tex]10y-17\frac{-61}{2}=16[/tex] wich implies that

[tex]y=\frac{16-\frac{17*61}{2}}{10} =\frac{\frac{32-17*61}{2}}{10}=\frac{-1005}{20}=\frac{-201}{4}[/tex]

Finally

[tex]x=\frac{4-2*\frac{-201}{4}+\frac{61}{2}}{12} =\frac{\frac{8+201+61}{2}}{12}=\frac{270}{24}=\frac{135}{12}=\frac{45}{4}[/tex].

[tex]z=-\frac{61}{2}\\ y=-\frac{201}{4} \\x=\frac{45}{4}[/tex]

A tube feeding formula contains 6 grams of protein per each 80 ml of the formula. If the patient needs 120 grams of protein per day, how much tube-feeding formula should he get every day?

Answers

Answer:

1600 ml.

Step-by-step explanation:

Let x represent amount of tube-feeding formula.

We have been given that a tube feeding formula contains 6 grams of protein per each 80 ml of the formula.

To solve our given problem, we will use proportions as:

[tex]\frac{x}{\text{120 gram}}=\frac{\text{80 ml}}{\text{ 6 grams}}[/tex]

[tex]\frac{x}{\text{120 gram}}*\text{120 gram}=\frac{\text{80 ml}}{\text{ 6 grams}}*\text{120 gram}[/tex]

[tex]x=\text{80 ml}*20[/tex]

[tex]x=\text{1600 ml}[/tex]

Therefore, the patient should get 1600 ml of tube feeding formula every day.

Solve the system of linear equations using the Gauss-Jordan elimination method.

2x + 2y + z = 18

x + z = 7

4y − 3z = 20

Answers

Answer:

Values for each variable are:

x = 19

y = -4

z = -12

Step-by-step explanation:

As we can remember the Gauss-Jordan elimination method consists of creating a matrix with all the equations of the system.  Remember that, if a variable does not appear in one of the equations, we give a value of 0 to its coefficient .  Each equation will constitute a line of the matrix. So, the matrix will look like this:

2   2   1   18

1    0   1    7

0   4  -3  20

For the Gauss-Jordan elimination we can multiply lines, add or subtract one line to another or we can rearrange the order at any given time. The goal is to get only 1s in the matrix diagonal, to determine the value of each variable.

Since we already have a line with a 1, we'll take that line as our starting point, and we'll rearrange it as our 1st line. By multiplying the 1st line for  2 and then subtracting the result to the second line:

1   0   1   7

0   2  -1  4

0   4  -3  20

Now, we multiply the second line by 2 and subtract the result to the third line

1   0   1   7

0   2  -1  4

0   0  -1  12

In order to get the value of Z all we have to do is multiply the third line by (-1).

1   0   1   7

0   2  -1  4

0   0  1  -12

Now, we add the third line to the second line.

1   0   1   7

0   2  0  -8

0   0  1  -12

Then, multiply the second line by a fraction 1/2, to get the value for Y

1   0   1   7

0   1  0  -4

0   0  1  -12

Finally, we subtract the third line to the 1st line to get the value for X

1   0   0  19

0   1  0  -4

0   0  1  -12

All we got left is to prove our answer is correct by replacing the variables in the system with the values found:

First equation

2(19) + 2(-4) + (-12) = 18

38 - 8 - 12 = 18

38 - 20 = 18

Second equation

19 + (-12) = 7

19 -12 = 7

Third equation

4(-4) - 3(-12) = 20

-16 + 36 = 20

120 cm = _______ inches Round UP to nearest 100th

Answers

Answer:

120cm = 46.8 inches

Step-by-step explanation:

This can be solved as a rule of three problem.

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease.

Unit conversion problems, like this one, is an example of a direct relationship between measures.

Each cm has 0.39 inches. How many inches are there in 120 cm?

1cm - 0.39inches

120cm - x inches

[tex]x = 120*0.39[/tex]

[tex]x = 46.8[/tex] inches

120cm = 46.8 inches

Find the​ point, P, at which the line intersects the plane. x equals negative 3 minus 8 tx=−3−8t​, y equals negative 6 plus 5 ty=−6+5t​, z equals negative 6 minus 6 tz=−6−6t​; negative 7 x plus 2 y plus 8 z equals negative 4−7x+2y+8z=−4 The​ point, P, at which the line intersects the plane is left parenthesis nothing comma nothing comma nothing right parenthesis,,. ​(Simplify your answer. Type an ordered​ triple.)

Answers

Answer:

  P = (-18 5/9, 3 13/18, -17 2/3)

Step-by-step explanation:

The given point must satisfy both the equation of the line and that of the plane. We can substitute for x, y, and z in the plane's equation to get ...

  -7(-3-8t) +2(-6+5t) +8(-6-6t) = -4

  21 +56t -12 +10t -48 -48t = -4

  18t -39 = -4 . . . collect terms

  18t = 35 . . . . . . add 39

  t = 35/18 . . . . . .divide by the coefficient of t

The point is ...

  (x, y, z) = (-3-8(35/18), -6+5(35/18), -6-6(35/18))

  P = (x, y, z) = (-18 5/9, 3 13/18, -17 2/3)


The admissions office of a private university released the following data for the preceding academic year: From a pool of 4200 male applicants, 30% were accepted by the university, and 30% of these subsequently enrolled. Additionally, from a pool of 3300 female applicants, 35% were accepted by the university, and 30% of these subsequently enrolled. What is the probability of each of the following?

a) A male applicant will be accepted by and subsequently will enroll in the university?

b) A student who applies for admissions will be accepted by the university?

c) A student who applies for admission will be accepted by the university and subsequently will enroll?

Answers

Answer:

(a) 0.09 (b) 0.322 (c) 0.0966

Step-by-step explanation:

Let's define first the following events

M: an applicant is a male

F: an applicant is a female

A: an applicant is accepted

E: an applicant is enrolled

S: the sample space

Now, we have a total of 7500 applicants, and from these applicants 4200 were male and 3300 were female. So,

P(M) = 0.56 and P(F) = 0.44, besides

P(A | M) = 0.3, P(E | A∩M) = 0.3, P(A | F) = 0.35, P(E| A∩F) = 0.3

(a) 0.09 = (0.3)(0.3) = P(A|M)P(E|A∩M)=P(E∩A∩M)/P(M)=P(E∩A | M)

(b) P(A) = P(A∩S) = P(A∩(M∪F))=P(A∩M)+P(A∩F)=P(A|M)P(M)+P(A|F)P(F)=(0.3)(0.56)+(0.35)(0.44)=0.322

(c) P(A∩E)=P(A∩E∩S)=P(A∩E∩(M∪F))=P(A∩E∩M)+P(A∩E∩F)=0.0504+P(E|A∩F)P(A|F)P(F)=0.0504+(0.3)(0.35)(0.44)=0.0966

A lady buys 20 trinkets at a yard sale.
The cost of each trinket is either $0.30
or $0.65. If she spends $8.80, how
many of each type of trinket does she
buy?

Answers

Answer:

Lady purchased 12 trinkets costing $0.30 each and 8 trinkets costing $0.65 each.

Step-by-step explanation:

A lady buys total number of trinkets = 20

Cost of each trinket is either $0.30 or $0.65.

Let the number of trinkets is x she purchased for $0.30 and y for $0.65

Then x + y = 20 --------(1)

Since she spends total amount = $8.80

Then the equation will be

0.30x + 0.65y = 8.80 ---------(2)

We replace x = (20 - y) from equation (1) to equation (2)

0.30(20 - y) + 0.65y = 8.80

6 - 0.30y + 0.65y = 8.80

0.35y + 6 = 8.80

0.35y = 8.80 - 6

0.35y = 2.80

y = [tex]\frac{2.80}{0.35}[/tex]

y = 8

Now we put y = 8 in equation (1)

x + 8 = 20

x = 20 - 8

x = 12

Therefore, lady purchased 12 trinkets costing $0.30 each and 8 trinkets costing $0.65 each.

Find the 100th and the nth term for each of the following sequences.1 ​, 4 ​, 7 ​, 10 ​, .

Answers

Answer: The value of 100 th term is 298 and the value of n th term is 1+3n.

Step-by-step explanation:

Since we have given that

1,4,7,10............

Since it forms an A.P. in which

a = 1

d = [tex]4-1 =3[/tex]

So, the value of 100 th term is given by

[tex]a_{100}=a+(n-1)d\\\\a_{100}=1+(100-1)\times 3\\\\a_{100}=1+99\times 3\\\\a_{100}=1+297\\\\a_{100}=298[/tex]

And the value of n th term is given by

[tex]a_n=1+3n[/tex]

Hence, the value of 100 th term is 298 and the value of n th term is 1+3n.

Arrivals at a fast-food restaurant follow a Poisson distribution with a mean arrival rate of 16 customers per hour. What is the probability that in the next hour there will be exactly 9 arrivals?

a. 0.7500

b. 0.1322

c. 0.0000

d. 0.0213

e. none of the above

Answers

Answer:

d. 0.0213

Step-by-step explanation:

If a variable follow a poisson distribution, the probability that x events happens in a specific time is given by:

[tex]P(x)=\frac{e^{-a}*a^{x} }{x!}[/tex]

Where a is the mean number of events that happens in a specific time.

So, in this case, x is equal to 9 arrivals and a is equal to 16 customers per hour. Replacing this values, the probability is:

[tex]P(9)=\frac{e^{-16}*16^{9} }{9!}[/tex]

[tex]P(9)=0.0213[/tex]

There are 18,017 AIDS deaths in 2003, or 34.5% of the 1995 AIDS deaths. Determine the number of AIDS deaths in 1995.

Answers

Answer: There are 52223.18 AIDS death in 1995.

Step-by-step explanation:

Since we have given that

Number of AIDS deaths in 2003 = 18,017

Percentage of deaths of 1995 AIDS deaths =34.5%

Let the number of AIDS deaths in 1995 be 'x'.

According to question, it becomes ,

[tex]\dfrac{34.5}{100}\times x=18017\\\\x=18017\times \dfrac{100}{34.5}\\\\x=52223.18[/tex]

Hence, there are 52223.18 AIDS death in 1995.

Find the most general antiderivative of the function. (Check yo f(x) = 3^x + 7 sinh(x) F(x) = Need Help? Watch It Talk to a Tutor

Answers

Answer:

F(x)=[tex]\frac{3^x}{ln(3)}[/tex]+7cosh(x)+C

Step-by-step explanation:

The function is f(x)=3ˣ+7sinh(x), so we can define it as f(x)=g(x)+h(x) where g(x)=3ˣ and h(x)=7sinh(x).

Now we have to find the most general antiderivative of the function this means that we have to calculate [tex]\int\ {f(x)} \, dx[/tex] wich is the same as [tex]\int\ {(g+h)(x)} \, dx[/tex]

The sum rule in integration states that the integral of a sum of two functions is equal to the sum of their integrals. Then,

[tex]\int\ {(g+h)(x)} \, dx[/tex] = [tex]\int\ {g(x)} \, dx + \int\ {h(x)} \, dx[/tex]

1- [tex]\int\ {g(x)} \, dx =[/tex][tex]\int\ {3^x} \, dx = \frac{3^x}{ln(3)}+C[/tex] this is because of the rule for integration of exponencial functions, this rule is:

[tex]\int\ {a^x} \, dx =\frac{a^x}{ln(x)}[/tex], in this case a=3

2-[tex]\int\ {h(x)} \, dx =[/tex][tex]\int\ {7sinh(x)} \, dx =7\int\ {sinh(x)} \, dx =7cosh(x)+C[/tex] , number seven is a constant (it doesn´t depend of "x") so it "gets out" of the integral.

The result then is:

F(x)= [tex]\int\ {(h+g)(x)} \, dx=\int\ {h(x)} \, dx +\int\ {g(x)} \, dx[/tex]

[tex]\int\ {3^x} \, dx +\int\ {7sinh(x)} \, dx = \frac{3^x}{ln(3)} +7cosh(x) + C[/tex]

The letter C is added because the integrations is undefined.

Let v1, v2, w be three linearly independent vectors in R 3 . That is, they do not all lie on the same plane. For each of the following (infinite) set of vectors, carefully sketch it in R 3 , and determine whether or not it is a vector space (i.e., a subspace of R 3 ). Explain your reasoning.

Answers

Answer:

Where are the sets of vectors?

Step-by-step explanation:

Which set of vectors?

Let P={ 1,2,3,5,7,9}, Q= { 1,2,3,4,5}, and R= {2,3,5,7,11}
Find P n R?

Answers

Answer:

[tex]P \cap R=\{2,3,5,7\}[/tex]

Step-by-step explanation:

Given : Let P={ 1,2,3,5,7,9}, Q= { 1,2,3,4,5}, and R= {2,3,5,7,11}

To find : The value of [tex]P \cap R[/tex] ?

Solution :

The intersection of two sets is defined as the set of their common elements or the elements appear in both the sets.

The sets are P={ 1,2,3,5,7,9} and R= {2,3,5,7,11}

Common elements in P and R are {2,3,5,7}

So, [tex]P \cap R=\{2,3,5,7\}[/tex]

Therefore, The value of [tex]P \cap R=\{2,3,5,7\}[/tex]

A small military base housing 1,000 troops, each of whom is susceptible to a certain virus infection. Assuming that during the course of the epidemic the rate of change (with respect to time) of the number of infected troopers is jointly proportional to then number of troopers infected and the number of uninfected troopers. If at the initial outbreak, there was one trooper infected and 2 days later there were 5 troopers infected, express the number of infected troopers as a function of time.

Answers

Answer:

[tex]I=\frac{1000}{exp^{0,806725*t-0.6906755}+1}[/tex]

Step-by-step explanation:

The rate of infection is jointly proportional to the number of infected troopers and the number of non-infected ones. It can be expressed as follows:

[tex]\frac{dI}{dt}=a*I*(1000-I)[/tex]

Rearranging and integrating

[tex]\frac{dI}{dt}=a*I*(1000-I)\\\\\frac{dI}{I*(1000-I)}=a*dt\\\\\int\frac{dI}{I*(1000-I)}=\int a*dt\\\\-\frac{ln(1000/I-1)}{1000}+C=a*t[/tex]

At the initial breakout (t=0) there was one trooper infected (I=1)

[tex]-\frac{ln(1000/1-1)}{1000}+C=0\\\\-0,006906755+C=0\\\\C=0,006906755[/tex]

In two days (t=2) there were 5 troopers infected

[tex]-\frac{ln(1000/5-1)}{1000}+0,006906755=a*2\\\\-0,005293305+0,006906755=2*a\\a = 0,00161345 / 2 = 0,000806725[/tex]

Rearranging, we can model the number of infected troops (I) as

[tex]-\frac{ln(1000/I-1)}{1000}+0,006906755=0,000806725*t\\\\-\frac{ln(1000/I-1)}{1000}=0,000806725*t-0,006906755\\-ln(1000/I-1)=0,806725*t-0.6906755\\\\\frac{1000}{I}-1=exp^{0,806725*t-0.6906755}  \\\\\frac{1000}{I}=exp^{0,806725*t-0.6906755}+1\\\\I=\frac{1000}{exp^{0,806725*t-0.6906755}+1}[/tex]

Other Questions
john also bought a new ball. the new ball cost $300 which is three times the price of his old ball less $60. how much did he pay for his old ball? Why is wafting chemicals important? How many solutions does the equation have?|g| 8 = -3 NO SOLUTION, ONE SOLUTION, OR TWO SOLUTIONS( PICK WHICH ONE THX) Two airplanes leave an airport at the same time. The velocity of the first airplane is 740 m/h at a heading of 25.3. The velocity of the second is 570 m/h at a heading of 82.How far apart are they after 1.5 h? Answer in units of m. Which of the following is a true statement regarding physical activity and cardiovascular health? (Select all that apply.) Aerobic exercise increases resting heart rate because the heart pumps more blood while in a rested state. Aerobic exercise decreases resting heart rate because the heart has an increased stroke volume. Aerobic exercise reduces heart disease because it makes the heart work harder, improving its strength. Aerobic exercise increases LDL, or bad, cholesterol in the blood because blood ci MARK AS BRAINLIESTT!!!!!In cellular respiration, the steps following glycolysis depend on whether oxygen is present. Select the BEST explanation:A If oxygen is present, production of acetyl-CoA, the citric acid cycle, and electron transport chain follow in order. If no oxygen is present, photosynthesis occurs starting with Photosystem II.BIf oxygen is present, production of acetyl-CoA, the citric acid cycle, and electron transport chain follow in order. If no oxygen is present, either lactic acid fermentation or alcoholic fermentation follows.CIn the presence of oxygen, carbon fixation occurs during the Calvin cycle, when a carbon atom from atmospheric carbon dioxide is added to a 5-carbon sugar. DRegardless if oxygen is present or not, the production of acetyl-CoA, the citric acid cycle, and electron transport chain follow in order. SECOND QUESTION is the picture here are the answer choices if you can only see the picture.A. destroyed.B. absorbed.C. reflected.D. converted to heat. Explain the concept of detived demand. How does it affect marketing? Which of the following is a characteristic of a current liability?A current liability is due within one year or one operating cycle, whichever is longer.A current liability must be of a known amount.A current liability must be of an estimated amount.Current liabilities are subtracted from long-term liabilities on the balance sheet. What causes people to turn against their religion or beliefs? Write one paragraph Create a single line comment that says ""Print results to screen"" Classify each of the following financial statement items taken from Ming Corporations balance sheet. Classify each of the following financial statement Stockholders EquityLong-term InvestmentsCurrent AssetsIntangible AssetsLong-term LiabilitiesCurrent LiabilitiesProperty, Plant, and Equipment Accounts payable Classify each of the following financial statement Property, Plant, and EquipmentLong-term LiabilitiesStockholders EquityIntangible AssetsCurrent AssetsLong-term InvestmentsCurrent Liabilities Accounts receivable Classify each of the following financial statement Stockholders EquityCurrent AssetsProperty, Plant, and EquipmentLong-term LiabilitiesIntangible AssetsCurrent LiabilitiesLong-term Investments Accumulated depreciationequipment Classify each of the following financial statement Intangible AssetsCurrent AssetsStockholders EquityLong-term LiabilitiesProperty, Plant, and EquipmentCurrent LiabilitiesLong-term Investments Buildings Classify each of the following financial statement Current AssetsCurrent LiabilitiesIntangible AssetsLong-term InvestmentsLong-term LiabilitiesProperty, Plant, and EquipmentStockholders Equity Cash Classify each of the following financial statement Intangible AssetsCurrent AssetsLong-term InvestmentsCurrent LiabilitiesProperty, Plant, and EquipmentLong-term LiabilitiesStockholders Equity Interest payable Classify each of the following financial statement Current AssetsCurrent LiabilitiesLong-term InvestmentsLong-term LiabilitiesProperty, Plant, and EquipmentStockholders EquityIntangible Assets Goodwill Classify each of the following financial statement Intangible AssetsCurrent AssetsCurrent LiabilitiesProperty, Plant, and EquipmentLong-term InvestmentsLong-term LiabilitiesStockholders Equity Income taxes payable Classify each of the following financial statement Intangible AssetsProperty, Plant, and EquipmentLong-term LiabilitiesCurrent AssetsLong-term InvestmentsCurrent LiabilitiesStockholders Equity Inventory Classify each of the following financial statement Current LiabilitiesStockholders EquityIntangible AssetsLong-term LiabilitiesCurrent AssetsLong-term InvestmentsProperty, Plant, and Equipment Stock investments (to be sold in 7 months) Classify each of the following financial statement Long-term LiabilitiesLong-term InvestmentsProperty, Plant, and EquipmentCurrent AssetsIntangible AssetsStockholders EquityCurrent Liabilities Land (in use) Classify each of the following financial statement Long-term InvestmentsCurrent AssetsIntangible AssetsStockholders EquityCurrent LiabilitiesLong-term LiabilitiesProperty, Plant, and Equipment Mortgage payable Classify each of the following financial statement Current LiabilitiesLong-term InvestmentsLong-term LiabilitiesProperty, Plant, and EquipmentStockholders EquityIntangible AssetsCurrent Assets Supplies Classify each of the following financial statement Property, Plant, and EquipmentLong-term InvestmentsStockholders EquityLong-term LiabilitiesIntangible AssetsCurrent AssetsCurrent Liabilities Equipment Classify each of the following financial statement Long-term InvestmentsProperty, Plant, and EquipmentCurrent LiabilitiesLong-term LiabilitiesStockholders EquityIntangible AssetsCurrent Assets Prepaid rent which of the following issues was often a ploblem for local farmers in a colonized region ? Hector plays golf every Saturday. His wife, Alicia, notices that after a winning round, Hector tends to play with the kids. After a losing round, he tends to watch television by himself. According to ________ , over time, Alicia is likely to conclude that Hectors golf games can exert a causal effect on his behavior at home. Find the nth term of this number sequence18, 16, 14, 12,...Pls help Dr. Menteur runs a study in which infertile women are given injections of a synthetic hormone in hopes it will cause them to ovulate. Unknown to the women, the injections also contain a chemical that is hypothesized to increase the chance that fertilized eggs will implant in their uteruses. None of the participants experience any negative side effects from this second chemical, and more of the women become pregnant that in previous studies using just the hormone. The women are not paid for participating in the study, although they receive the treatment for no cost. This study is ethical, because the second chemical did not harm the women. Unethical, because the women were not informed injections would contain the second chemical. Ethical, because the second chemical increased the chance the participants would achieve their desired outcome. Unethical, because the women were not paid for their participation in the study. One of the significant achievements of Fahrenheit was to: O make thermometers smaller using air O make thermometers compact using alcohol O make thermometers more accurate using alcohol O make thermometers smaller using mercury The Universal Declaration of Human Rights includes articles, or statements, that focus on _________.Question 2 options:artistic rightsanimal rightsgovernment rightseconomic and social rights The reaction described by the equation CH 3 Cl + NaOH CH 3 OH + NaCl follows the second-order rate law, rate = k [ CH 3 Cl ] [ NaOH ] . When this reaction is carried out with starting concentrations [ CH 3 Cl ] = 0.2 M and [ NaOH ] = 1.0 M , the measured rate is 1 10 4 mol L 1 s 1 . What is the rate after one-half of the CH 3 Cl has been consumed? (Caution: The initial concentrations of the starting materials are not identical in this experiment. Hint: Determine how much of the NaOH has been consumed at this point and what its new concentration is, compared with its initial concentration.) Some persons are counted as out of the labor force because they have made no serious or recent effort to look for work. However, some of these individuals may want to work even though they are too discouraged to make a serious effort to look for work. If these individuals were counted as unemployed instead of out of the labor force, then... a. both the unemployment rate and labor-force participation rate would be lower. b. both the unemployment rate and labor-force participation rate would be higher. c. the unemployment rate would be lower, and the labor-force participation rate would be higher. d. the unemployment rate would be higher ,and the labor-force participation rate would be lower. look at the subtraction expression below. 3.0 (1.5) which number line models this expression?