A jar of marbles contains the following: two red marbles, three white marbles, five blue marbles, and seven green marbles.

What is the probability of selecting a red marble from a jar of marbles?

5/17

2/15

2/17

17/2

Answers

Answer 1

The probability of selecting a red marble from the jar of marbles is 2/17.

To calculate the probability of selecting a red marble from the jar, we need to determine the total number of marbles in the jar and the number of red marbles.

Total number of marbles = 2 (red) + 3 (white) + 5 (blue) + 7 (green) = 17

Number of red marbles = 2

Now, the probability of selecting a red marble is given by:

Probability = (Number of red marbles) / (Total number of marbles) = 2 / 17

So, the correct probability of selecting a red marble from the jar is 2/17.

To know more about probability, refer here:

https://brainly.com/question/5485756

#SPJ2

Answer 2

Final answer:

The probability of selecting a red marble from the jar is [tex]\frac{2}{17}[/tex] since there are 2 red marbles out of a total of 17 marbles.

Explanation:

The probability of selecting a red marble from a jar of marbles containing two red marbles, three white marbles, five blue marbles, and seven green marbles can be calculated by dividing the number of red marbles by the total number of marbles in the jar. First, we determine the total number of marbles: 2 (red) + 3 (white) + 5 (blue) + 7 (green) = 17 marbles. Next, we calculate the probability of selecting a red marble by dividing the number of red marbles (2) by the total (17).

Therefore, the probability of selecting a red marble is [tex]\frac{2}{17}[/tex].


Related Questions

The sugar content of the syrup is canned peaches is normally distributed. Assumethe can is designed to have standard deviation 5 milligrams. A random sample ofn= 10 cans is studied. What is the sampling distribution of the sample variance?The data yields a sample standard deviation of 4.8 milligrams. What is the chanceof observing the sample standard deviation greater than 4.8 milligrams?

Answers

Answer: 0.50477

Step-by-step explanation:

Given : The sugar content of the syrup is canned peaches is normally distributed.

We assume the can is designed to have standard deviation [tex]\sigma=5[/tex] milligrams.

The sampling distribution of the sample variance is chi-square distribution.

Also,The data yields a sample standard deviation of [tex]s=4.8[/tex] milligrams.

Sample size : n= 10

Test statistic for chi-square :[tex]\chi^2=\dfrac{s^2(n-1)}{\sigma^2}[/tex]

i.e. [tex]\chi^2=\dfrac{(4.8)^2(10-1)}{(5)^2}=8.2944[/tex]

Now, P-value = [tex]P(\chi^2>8.2944)=0.50477[/tex]  [By using the chi-square distribution table for p-values.]

Hence, the chance of observing the sample standard deviation greater than 4.8 milligrams = 0.50477

Write an equation of an hyperbola whose vertices are
(0,0)and(16,0), and whose foci are (18,0) and (-2,0).

Answers

Answer:

[tex]\frac{(x-8)^2}{8^2}-\frac{(y-0)^2}{6^2}=1[/tex]

Step-by-step explanation:

∵ The equation of a hyperbola along x-axis is,

[tex]\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1[/tex]

Where,

(h, k) is the center,

a = distance of vertex from the center,

b² = c² - a² ( c = distance of focus from the center ),

Here,

vertices are (0,0) and (16,0), ( i.e. hyperbola is along the x-axis )

So, the center of the hyperbola = midpoint of the vertices (0,0) and (16,0)

[tex]=(\frac{0+16}{2}, \frac{0+0}{2})[/tex]

= (8,0)

Thus, the distance of the vertex from the center, a = 8 unit

Now,  foci are (18,0) and (-2,0).

Also, the distance of the focus from the center, c =  18 - 8 = 10 units,

[tex]\implies b^2=10^2-8^2=100-64=36\implies b = 6[/tex]

( Note : b ≠ -6 because distance can not be negative )

Hence, the equation of the required hyperbola would be,

[tex]\frac{(x-8)^2}{8^2}-\frac{(y-0)^2}{6^2}=1[/tex]


Which of the following sets are equal to {x | x > 9 and x < 2}

{2, 3, 4, 5, 6, 7, 8, 9}

{ }

{3, 4, 5, 6, 7, 8}

{3, 4, 5, 7, 8}

{4, 5, 6, 7, 8, 9}

Answers

Answer:

  { }

Step-by-step explanation:

There are no numbers that are both greater than 9 and less than 2. The expression describes the empty set.

What is 1/4 divided by 1/2, and create and solve a real-world word problem that uses the above division expression.

Answers

Answer:

1/4 divided by 1/2 equals 1/2

Real-world problem:

A constructor official knows that he needs 1/2 sack of cement to produce 10 blocks of concrete for a wall. The official only has 1/4 of the sack left and want to know how many blocks he can produce with this material.

Step-by-step explanation:

Since you know that 1/2 of the sack is needed to make 10 blocks, you can use this information to find the number of blocks that 1/4 of a sack can make. The question you want to answer is:  

if [tex]\frac{1}{2}[/tex] of a sack produces 10 blocks, how may blocks [tex]\frac{1}{4}[/tex] of a sack can produce?

Using the Rule of Three you can solve

[tex]\frac{\frac{1}{4} }{\frac{1}{2}} =\frac{2}{4}=\frac{1}{2}[/tex]

Now you know that 1/4 of a sack can produce 1/2 the number of blocks that 1/2 of the sack can produces, this means that you can produce 5 blocks of concrete.

Answer:

if you have 1/4 of a rope and you need to give 7/16 to your friend how much rope did you give to your friend?

Step-by-step explanation:

Prove: If n is a positive integer andn2 is
divisible by 3, then n is divisible by3.

Answers

Answer and Step-by-step explanation:

n > 0

n² divisible by 3 ⇒ n is divisible by 3.

Any number divisible by 3 has the sum of their components divisible by 3.

If n² is divisible by 3,  we can say that n² can be written as 3*x.

n² = 3x ⇒ n = √3x

As n is a positive integer √3x must be a integer and x has to have a 3 factor. (x = 3.a.b.c...)

This way, we can say that x = 3y and y is a exact root, because n is a integer.

n² = 3x ⇒ n = √3x ⇒ n = √3.3y ⇒ n = √3.3y ⇒ n = √3²y ⇒ n = 3√y

Which means that n is divisible by 3.

At Lamppost Pizza there are four pizza toppings: pepperoni, sausage, mushrooms, and anchovies. When you order a pizza you can have as few or as many toppings you want from the above list. You can also choose to have none of the above. How many different kinds of pizza could you order?
Please help immediately!!! :(

Answers

Answer:

You could order 16 different kinds of pizza.

Step-by-step explanation:

You have those following toppings:

-Pepperoni

-Sausage

-Mushrooms

-Anchovies

The order is not important. For example, if you choose Sausage and Mushrooms toppings, it is the same as Mushrooms and Sausage. So we have a combination problem.

Combination formula:

A formula for the number of possible combinations of r objects from a set of n objects is:

[tex]C_{(n,r)} = \frac{n!}{r!(n-r!}[/tex]

How many different kinds of pizza could you order?

The total T is given by

[tex]T = T_{0} + T_{1} + T_{2} + T_{3} + T_{4}[/tex]

[tex]T_{0}[/tex] is the number of pizzas in which there are no toppings. So [tex]T_{0} = 1[/tex]

[tex]T_{1}[/tex] is the number of pizzas in which there are one topping [tex]T_{1}[/tex] is a combination of 1 topping from a set of 4 toppings. So:

[tex]T_{1} = \frac{4!}{1!(4-1)!} = 4[/tex]

[tex]T_{2}[/tex] is the number of pizzas in which there are two toppings [tex]T_{2}[/tex] is a combination of 2 toppings from a set of 4 toppings. So:

[tex]T_{2} = \frac{4!}{2!(4-2)!} = 6[/tex]

[tex]T_{3}[/tex] is the number of pizzas in which there are three toppings [tex]T_{3}[/tex] is a combination of 3 toppings from a set of 4 toppings. So:

[tex]T_{3} = \frac{4!}{3!(4-3)!} = 4[/tex]

[tex]T_{0}[/tex] is the number of pizzas in which there are four toppings. So [tex]T_{4} = 1[/tex]

Replacing it in T

[tex]T = T_{0} + T_{1} + T_{2} + T_{3} + T_{4} = 1 + 4 + 6 + 4 + 1 = 16[/tex]

You could order 16 different kinds of pizza.

What is the yarn number* of a 60 grain/yd sliver in cotton hanks/lb?

Answers

Answer:

0.138 hanks/lb

Step-by-step explanation:

Given:

Silver = 60 grain/yd

Now,

1 hank = 840 yd

or

1 yd = [tex]\frac{\textup{1}}{\textup{840}}[/tex] hank

And,

1 lb = 7000 grain.

or

1 grain = [tex]\frac{\textup{1}}{\textup{7000}}[/tex] lb

Thus,

60 grain/yd = [tex]\frac{60\times\frac{1}{7000}}{1\times\frac{1}{840}}[/tex] lb/hanks

or

60 grain/yd = 7.2 lb/ hanks

or

[tex]\frac{\textup{1}}{\textup{7.2}}[/tex] hanks/lb

or

0.138 hanks/lb

If angle 1 has a measure of 56° and angle 2 has a measure of 124°, the two angles are complementary.

Question 1 options:
True
False

Answers

Answer:

False.

Step-by-step explanation:

Two angles are complementary when added up, they give a result of 90°.

So, to this question to be true we have to do:

Angle 1 + Angle 2 = 90

But if we resolve 56° + 124° = 180, so this means that this question is false, as the addition of both angles doesn't have a result of 90°.

I need help in "Matlab' with how to "Create a column vector from 15 to -25 with a step size of 5"

Answers

Answer:

x=[15:-5:-25]'

Step-by-step explanation:

In order to create a vector you need to use this command:

x = [j:i:k]'

This creates a regularly-spaced vector x using i as the increment between elements. j is the initial value and k is the final value. Besides you need to add the character ' at the end in order to convert the arrow vector in a column vector

solve each equation with steps.
6r+7=13+7

Answers

6r+7=20
6r=13
r=13/6
r=2.16

Possible grades for a class are A, B, C, D, and F. (No +/− 's.)

(a) How many ways are there to assign grades to a class of eight students?


(b) How many ways are there to assign grades to a class of seven students if nobody receives an F and exactly one person receives an A?

Answers

Answer: a) 390,625, b) 2916.

Step-by-step explanation:

Since we have given that

Number of possible grades = 5

a) Number of students = 8

Using the "Fundamental theorem of counting", we get that

[tex]5\times 5\times 5\times 5\times 5\times 5\times 5\times 5\\\\=5^8\\\\=390,625[/tex]

b) Number of students = 7

Number of students receive F = 0

Number of students receive A = 1

Number of remaining grades = 4

So, Using fundamental theorem of counting , we get that

[tex]4\times 3\times 3\times 3\times 3\times 3\times 3\\\\=4\times 3^6\\\\=2916[/tex]

Hence, a) 390,625, b) 2916.

Final answer:

There are 390,625 ways to assign grades to a class of eight students. Also, there are 4,096 ways to assign grades to a class of seven students if nobody receives an F and exactly one person receives an A.

Explanation:

(a)  In this case, each student can receive one of the five possible grades (A, B, C, D, or F). So, for each student, there are 5 choices. Since there are 8 students, we multiply the number of choices for each student together:

5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 = 58 = 390,625

Therefore, there are 390,625 ways to assign grades to the class of eight students.

(b)  In this case, the first student has only one choice, which is to receive an A. The remaining six students can receive one of the four possible grades (B, C, D, or F). So, for each of the remaining six students, there are 4 choices:

1 * 4 * 4 * 4 * 4 * 4 * 4 = 46 = 4,096

Therefore, there are 4,096 ways to assign grades to the class of seven students if nobody receives an F and exactly one person receives an A.

what is the purpose of proof in mathematics?

Answers

The mathematical proofs are useful to show that a mathematical statement is true. Generally a mathematical proof use other statements like theorems, or axioms. Also mathematical proofs are useful to know if the development of a theoretical process in other areas like physics is well done. Other thing that is useful of the proofs in mathematics is that it use a formal language  with symbols that minimize the ambiguity and make it universal.

What is the principal square root of -4

Answers

Answer:

The principal square root of -4 is 2i.

Step-by-step explanation:

[tex]\sqrt{-4}[/tex] = 2i

We have the following steps to get the answer:

Applying radical rule [tex]\sqrt{-a} =\sqrt{-1} \sqrt{a}[/tex]

We get [tex]\sqrt{-4} =\sqrt{-1} \sqrt{4}[/tex]

As per imaginary rule we know that [tex]\sqrt{-1}=i[/tex]

= [tex]\sqrt{4} i[/tex]

Now [tex]\sqrt{4} =2[/tex]

Hence, the answer is 2i.

2. A random sample of 500 households was identified in a major North American city using the municipal voter registration list. Five hundred questionnaires went out, directed at one adult in each household, which asked a series of questions about attitudes regarding the municipal recycling program. Eighty of the 500 surveys were filled out and returned to the researchers. a. Can the 80 households that returned questionnaires be regarded as a random sample of households? Why or why not? b. What type of bias might affect the survey outcome?

Answers

Answer:

a. No, Returned questionnaires can't be regarded as a random sample of households.

b. Non Response Bias

Step-by-step explanation:

a. Among the 500 households only 80 responses to the survey. This type of sample can't be regarded as a random sample. Because it is possible that the question asked to people contain any embarrassing information that peoples refuse to answer the questionnaire.

b. This type of bias is known as Non-Response Bias.

Further, Non Response bias can be considered as, In conducting a survey some people did not respond to our survey, this sometimes affects our survey result very much.

For Example: It can happen that some people may refuse to participate in a survey, as the question asked to people contain personal detail or illegal activities or asking any embarrassing information, so people refused to participate in the survey. This non-response causes the results of the survey to be biased.

Martinez Company’s relevant range of production is 7,500 units to 12,500 units. When it produces and sells 10,000 units, its average costs per unit are as follows:

Average Cost per Unit
Direct materials $ 6.10
Direct labor $ 3.60
Variable manufacturing overhead $ 1.40
Fixed manufacturing overhead $ 4.00
Fixed selling expense $ 3.10
Fixed administrative expense $ 2.10
Sales commissions $ 1.10
Variable administrative expense $ 0.55
2. For financial accounting purposes, what is the total amount of period costs incurred to sell 10,000 units? (Do not round intermediate calculations.)

Answers

Answer:

$68,500

Step-by-step explanation:

The following costs are included in the period costs:

Fixed selling expense = $3.10

Fixed administrative expense = $2.10

Sales commissions = $1.10

Variable administrative expense = $0.55

Hence,

the total period costs incurred

= Sum of the above expenses × Total number of  units sold

= ( $3.10 + $2.10 + $1.10 + $0.55 ) × 10,000

= $68,500

If you roll one die and flip one coin, what are all the possible outcomes?

Answers

Answer: [tex](1,T), (2,T), (3,T), (4, T), (5,T), (6,T)\\(1,H), (2,H), (3,H), (4, H), (5,H), (6,H)[/tex]

Step-by-step explanation:

The total outcomes on a die = {1,2,3,4,5,6}=6

The total outcomes on a coin = {Tails  or Heads}=2

The number of possible outcomes =[tex]6\times2=12[/tex]

If you roll one die and flip one coin, then the possible outcomes are:  

[tex](1,T), (2,T), (3,T), (4, T), (5,T), (6,T)\\(1,H), (2,H), (3,H), (4, H), (5,H), (6,H)[/tex]

Here T denotes for Tails and H denotes for heads.

The population of Cook Island was always been modeled by a logistic equation with growth rate r=19 and carrying capacity N=8000, with time t measured in years. However, beginning in 2000, 9 citizens of Cook Island have left every year to become a mathematician, never to return. Find the new differential equation modeling the population of the island P(t) after 2000. Use P for P(t) and P' for P′(t)

The answer is P' = P/9(1-P/8000)-9

Answers

Answer:

[tex]P'(t) = 19P(1 - \frac{P}{8000}) - 9[/tex]

Step-by-step explanation:

The logistic equation is given by Equation 1):

1) [tex]\frac{dP}{dt} = rP(1 - \frac{P}{N})[/tex]

In which P represents the population, [tex]\frac{dP}{dt} = P'(t)[/tex] is the variation of the population in function of time, r is the growth rate of the population and N is the carrying capacity of the population.

Now for your system:

The problem states that the population has growth rate r=19.

The problem also states that the population has carrying capacity N=8000.

We can replace these values in Equation 1), so:

[tex]P'(t) = 19P(1 - \frac{P}{8000})[/tex]

However, beginning in 2000, 9 citizens of Cook Island have left every year to become a mathematician, never to return. So, we have to subtract these 9 citizens in the P'(t) equation. So:

[tex]P'(t) = 19P(1 - \frac{P}{8000}) - 9[/tex]

The correct differential equation modeling the population of Cook Island after 2000, taking into account the emigration of 9 citizens every year, is given by:[tex]\[ P' = \frac{P}{9}\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

To derive this equation, we start with the standard logistic growth model, which is given by:

[tex]\[ P' = rP\left(1 - \frac{P}{K}\right) \][/tex]

where \( r \) is the intrinsic growth rate and [tex]\( K \)[/tex] is the carrying capacity of the environment. For the Cook Islands, we have [tex]\( r = 19 \) and \( K = 8000 \)[/tex].

However, since 9 citizens leave the island every year starting from 2000, we need to modify the logistic growth model to account for this emigration. The term representing the natural growth of the population remains the same, but we subtract 9 from the growth rate to represent the annual emigration:

[tex]\[ P' = rP\left(1 - \frac{P}{K}\right) - 9 \][/tex]

Substituting the given values of [tex]\( r \)[/tex] and [tex]\( K \)[/tex] into the equation, we get:

[tex]\[ P' = 19P\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

 Now, we need to adjust the growth rate [tex]\( r \)[/tex] to reflect the fact that the population is also decreasing due to emigration. Since the population decreases by 9 every year, we divide the growth rate by 9 to account for this decrease:

[tex]\[ P' = \frac{19P}{9}\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

However, the growth rate should not be divided by 9, as this would incorrectly alter the per capita growth rate. The correct adjustment is to subtract the constant rate of emigration from the overall growth rate:

[tex]\[ P' = 19P\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

Upon reviewing the provided answer, we see that the growth rate [tex]\( r \)[/tex]has been incorrectly divided by 9. The correct differential equation should not have the growth rate divided by 9. Therefore, the correct differential equation modeling the population of the island [tex]\( P(t) \)[/tex] after 2000 is:

[tex]\[ P' = 19P\left(1 - \frac{P}{8000}\right) - 9 \][/tex]

Decide whether the statement is true or false. The solution set of 2x-7=4x +9 is (-8) Choose the correct answer below O True ○ False

Answers

Answer:

2x - 4x -7 = 4x -4x + 9

-2x -7 +7 = 9 + 7

-2x ÷ (- 2 ) = 16 ÷ (-2)

x = -8

You go to a car dealer and pick out a vehicle that costs $31,210 "out-the-door." Instead of paying all the cash upfront, you can put down an amount and finance the rest of the car loan. The money will be financed over 5 years at 4.5%. By hand, compute the following:

If you put down 15% of the car’s cost, what is the amount of the car loan?

Find the total amount paid for the car (including the down payment)

Answers

Answer:

Cost of car = $31,210

Now we are given that  you put down 15% of the car’s cost.

So, Down payment = [tex]15\% \times 31210[/tex]

                                = [tex]\frac{15}{100} \times 31210[/tex]

                                = [tex]4681.5[/tex]

So, Amount of car loan =  Total cost - Down payment

Amount of car loan =$31210 - $4681.5

                                 =$26528.5

Thus Amount of car loan is $26528.5

Now To find the total amount of car

Principal = $26528.5

Rate of interest = 4.5%

Time = 5 years

[tex]A=P(1+r)^t[/tex]

[tex]A=26528.5(1+\frac{4.5}{100})^5[/tex]

[tex]A=33059.337533[/tex]

Total amount including down payment = $33059.337533+$4681.50 = $37740.837533

Hence  the total amount paid for the car (including the down payment) is $37740.83

find the unpaid balance on the debt after 5 years of monthly payments on $190,000 at 3% for 25 years

Answers

Answer:

the unpaid balance after the 5 years will be 125400.

Step-by-step explanation:

Given,

Principal amount, P = 190,000

rate,r = 3%

total time,t = 25 years

So, the total interest after 25 years will be,

[tex]I\ =\ \dfrac{P\times r\times t}{100}[/tex]

   [tex]=\ \dfrac{190,000\times 3\times 25}{100}[/tex]

    = 142500

amount will be paid in 3 years with same interest rate can be given by

[tex]I_p\ =\ \dfrac{P\times r\times t}{100}[/tex]

       [tex]=\ \dfrac{190,000\times 3\times 3}{100}[/tex]

       = 17100

So, the amount of interest to be paid= 142500 - 17100

                                                             = 125400

so, the unpaid amount of interest after the 5 years will be 125400.

Please help me with this question.
Will mark brainliest
Thanks so much

Answers

Answer:

☑ 30y²

☑ 30y² + x

Step-by-step explanation:

Polynomials contain indeterminates [variables] and operation performances, non-including negative exponents, fractional exponents, etcetera.

I am joyous to assist you anytime.

9 + 22 = x + 1

HALPP

Answers

Answer:

x = 30

Step-by-step explanation:

9 + 22 = x + 1

9 + 22 = 31

31 = x + 1

-1          -1

30 = x

x = 30

Add all like terms.
So 22 and 9 are added together.
Which equals to 31.
31= x+1
Subtract 1 on both sides.
31-1= x+1-1
This cancel the 1s on the right side.
Which gives you 30=x

Answer: x= 30

The "absorption law" (theorem 2.1.1 in our book) states that p V (p Aq) is logically equivalent to p. Construct a truth table to show these statements are equivalent.

Answers

Answer:

According to the Law of Absorption, these 2 expressions are equivalent:

p ∨ (p ∧ q) = p

Truth Table:

(see the image attached)

Step-by-step explanation:

To construct the Truth Table you can consider the 4 possible combinations of states that p and q could have, that is

1. p=T, q=T

2. p=T, q=F

3. p=F, q=T

4. p=F, q=F

Then you can calculate p ∨ (p ∧ q) = p for each combination

1. T ∨ (T ∧ T) = T

2. T ∨ (T ∧ F) = T

3. F ∨ (F ∧ T) = F

4. F ∨ (F ∧ F) = F

You can see that the previous values are the same states that p has, you can also see it in the table attached.

Let 'A' and 'B' be subsets of a universal set 'U'. 1. Which of the following describes 'A cap B"?! • 1. The set of all elements of 'Uʻ that are elements of both 'A' and 'B'. • 2. The set of all elements of 'U' that are elements of either 'A' or 'B 3. The set of all elements of ‘Uʻ that are elements of neither ‘A’ nor 'B'. • 4. The set of all elements of 'U' that are elements of either 'A' or 'B' but not both. 2. Which of the following describes '(A cup B)""? • 1. The set of all elements of 'U' that are elements of both 'A' and 'B'. 2. The set of all elements of 'U' that are elements of either 'A' or 'B'. • 3. The set of all elements of 'U' that are elements of neither 'A' nor 'B'. • 4. The set of all elements of 'U' that are elements of either 'A' or 'B' but not both.

Answers

Answer:

  A ∩ B: 1. The set of all elements of 'Uʻ that are elements of both 'A' and 'B'.

  A ∪ B: 2. The set of all elements of 'U' that are elements of either 'A' or 'B'.

Step-by-step explanation:

1. The "intersection" symbol (∩) signifies the members that are in both sets. For example, {1, 2} ∩ {1, 3} = {1}.

__

2. The "union" symbol (∪) signifies the members that are in either set. For example, {1, 2} ∪ {1, 3} = {1, 2, 3}.

The number (in millions) of employees working in educational services in a particular country was 14.4 in 2005 and 18.8 in 2014. Letx=5 correspond to the year 2005, and estimate the number of employees in 2011. Assume that the data can be modeled by a straight line and that the trend continues indefinitely. Use two data points to find such a line and then estimate the requested quantity Let y represent the number of employees. The linear equation that best models the number of employees (in Millions) is (Simplify your answer. Use integers or decimals for any numbers in the equation. Round to the nearest hundredth as needed.)

Answers

Answer:

For 2011 the number of employees will be 17.33 millions.The linear equation that best models the number of employees (in Millions) is [tex]y(x)  = 0.49 * x + 11.94 [/tex]

Step-by-step explanation:

If we wish to model the data as a straight line, we need to use the straight line formula:

[tex]y(x)  = m * x + b[/tex]

where x is the years that have passed since the year 2000, m is the slope of the line and b the value of y when x=0, and y the numer (in millions) of employees.

For x=5 we know that y(5) = 14.4. So, we have:

[tex]y(5)  = m * 5 + b = 14.4 [/tex]

And for x=14 we know that y(14)= 18.8

[tex]y(14)  = m * 14 + b = 18.8 [/tex]

Subtracting the first equation from the second one:

[tex]y(14) - y(5) = m * 14 + b  - m * 5 - b = 18.8 -  14.4 [/tex]

[tex] m * (14  - 5 ) + b - b = 4.4[/tex]

[tex] m * 9  = 4.4[/tex]

[tex] m  = 4.4 / 9[/tex]

[tex] m  = 0.49 [/tex]

Putting this in the second equation

[tex]y(14)  = 0.49 * 14 + b = 18.8 [/tex]

[tex] 6.86 + b = 18.8 [/tex]

[tex]  b = 18.8 - 6.86 [/tex]

[tex]  b = 11.94 [/tex]

So, our equation will be:

[tex]y(x)  = 0.49 * x + 11.94 [/tex]

For 2011 the number of employees will be

[tex]y(11)  = 0.49 * 11 + 11.94 =17.33[/tex]

For 2011 the number of employees will be 17.33 millions.

The linear equation that best models the number of employees (in Millions) is  

Step-by-step explanation:

If we wish to model the data as a straight line, we need to use the straight line formula:

where x is the years that have passed since the year 2000, m is the slope of the line and b the value of y when x=0, and y the numer (in millions) of employees.

For x=5 we know that y(5) = 14.4. So, we have:

And for x=14 we know that y(14)= 18.8

Subtracting the first equation from the second one:

Putting this in the second equation

So, our equation will be:

For 2011 the number of employees will be

The marketing department at Cable TV (CTV) wants to know how promotional advertising affects the number of viewers for the Saturday Night Movie. Research shows that 10 million viewers watched the movie when CTV ran 15 one-minute ads on Friday. When they ran 25 one-minute ads on Friday, the movie had 18 million viewers. Use linear interpolation to estimate the number of viewers if CTV runs 23 one-minute ads on Friday.

Answers

Answer:

  16.4 million viewers

Step-by-step explanation:

The number of viewers increased by 8 million from 10 to 18 million when the number of ads increased by 10 ads from 15 to 25. If 23 ads are run, that represents an increase of 8 ads from 15, so we expect 8/10 of the increase in viewers.

  8/10 × 8 million = 6.4 million

The number we expect with 23 ads is 6.4 million more viewers than 10 million viewers, so is 16.4 million.

_____

Alternate solution

We can write a linear equation in 2-point form for the number of viewers expected for a given number of ads:

  y = (18 -10)/(25 -15)(x -15) +10

  y = (8/10)(x -15) +10

  y = 0.8x -2 . . . . . million viewers for x ads

For 23 ads, this gives ...

  y = 0.8×23 -2 = 18.4 -2 = 16.4 . . . . million viewers, as above

_____

Comment on 8/10

I consider it coincidence that the number 23 is 8/10 of the difference between 25 and 15, and the slope of the line is 8/10. The point we're trying to interpolate has no relationship to the slope of the line, and vice versa.

Linear interpolation illustrates the use of linear equation of several points

The number of viewers is 16.4 million, if a 23 one-minute ads runs on Friday.

Linear interpolation is represented as:

[tex]\frac{y_2 - y_1}{x_2 - x_1} = \frac{y - y_1}{x - x_1}[/tex]

Let:

[tex]x \to[/tex] Time

[tex]y \to[/tex] Viewers

So, we have:

[tex](x_1,y_1) = (15,10m)[/tex]

[tex](x_2,y_2) = (25,18m)[/tex]

[tex](x,y) = (23,y)[/tex]

Substitute the above points in:

[tex]\frac{y_2 - y_1}{x_2 - x_1} = \frac{y - y_1}{x - x_1}[/tex]

So, we have:

[tex]\frac{y_2 - y_1}{x_2 - x_1} = \frac{y - y_1}{x - x_1}[/tex]

[tex]\frac{18m - 10m}{25 -15} = \frac{y - 10m}{23 -15}[/tex]

[tex]\frac{8m}{10} = \frac{y - 10m}{8}[/tex]

Multiply both sides by 8

[tex]\frac{64m}{10} = y - 10m[/tex]

[tex]6.4m = y - 10m[/tex]

Collect like terms

[tex]y =10m + 6.4m[/tex]

[tex]y =16.4m[/tex]

Hence, the number of viewers is 16.4 million, if a 23 one-minute ads runs on Friday.

Read more about linear interpolation at:

https://brainly.com/question/4248868

The dimensions of a nicotine transdermal patch system are 4.7 cm by 4.8 cm. Express these dimensions in corresponding inches if 1 inch is equivalent to 25.4 mm.

Answers

Answer:

1.85 inches by 1.89 inches.

Step-by-step explanation:

We have been given that the dimensions of a nicotine transdermal patch system are 4.7 cm by 4.8 cm.

First of all, we will convert given dimensions into mm.

1 cm equals 10 mm.

4.7 cm equals 47 mm.

4.8 cm equals 48 mm.

We are told that 1 inch is equivalent to 25.4 mm, so to find new dimensions, we will divide each dimension by 25.4 as:

[tex]\frac{47\text{ mm}}{\frac{25.4\text{ mm}}{\text{inch}}}=\frac{47\text{ mm}}{25.4}\times \frac{\text{ inch}}{\text{mm}}=1.85039\text{ inch}\approx 1.85\text{ inch}[/tex]

[tex]\frac{48\text{ mm}}{\frac{25.4\text{ mm}}{\text{inch}}}=\frac{48\text{ mm}}{25.4}\times \frac{\text{ inch}}{\text{mm}}=1.8897\text{ inch}\approx 1.89\text{ inch}[/tex]

Therefore, the corresponding dimensions would be 1.85 inches by 1.89 inches.

Final answer:

To convert the dimensions of a nicotine transdermal patch from centimeters to inches, multiply the centimeter measurements by 10 to get millimeters, and then divide by 25.4 to get inches. The patch measures approximately 1.85 inches by 1.89 inches.

Explanation:

The student is asking to convert the dimensions of a nicotine transdermal patch system from centimeters to inches.

Given that 1 inch equals 25.4 millimeters (mm), this can be done by first converting the dimensions from centimeters (cm) to millimeters and then from millimeters to inches.

Since 1 cm equals 10 mm, the dimensions of the patch in millimeters are 47 mm by 48 mm. To convert these dimensions to inches, we would divide each by 25.4 (since there are 25.4 mm in an inch).

So, the dimension in inches for the patch's length would be 47 mm / 25.4 mm/inch ≈ 1.85 inches, and its width would be 48 mm / 25.4 mm/inch ≈ 1.89 inches.

Therefore, the nicotine patch measures approximately 1.85 inches by 1.89 inches.

Janae was vacuuming the narrow hallway in her house. She went 5 feet forwards in the first 4 seconds, then went 3 feet backwards in the next 4 seconds. She continued to do this, forwards 5 feet in 4 seconds and backwards 3 feet in 4 seconds. If she continues in this way, how many seconds will it take her to reach the end of her hallway, which is 15 feet long? 1.

Answers

Final answer:

Janae will reach the end of the 15-foot hallway in 56.8 seconds. She progresses 2 feet every 8 seconds, and in the last cycle, she only needs an additional 0.8 seconds to cover the final foot.

Explanation:

Calculating Janae's Time to Reach the End of Her Hallway

Janae is vacuuming by moving forwards and backwards in a consistent pattern. She moves 5 feet forwards in 4 seconds and then 3 feet backwards in the next 4 seconds. This means that every 8 seconds, Janae makes a net progress of 2 feet (5 feet - 3 feet = 2 feet).

To cover the entire 15-foot length of the hallway, we need to calculate how many 2-foot increments she can complete before reaching the end.

First, divide the total hallway length by Janae's net progress per cycle: 15 feet ÷ 2 feet per cycle = 7.5 cycles. Since Janae cannot complete half a cycle, she will have to complete a whole 8th cycle. Now, multiply the number of complete cycles by the time per cycle: 8 cycles × 8 seconds per cycle = 64 seconds.

However, in the last cycle, Janae only needs to make 1 extra foot instead of 2, since her total net progress after 7 cycles is 14 feet. Thus, during the 8th cycle, she moves forward 5 feet in 4 seconds, but as soon as she reaches the 15-foot mark, she stops.

This means that she won't need the full 8 seconds of the last cycle. We can calculate the extra time required to move the final foot by setting up a ratio. Since 5 feet take 4 seconds, 1 foot will take 4 seconds ÷ 5 = 0.8 seconds.

The total time Janae takes to reach the end of the hallway is the time for the 7 full cycles plus the time to move the last foot: (7 × 8 seconds) + 0.8 seconds = 56.8 seconds. This is the time required for Janae to reach the end of her 15-foot hallway.

What is the area under the curve y=x−x^2and above the x-axis?

Answers

Answer:

The area between the x-axis and the given curve equals 1/6 units.

Step-by-step explanation:

given any 2 functions f(x) and g(x) the area between the 2 figures is calculated as

[tex]A=\int_{x_1}^{x_2}(f(x)-g(x))dx[/tex]

The area needed is shown in the attached figure

The points of intersection of the given curve and x-axis are calculated as

[tex]x-x^2=0\\\\x(1-x)=0\\\\\therefore x=0,x=1[/tex]

hence the points of intersection are[tex](0,0),(1,0)[/tex]

The area thus equals

[tex]A=\int_{0}^{1}(x-x^2-0)dx\\\\A=\int_{0}^{1}xdx-\int_{0}^{1}x^2dx\\\\A=1/2-1/3\\\\A=1/6[/tex]

Let C(x) represent the cost of producing x items and p(x) be the sale price per item if x items are sold. The profit P(x) of selling x items is P(x)=xp(x)-C(x) (revenue minus costs). The average profit per item when x items are sold is P(x)/(x) and the marginal profit is dP/dx. The marginal profit approximates the profit obtained by selling one more item given that x items have already been sold. Consider the following cost functions C and price function p.C(x)=-0.02x^2+40x+80, p(x)=100, a=500a) what is the profit function P.P(x)=?b) find the average profit function and marginal profit function.average profit function: P(x)/(x)=?marginal profit function: dP/dx=?c

Answers

Answer:

(a) Profit function P(x) = 0.02x^2+60x-80

(b) Average profit P(x)/x = P/x = 0.02x+60-80/x

Marginal profit dP/dx = 0.04x+60

Step-by-step explanation:

Cost function: C(x) = -0.02x^2+40x+80

Price function: p(x) = 100

(a) The profit function P(x) = x*p(x)-C(x) can be expressed as:

[tex]P=x*p-C\\P=x*100-(-0.02x^{2} +40x+80)\\P=0.02x^{2}+60x-80[/tex]

(b)Average profit function: P(x)/x

[tex]P/x=(0.02x^{2}+60x-80)/x\\P/x = 0.02x+60-80/x[/tex]

Marginal profit function: dP/dx

[tex]P=0.02x^{2}+60x-80\\dP/dx=0.02*2*x+60+0\\dP/dx=0.04x+60[/tex]

Final answer:

The problem involves calculating the profit, average profit per item, and marginal profit for selling x items based on a given cost and price function. By subtracting the cost function from the revenue, we obtain the profit function P(x) = -0.02x² + 60x + 80. The average profit and marginal profit functions further analyze profitability.

Explanation:

To solve the problem given, we need to start by finding the profit function P(x), which is obtained by subtracting the cost function C(x) from the revenue function, where the revenue is the sale price per item times the number of items sold (xp(x)). Given C(x) = -0.02x² + 40x + 80 and p(x) = 100, the profit function can be determined.

Next, the average profit function is found by dividing the profit function by x, and the marginal profit function, dP/dx, is the derivative of the profit function with respect to x, which provides an approximation of the profit gained by selling one more item after x items have been sold.

Profit Function

Substituting p(x) = 100 into P(x) = xp(x) - C(x), we obtain:

P(x) = x(100) - (-0.02x² + 40x + 80)

P(x) = -0.02x² + 60x + 80

Average Profit Function

The average profit per item for x items sold is:

P(x)/x = (-0.02x² + 60x + 80) / x

Other Questions
two automobiles leave a city at the same time and travel along straight highways that differ in direction by 84 degrees. if their speeds are 60 mi/hr and 45 mi/hr, approximatly how far apart are the cars at the end of 20 minutes? If 2^n + 1 is an odd prime for some integer n, prove that n is a power of 2. (H The "zona reticularis" of the adrenal cortex produces A. Androgens. B. Glucocorticoids. C. Mineralocorticoids. D. Epinephrine. E. Norepinephrine. What national power did the Articles of Confederation grant?A.control of tradeB.foreign policyC.lawmakingD.taxation of citizens In a work of art, what is the subject?a.What is being represented in the piece.b.The recognizable forms such as a figure.c.Refers to the feelings created by a piece.d.The visible elements of a piece. Why do the minerals graphite and diamond look different even though theyre made from the same element, carbon (C)? An aircraft is flying at 300 mph true airspeed has a 50 mph tailwind. What is its ground speed? Which adjective best describes President Reagans word choice in this excerpt?technicalacademicinformalindecisive 1.6w - 1.2w + 3.5 + 4.7w Sylvano a deja passe combien de temps au canada? _____ refers to efforts to create, develop, and defend markets that satisfy individual and business customers. a. Marketing b. Supply chain c. Sales d. Business managemen Frances relations with Native American tribes can be described as a marriage of necessity because:Native Americans were needed to mine for gold.Tobacco was the cash crop for the French.Very few French came to North America.Native Americans rejected Christianity.The Spanish had much better relations with Native Americans in North America. Calculate the density of CO2 in g/cm3 at room temperature(25 degrees Celsuis) and pressure(1 atm) assuming it acts as an ideal gas Economists refer to this pattern, the ___________________________________, which means that as a person receives more of a good, the additional or marginal utility from each additional unit of the good declines. law of trade-offs An increase in the price of steel to producers of refrigerators will cause _____________________. a) the quantity demanded for steel to increase b) the demand for refrigerators to decrease c) the quantity supplied of refrigerators to increase d) the supply curve for refrigerators to shift left Suppose that an increase in capital per hour worked from $15,000 to $20,000 increases real GDP per hour worked by $500. If capital per hour worked increases further to $25,000, by how much would you expect real GDP per hour worked to increase if there are diminishing returns? a. by exactly $500 b. by less than $500 c. by more than $500 but less than $5,000 d. by more than $5,000 but less than $20,000 Gonadal dysgenesis that results in XY females occurs because of which of the following?A. Duplication of the Y chromosome region containing SRY.B. Duplication of part of chromosome 1 containing WNT4 and RSPO1.C. Deletion of chromosome 1 in the region containing WNT4.D. Duplication of SOX9 on chromosome 17 what is the value of s(6) What is the median of this list of numbers? 5, 10, 13, 7,5 This problem has been solved! See the answer Knight Company reports the following costs and expenses in May. Factory utilities $16,942 Direct labor $71,743 Depreciation on factory equipment 13,387 Sales salaries 47,310 Depreciation on delivery trucks 4,546 Property taxes on factory building 3,252 Indirect factory labor 49,656 Repairs to office equipment 2,179 Indirect materials 84,468 Factory repairs 2,465 Direct materials used 142,667 Advertising 15,712 Factory manager%u2019s salary 8,285 Office supplies used 3,523 From the information, determine the total amount of: (a) Manufacturing overhead $Knight Company reports the following costs and exp (b) Product costs $Knight Company reports the following costs and exp (c) Period costs $Knight Company reports the following costs and exp