A light bulb does 100 joules of work in 2.5 seconds. How much power does it have.

Answers

Answer 1

Final answer:

To calculate power, divide energy in joules by time in seconds. The light bulb with 100 joules of work done in 2.5 seconds has a power of 40 watts.

Explanation:

The student is asking how to determine the power of a light bulb based on the work done over time. The formula to calculate power is:

P = W / t

where P is power in watts (W), W is energy in joules (J), and t is time in seconds (s). In this case, the light bulb does 100 joules of work in 2.5 seconds. So, applying the formula:

P = 100 J / 2.5 s = 40 W

Hence, the power of the light bulb is 40 watts.


Related Questions

The _____ point is the point at which a liquid boils when at a pressure of 14.7 pounds per square inch absolute (psia). A. Boiling B. Combustion C. Flash

Answers

The answer is boiling point.
the boiling point of course

5. Amy and Josh are coasting on their bicycles down a 10° slope at 15 m/s through still air. The mass of Amy and her bicycle is 60 kg. The mass of Josh and his bicycle is 90 kg. The cross-sectional area of Amy and her bicycle is 0.45, while the cross-sectional area of Josh and his bicycle is 0.60. The drag coefficient for both cyclists is 0.70. Other than gravity and air resistance, the external forces acting on the two bicycle and rider systems are the same. Which cyclist is more affected by air resistance? The Answer is Amy but what is the math invovled, Please Show Work and Help!

Answers

Forces in the x-direction:

[tex]ma = mg*sin \theta - cA v^{2} [/tex]

The acceleration:
[tex]a = g*sin \theta - \frac{cA}{m} v^2[/tex]

The first term is independent of mass, only the second term depends on mass m:
[tex]\frac{cA}{m} v^2 [/tex]
Amy:
[tex]\frac{0.45 * 0.7}{60} v^2 = 0.00525v^2[/tex]
Josh:
[tex] \frac{0.6 * 0.7}{90} v^2 = 0.00467v^2[/tex]

The negative impact on Amy is larger than on Josh.
Final answer:

Amy experiences less air resistance due to her smaller cross-sectional area compared to Josh, but as she has a lower mass, the air resistance has a more significant effect on her, making her more affected by air resistance.

Explanation:

To determine which cyclist, Amy or Josh, is more affected by air resistance, we can examine the force due to air resistance, which can be calculated using the formula:

Fd = (1/2)ρCdAv2

where Fd is the force of drag (air resistance), ρ is the air density (which we'll assume to be constant for both cyclists), Cd is the drag coefficient, A is the cross-sectional area, and v is the velocity.

Given that both cyclists have the same drag coefficient (Cd = 0.70) and are traveling at the same velocity (v = 15 m/s), the only variables that differ between the two are their cross-sectional areas. Since Amy has a smaller mass and a smaller cross-sectional area (A = 0.45 m2), the force of air resistance will be smaller in magnitude compared to Josh's due to his larger cross-sectional area (A = 0.60 m2).

However, air resistance's impact on an object is also related to the object's mass. A smaller force applied to a smaller mass can have a more significant effect than the same force applied to a larger mass. Therefore, even if the force of air resistance is absolutely higher for Josh, Amy, with her lower mass, would be more affected by it, as it would constitute a more substantial proportion of her total mass.

A proton is fired from far away toward the nucleus of a mercury atom. mercury is element number 80, and the diameter of the nucleus is 14.0 fm. part a if the proton is fired at a speed of 3.4×107 m/s , what is its closest approach to the surface of the nucleus? assume the nucleus remains at rest. express your answer to two significant figures and include the appropriate units.

Answers

The initial kinetic energy of the proton is given by:
[tex]K= \frac{1}{2} mv^2[/tex]
where [tex]m=1.67\cdot 10^{-27}kg[/tex] is the proton mass and [tex]v=3.4\cdot 10^7 m/s[/tex] is the initial speed.

As the proton approaches the nucleus, it decelerates because of the repulsive electric field and its kinetic energy converts into electric potential energy. The proton will stop at a distance r from the center of the nucleus, and its potential energy at this distance will be:
[tex]U=k_e \frac{(80e)(e)}{r} [/tex]
where [tex]k_e = 8.99\cdot 10^9 N m^2 C^{-2}[/tex], 80e is the charge of the nucleus of mercury (which contains 80 protons), and [tex]e=1.6\cdot 10^{-19}C[/tex] is the proton charge.

For the conservation of energy,
[tex]K=U[/tex]
Rewriting it, we find
[tex]r=2k_e \frac{(80e)(e)}{mv^2}=3.4 \cdot 10^{-15} m =34 fm [/tex]

This is not the final answer, however, because this is the distance reached by the proton with respect to the center of the nucleus. So, to find the distance from the surface, we should subtract the radius of the nucleus, which is half the diameter: 14/2=7 fm. So
[tex]d=r-r_0=34 fm-7 fm=27 fm =2.7 \cdot 10^{-15 } m[/tex]

Answer:

[tex]27fm[/tex]

Explanation:

Kinetic Energy of proton

[tex]Kinetic Energy (K)=\frac{1}{2}mV^{2}[/tex]

[tex]m=Mass of proton[/tex]

[tex]V=Velocity of proton[/tex]

[tex]m=1.67\times 10^{-27} kg[/tex]

[tex]V=3.4\times 10^{7}ms^{-1}[/tex]

[tex]K=\frac{1}{2}\times 1.67\times 10^{-27}kg\times \left (3.4\times 10^{7}ms^{-1}  \right )^2[/tex]

[tex]K=\frac{19.305}{2}\times 10^{-13}J[/tex]

[tex]K=9.65\times 10^{-13}J[/tex]

For conservation of energy;

[tex]Kinetic Energy=Potential energy[/tex]

[tex]K= U[/tex]

So,

[tex]U= 9.65\times 10^{-13}J[/tex]

Here,

[tex]U=Potential Energy[/tex]

[tex]U=k_{e}\frac{q_{1}q_{2}}{r}[/tex]

Here,

[tex]k_{e}=Coulomb's law constant[/tex]

[tex]k_{e}=8.99\times 10^{9}Nm^{2}C^{-2}[/tex]

[tex]q_{1}=80e[/tex]

[tex]q_{2}=e[/tex]

[tex]e=1.602\times 10^{-19}C[/tex]

[tex]r=The distance that proton will stop from the center of the nucleus[/tex]

[tex]U=k_{e}\frac{80e\times e}{r}[/tex]

[tex]9.65\times 10^{-13}J=8.99\times 10^{9}Nm^{2}C^{-2}\frac{80\times1.6\times 10^{-19}\times1.6\times 10^{-19} }{r}[/tex]

[tex]r=8.99\times 10^{9}Nm^{2}C^{-2}\frac{80\times1.6\times 10^{-19}\times1.6\times 10^{-19} }{9.65\times 10^{-13}J}[/tex]

[tex]34fm[/tex]

[tex]r_{0}=Radius of the atom[/tex]

[tex]Radius\left ( r_{0} \right )=\frac{diameter\left ( d \right )}{2}[/tex]

[tex]Diameter of the nucleus of mercury atom=14fm[/tex]

[tex]Radius of atom =\frac{14fm}{2}[/tex]

[tex]r=7fm[/tex]

[tex]d=r-r_{0}[/tex]

[tex]d=34fm-7fm[/tex]

[tex]d=27fm[/tex]

Further Explanation:

When a proton approaches a nucleus, it decelerates. Because the repulsive electric field and its kinetic energy converts into electric potential energy.  

Then due to this, the proton will stop at a distance “r” from the center of the nucleus.  

To find the distance from the surface where the proton hits, we have to subtract the radius of the nucleus.  

Learn more:

1. Kinetic energy https://brainly.com/question/1621817 (answer by skyp)

2. Potential energy https://brainly.com/question/12489105 (answer by nitrotype2000)

3. Conservation of energy https://brainly.com/question/11911812 (answer by hrishisup)

Keywords:

Kinetic energy, potential energy, conservation of energy.  

What resistance is needed in this rc circuit if the flash is to charge to 90% of its full charge in 22 s ?

Answers

Missing part in the text of the problem:
"a flash unit for a camera has a capacitance of1200μF."

Solution:
In a RC circuit, the charge of the capacitor at time t follows the relationship:
[tex]Q(t) = Q_0 (1-e^{- \frac{t}{\tau} })[/tex]
where [tex]Q_0 [/tex] is the full charge, and [tex]\tau = RC[/tex] is the time constant of the circuit. 

We can isolate [tex]\tau[/tex] from the previous equation:
[tex] \frac{Q(t)}{Q_0} = 1-e^{ \frac{t}{\tau} } [/tex]
[tex] \frac{t}{\tau} = -ln(1- \frac{Q(t)}{Q_0}) [/tex]
[tex]\tau = - \frac{t}{ln(1- \frac{Q(t)}{Q_0} )} [/tex]

We can now using the data of the problem. We know that after a time t=22.0s, the capacitor is at 90% of tis charge, therefore [tex] \frac{Q(t)}{Q_0} = 0.9[/tex]. So we find
[tex]\tau = - \frac{22}{ln(1-0.9)}=9.55 s [/tex]

And from this value we can find the value of the resistance R, since we know that [tex]\tau = RC[/tex]. Given [tex]C=1200 \mu F = 1200 \cdot 10^{-6} F[/tex], we have
[tex]R= \frac{\tau}{C}= \frac{9.55s}{1200 \cdot 10^{-6}F}=7958 \Omega = 7.96 k \Omega [/tex]

13) A branch falling from a tree is to gravity as a car driving on the road is to A) a driver's foot off of the accelerator, coasting. B) a driver's foot off the accelerator and on the break pedal. C) a driver's foot on the accelerator pressed down to maintain speed. D) a driver's foot on the accelerator and pressed down gradually more and more.

Answers

a driver's foot off the accelerator and on the break pedal. C

Its D: A driver's foot on the accelerator and pressed down gradually more and more.

Which of the following is the main evidence of life in the early universe?
A.) Dinosaur fossils
B.) Rock layering
C.) Plant remains
D.) Cyanobacteria

Answers

A) Dinosaur fossils because they were proven that there was life before us. we also found out that our old skulls had dinosaur teeth in the heads. that showed us that we were on the food chain. but now we aren't because we now have protected cities.

Answer:

Cyanobacteria.

Explanation:

The oldest forms of life would be considered the cyanobacteria from the options, this bacteria are called extremists because they can survive in environments with littlo to zero oxygen andis thought that they have been present from the early begining of the universe because they are the only living organisms known to mankind that are able to survive under those conditions.

Warhol's early paintings of these objects made him famous.

Campbell's soup cans

Coke bottles

comic strips

urinals

Answers

Soup cans is the correct answer
soup cans is the right answer. 

If an object that enters the Earth’s atmosphere does not completely disintegrate, its remains can impact the Earth true or flase

Answers

true, when entering earths atmosphere there are stages. also known as the Thermosphere. stage 3. Where tempatures are hotter then any other stage. but do not burn all the way. mainly like a "shooting star".

The compound PCl5 decomposes into Cl2 and PCl3. The equilibrium of PCl5(g) Cl2(g) + PCl3(g) has a Keq of 2.24 x 10-2 at 327°C. What is the equilibrium concentration of Cl2 in a 1.00 liter vessel containing 0.235 mole of PCl5 and 0.174 mole of PCl3? Remember to use the correct number of significant digits. Cl2 = Are the products or reactants favored?

Answers

To find the equilibrium concentration of Cl2 in the decomposition of PCl5, we start with initial concentrations, assume x is the change at equilibrium, and apply the equilibrium expression using Keq = 2.24 x 10^-2. Solving this for x yields the equilibrium concentration of Cl2, showing whether reactants or products are favored.

To determine the equilibrium concentration of Cl2 when PCl5 decomposes into Cl2 and PCl3, we can start with the provided concentrations and use the equilibrium constant (Keq).

The equilibrium equation for this decomposition is:
PCl5(g) \<=> Cl2(g) + PCl3(g)
and the given Keq is 2.24 x 10-2 at 327°C.

Let's assume x is the amount of PCl5 that decomposes to form x moles of Cl2 and x moles of PCl3 at equilibrium:

Initial moles of PCl5 = 0.235 molInitial moles of PCl3 = 0.174 molChange for PCl5 = -xChange for Cl2 = +xChange for PCl3 = +x

At equilibrium, we will have:

[PCl5] = (0.235 - x) mol / 1.00 L[Cl2] = x mol / 1.00 L[PCl3] = (0.174 + x) mol / 1.00 L

The Keq expression is:

Keq = [PCl3][Cl2] / [PCl5]

Plugging in the equilibrium concentrations:

2.24 x 10-2 = ((0.174 + x) × x) / (0.235 - x)

This equation can be solved for x to find the equilibrium concentration of Cl2. With the calculated value of x, it is possible to determine the favorability of the reaction. A small Keq value (< 1) typically indicates that reactants are favored, which suggests in this case, PCl5 would be favored at equilibrium.

Three uncharged capacitors with equal capacitances are combined in parallel. the combination is connected to a 5.55-v battery, which charges the capacitors. the charging process involves 3.45 Ã 10-4 c of charge moving through the battery. find the capacitance of each capacitor.

Answers

Let's call [tex]C_{eq}[/tex] the equivalent capacitance of the circuit. The relationship between the  capacitance, the charge Q in the circuit and the potential difference V applied on the capacitor is
[tex]C_{eq}= \frac{Q}{V} [/tex]
Using [tex]Q=3.5 \cdot 10^{-4}C[/tex] and [tex]V=5.55 V[/tex], we find
[tex]C_{eq}= \frac{3.5 \cdot 10^{-4}C}{5.5 V} =6.4 \cdot 10^{-5}F[/tex]

In reality, the circuit consists of 3 capacitors in parallel, each one having same capacitance C. When 3 capacitors are connected in parallel, their equivalent capacitance is:
[tex]C_{eq}=C+C+C=3C[/tex]
We know [tex]C_{eq}[/tex], so we can find C:
[tex]C= \frac{C_{eq}}{3}= \frac{6.4 \cdot 10^{-5}F}{3} =2.1 \cdot 10^{-5}F [/tex]

The equivalent capacitance of the number of capacitance connected in the parallel series is the sum of  the individual capacitance.

The capacitance of each capacitor is [tex]2.1\times10^{-5}\rm F[/tex].

What is equivalent capacitance of parallel series?

The equivalent capacitance of the number of capacitance connected in the parallel series is the sum of  the individual capacitance.

It can be given as,

[tex]C_{eq}=\dfrac{Q}{V}[/tex]

Here, [tex]Q[/tex] is the charge and [tex]V[/tex] is the voltage.

Given information-

The voltage of the battery is 5.55 V.

The value of charge is [tex]3.45\times10^{-4}[/tex] C.

Put the values in the above formula as,

[tex]C_{eq}=\dfrac{3.45\times10^{-4}}{5.55}\\C_{eq}=6.4\times10^{-4}\rm F[/tex]

Given that the three uncharged capacitors with equal capacitance are combined in parallel.

For the parallel connection of the capacitance the equivalent capacitance can be given as,

[tex]C_{eq}=C+C+C[/tex]

Here, [tex]C[/tex] is the capacitance of each capacitors. Put the values,

[tex]6.4\times10^{-4}\rm =3C\\C=2.1\times10^{-5}\rm F[/tex]

Hence the capacitance of each capacitor is [tex]2.1\times10^{-5}\rm F[/tex].

Learn more about the equivalent capacitance here;

https://brainly.com/question/5626146

In a thermostat, what property of the bimetallic coil allows it to contract and expand? The two metals absorb different amounts of thermal energy. The two metals are placed perpendicular to each other. The two metals burn at different temperatures. The two metals turn into liquids when absorbing energy.

Answers

Hello!

In a thermostat, the property of the bimetallic coil that allows it to contract and expand is that The two metals absorb different amounts of thermal energy. 

This bimetallic coil is used to transform thermal energy into mechanical movement. Two metals with different thermal expansivity are joined together parallelly and the changes of temperature cause bending in different directions depending on if the temperature is rising or descending. 

The differences in the thermal energy absorption of the two metals are the basis for the mechanism of this device. 

Answer:

The two metals absorb different amounts of thermal energy.

Explanation:

Temperature controlling device in an electric equipment like a heater, is called a thermostat.

A bimetallic strip contains two different metals. Each metal has its own characteristic property of expansion or cooling. Coefficient of thermal expansion has a different value for different metals.

The metal that has a higher expansion coefficients will expand more when  heated, compared to the metal that has a lower coefficient of expansion.

In a thermostat used in a heating circuit, the electric contact is cut off due to the bending of the bimetallic strip, when the desired temperature is reached.

A proton is released from rest in a uniform electric field of magnitude 50000 v/m directed along the positive x axis and undergoes a displacement of 0.5 m in the direction of the electric field as shown. find the amount of the kinetic energy gained after it has moved 0.5 m..

Answers

The amount of kinetic energy gained after it has moved 0.5 m is calculated as [tex]4\times10^{-15}\ J[/tex].

Given:

Electric field, [tex]E = 50000\ V/m[/tex]

Displacement, [tex]d= 0.5\ m[/tex]

Kinetic energy is a term used in physics to refer to the energy that an item has as a result of motion. It's a fundamental idea that explains how an object's motion and energy state are connected.

The particle physics community frequently refers to energy in terms of electron volts , especially when addressing the energies of atomic and subatomic particles. An electron is said to have one electron volt of kinetic energy when it accelerates through an electric potential difference of one volt.

The kinetic energy is given as:

[tex]KE = eV\\KE = e\timesE\timesd\\KE = 1.6\times10^{-19}\times50000\times0.5\\KE = 4\times10^{-15}\ J[/tex]

Hence, the amount of kinetic energy gained after it has moved 0.5 m is calculated as [tex]4\times10^{-15}\ J[/tex].

To learn more about Kinetic energy, here:

https://brainly.com/question/999862

#SPJ12

When a clock reads 5.0 seconds a cart's velocity in the negative x direction is 3.0 m/s. when the clock reads 6.0 seconds, the cart's velocity in the positive x direction is 4.0 m/s. what is the magnitude (in m/s2) of the average acceleration of the cart?

Answers

Impulse is the change of momentum before and after the collision:
I = mv₁ - mv₂ = m (v₁-v₂)
m mass
v velocity

Impuls also is defined as the average force during a short period of time:
I = F * t = m * a * t
F average force
t time difference
m mass
a average acceleration

Combined:
m(v₁- v₂) = m * a * t
a = (v₁- v₂) / t
= (4m/s - (-3m/s)) / 6s - 5s
= 7m/s / 1s
= 7 m/s²


The kinematic we find the average acceleration of the body is 7 m/s²

Given parameters

The velocity at two instant of time t₁ = 5.0 s, v₁ = -3.0 m / s

           t₂= 6.0 s,  v₂ = 4.0 m / s

To find

The average acceleration of the body

Kinematics studies the movement of the carpus, establishing relationships between their position, speed and acceleration.

Average acceleration is defined as the change in velocity in a given time interval

             a_ {avg} = [tex]\frac{\Delta v}{\Delta t}[/tex]

Let's apply this expression to our case

let's set a reference frame where the positive direction of the x axis is positive, so v₁ is negative

         

             a_ {avg} = [tex]\frac{v_2 -v_1}{t_2 -t_1}[/tex]

             a_ {avg} = [tex]\frac{4- (-3)}{6-5}[/tex]

             a_ {avg} = 7 m / s²

In conclusion using kinematics we find the average acceleration of the body is 7 m / s²

learn more about average acceleration here:

https://brainly.com/question/17355747

David’s doctor suspects that he has diabetes. Which of these should be performed by the doctor to confirm the suspicion?

Answers

Check for high levels of blood sugar in urine, weight loss, and get blood tested.

Hope this helps!

Please mark Brainliest!

-Belle

Answer: D.

Explanation: Glucose levels are only option that relates to realistic diagnosis

Rest of the answers-

a DNA analysis to identify genetic abnormalities

a physical exam to look for tumors

a study to observe David’s social behaviors

a test to check David’s glucose levels

14 gauge copper wire has a diameter of 1.6 mm. what length of this wire has a resistance of 4.8ω?

Answers

The relationship between resistance R and resistivity [tex]\rho[/tex] is
[tex]R= \frac{\rho L}{A} [/tex]
where L is the length of the wire and A its cross section.

The radius of the wire is half the diameter:
[tex]r= \frac{d}{2}= \frac{1.6 mm}{2}=0.8 mm=8\cdot 10^{-4} m [/tex]
and the cross section is
[tex]A=\pi r^2 = \pi (8\cdot 10^{-4} m)^2=2.01\cdot 10^{-6} m^2[/tex]

From the first equation, we can then find the length of the wire when [tex]R=4.8 \Omega[/tex] (copper resistivity: [tex]\rho = 1.724 \cdot 10^{-8} \Omega m[/tex])
[tex]L= \frac{AR}{\rho}= \frac{(2.01\cdot 10^{-6} m^2)(1.724 \cdot 10^{-8} \Omega m)}{4.8 \Omega}=7.21 \cdot 10^{-15} m [/tex]

A book rests on a table, exerting a downward force on the table. the reaction to this force is:

Answers

The upward force the table exerts on the ground!
Equal and opposite forces.

Why does light refract when it encounters the glass in a lens?
A) because it speeds up, which causes it to bend
B) because it slows down, which causes it to bend
C) because it hits a dense medium, which causes it to bounce off
D) because it gets absorbed, which causes it to lessen in intensity

Answers

Hey there Donnell!

The reason to why light refract when it encounters the glass in a lens would be because it slows down, which causes it to bend, this would be the reason why  light refract when it encounters the glass in a lens.

I hope this helps you!

Answer:

B) because it slows down, which causes it to bend

Explanation:Light hits the glass in a lens because it slows down, which causes it to bend. The material of a lens is more optically dense than the air it is traveling from.

Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of 50 kilograms. What can Paul do to increase the bike’s kinetic energy?

A. He can let Ivan off at the next stop.
B. He can pedal harder to increase the rate to 10 meters/second.
C. He can reduce the speed to 3 meters/second.
D. He can pick up a third rider.

Answers

The formula is Ke = 1/2 m v^2
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.

A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?

The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.

I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.

B <<<<====== answer. 

Answer: The correct answer is option C.

Explanation:

Kinetic energy is the energy possessed by the an object due to its motion.An its calculated by:

[tex]K.E.=\frac{1}{2}mass\times (velocity)^2[/tex]

Kinetic energy depends upon the mass and velocity of the an object.

So, Paul can increase the bike's kinetic energy by increasing the velocity of its bike. Hence, the correct answer is option C.

Increasing the mass will also increase the kinetic energy . But according to option (D) he has to stop the bike first by applying brakes which will reduce the kinetic energy of the bike.And then again have to perform the work to bring the bike in motion

Describe the energy transformations that occur from the time a skydiver jumps out of a plane until landing on the ground.

Answers

When the Skydiver jump out a plane, his Potential Energy is being converted or transform into Kinetic energy due to gravity. Hope this helps

Answer:

Before jumping from the plane, the skydiver has potential energy. When the skydiver jumps, the potential energy is transformed into kinetic energy, which increases until the skydiver reaches terminal velocity. Potential energy is then transformed into thermal energy.

Explanation:

Thats the answer

When photons with a wavelength of 310 nm strike a magnesium plate the maximum velocity of the ejected electrons is 3.45*10^5 m/s. calculate the binding?

Answers

Given that the work function for sodium metal is 1.82 eV, what is the threshold frequency? 0. 1. 1. 0. 1. 1. 34. • When photons with a wavelength of 310 nm strike a magnesium plate, the maximum velocity of the ejected electrons is 3.45x10. 5 m/s. Calculate the binding energy of electrons to the magnesiumsurface. 1. 2. 2 +. 1.

A uniform rod XY of weight 10.0N is freely hinged to a wall at X. It is held horizontal by a force F acting from Y at an angle 30° to the horizontal, as shown.

What is the value of F?
A- 5.0 N B- 8.7cm C- 10.0cm D-20.0cm

Answers

In order to solve the problem, we must require the equilibrium of all the torques acting on the rod. The fixed point is in X, so we have:
- The weight of the rod (mg) acting at the center of the rod (so, at a distance L/2 from X, where L is the length of the rod). So, the torque is 
[tex]T_W = mg \frac{L}{2} [/tex]
- The vertical component of F (so, [tex]F \sin 30^{\circ}[/tex]) applied in Y, so at a distance L from X. Its torque is
[tex]F \sin 30^{\circ} L[/tex]

The weight points downwards (so, the torque is clockwise), while the torque of F points anti-clockwise, so the equilibrium of torques is
[tex]F \sin 30^{\circ} L = mg \frac{L}{2} [/tex]
and since the weight is mg=10 N, re-arranging the equation we find
[tex]F = \frac{10 N}{2 sin 30^{\circ}} = 10 N[/tex]

The value of the horizontal force acting on the rod is 10 N. Therefore option (C) is correct.:

Given data:

The weight of rod is, W = 10.0 N.

The angle made by force with respect to horizontal is, [tex]\theta = 30^\circ[/tex].

To maintain the steady position (equilibrium condition), the vertical component of force F must be balanced by the moment of force due to weight.

Therefore,

[tex](Fsin\theta) \times L = W \times \dfrac{L}{2} \\\\(F \times sin30^{\circ}) = \dfrac{10}{2} \\F = 10 \;\rm N[/tex]

Thus, the value of the horizontal force acting on the rod is 10 N. And option (C) is correct.

Learn more about the equilibrium of forces here:

https://brainly.com/question/3876381?referrer=searchResults

An isotope of the element fluorine has 9 protons and 10 neutrons. What is the name of this isotope? fluorine-

Answers

Answer:

19

Explanation:

Fluorine-19.

The isotope of fluorine with 9 protons and 10 neutrons is named Fluorine-19. This is because the mass number of an isotope equals the sum of its protons and neutrons, and in this case, 9 (protons) + 10 (neutrons) = 19. The atomic number of fluorine is 9, which means any atom of fluorine will always have 9 protons. A normal (most commonly occurring) atom of fluorine also has a mass number of 19, deriving from 9 protons and 10 neutrons. This makes Fluorine-19 the only stable and naturally-occurring isotope of fluorine.

An arrow is shot from a bow at an angle of 35 degrees above horizontal with an initial speed of 50 m/s what is the arrows horizontal x and y components ?

Answers

These kinds of problems can be broken down to a simple right triangle where we want the side lengths.  Knowing the hypotenuse (50) and the angle, we can get the  other sides with trigonometry.  These sides are then the components of the original vector.  I drew it up for you here.

Answer: Horizontal component of arrow :40.955 m/s

Vertical component of arrow :28.675 m/s

Explanation:

The initial speed of the arrow = u = 50 m/s

The horizontal component of the arrow =[tex]u_x=u\cos\theta [/tex]

The horizontal component of the arrow =[tex]u_y=u\sin\theta [/tex]

Angle between the velocity vector and x component = 35°

Horizontal component of arrow :

[tex]\cos\theta=\frac{u_x}{u}[/tex]

[tex]\cos35^o=0.8191=\frac{u_x}{50}[/tex]

[tex]u_x=0.8191\times 50=40.955 m/s[/tex]

Vertical component of arrow :

[tex]\sin\theta=\frac{u_y}{u}[/tex]

[tex]\sin35^o=0.5735=\frac{u_y}{50}[/tex]

[tex]u_y=0.5735\times 50=28.675 m/s[/tex]

Horizontal component of arrow :40.955 m/s

Vertical component of arrow :28.675 m/s

What properties of titanium make it attractive for use in race-car and jet-engine components?

Answers

Titanium's high quality to weight proportion and corrosion protection at room and hoisted temperature makes it appealing for use in elite applications. High cost of titanium is the key purpose behind not utilizing it in traveler autos. The cost of large scale manufacturing of the parts would drive the last items cost fundamentally.

a 50kg box is being pushed along a horizontal surface. the coefficient of kinetic friction between the box and the ground is 0.35.what horizontal force must be exerted on the box for it to accelerate at 1.20m/s^2

Answers

For Newton's second law, the resultant of the forces acting on the box is equal to the product between the mass of the box m and its acceleration a:
[tex]\sum F = ma[/tex] 
We are interested only in what happens on the x-axis (horizontal direction). Only two forces act on the box in this direction: the force F, pushing the box along the surface, and the frictional force [tex]F_f = \mu m g[/tex] which has opposite direction of F (because it points against the direction of the motion). Therefore we can rewrite the previous equation as
[tex]F-F_f = ma[/tex]
and solve to find F:
[tex]F=ma+F_f =m(a+\mu g)=(50 kg)(1.2 m/s^2+(0.35)(9.81 m/s^2))=[/tex]
[tex]=232 N[/tex]

Answer:

Net horizontal force, [tex]F_{net}=231.5\ N[/tex]

Explanation:

It is given that,

Mass of the box, m = 50 kg

The coefficient of kinetic friction between the box and the ground is 0.35, [tex]\mu=0.35[/tex]

Acceleration of the box, [tex]a=1.2\ m/s^2[/tex]

We know that the frictional force acts in opposite direction to the direction of motion. The net force acting on it is given by :

[tex]F_{net}=f+ma[/tex]

[tex]F_{net}=\mu mg+ma[/tex]

[tex]F_{net}=m(\mu g+a)[/tex]

[tex]F_{net}=50\times (0.35\times 9.8+1.2)[/tex]

[tex]F_{net}=231.5\ N[/tex]

So, the net force acting on the box is 231.5 N. hence, this is the required solution.

Consider a ball rolling down the decreasing slope inside a semicircular bowl (the slope is steep at the top rim, gets less steep toward the bottom, and is zero (no slope) at the bottom). As the ball rolls from the rim downward toward the bottom, its rate of gaining speed

Answers

The answer would be:
It's rate of gaining speed decreases.
The rate at which speed changes is called acceleration, 
You can think of this problem as an inclined plane. But the angle of an inclined plane is constantly decreasing.
We know that on a frictionless inclined plane acceleration of an object is:
[tex]a=gsin(\theta)[/tex]
Where g is the gravitational acceleration of the Earth and [tex] \theta[/tex] is the angle of an inclined plane. 
Using our analogy, the ball would start on an inclined plane with a 90-degree angle and that angle would continue to decrease to zero. 
The sine function is 1 at 90 degrees and is equal to zero at 0 degrees. Since our acceleration is proportional to the sine, and sine function is decreasing with the angle, our acceleration is also decreasing.

The earth's radius is about 4000 miles. kampala, the capital of uganda, and singapore are both nearly on the equator. the distance between them is 5000 miles as measured along the earth's surface. part a the flight from kampala to singapore takes 8.3 hours. what is the plane's angular velocity relative to the earth's surface? give your answer in â/h.

Answers

Plane's angular velocity relative to the earth's surface = 0.15 rad/hr

Explanation:

Radius of earth, r = 4000 miles

Angular velocity is the ratio of linear velocity and radius.

         [tex]\omega =\frac{v}{r}[/tex]

Linear distance from Kampala to Singapore = 5000 miles

Time taken = 8.3 hours

         Distance = Time x Velocity

         5000 = 8.3 x Velocity

         Velocity, v = 602.41 mph

Substituting in angular velocity equation

        [tex]\omega =\frac{v}{r}=\frac{602.41}{4000}=0.15rad/hr[/tex]

Plane's angular velocity relative to the earth's surface = 0.15 rad/hr

Final answer:

The plane's angular velocity in hours can be calculated using the angle in radians covered in one hour's flight and the Earth's radius, applying the formula for angular velocity.

Explanation:

To find the plane's angular velocity relative to the Earth's surface, we need to calculate how many radians the plane covers in an hour and then convert this to angular velocity in degrees per hour. The formula for angular velocity (ω) is ω = θ / t, where θ is the angle in radians and t is the time in seconds. Given that the Earth's circumference is approximately 24,900 miles, we can determine the angle by using the proportion θ / (2π) = distance / Earth's circumference. With the plane's distance being 5000 miles and the Earth's radius being 4000 miles, we use the arc length formula s = rθ, where s is the arc length (5000 miles), r is the radius of the Earth (4000 miles), and θ is the angle in radians. Solving this for θ gives us θ = s / r.

Learn more about Angular Velocity here:

https://brainly.com/question/30733452

#SPJ3

A capacitor with capacitance (c) = 4.50 μf is connected to a 12.0 v battery. what is the magnitude of the charge on each of the plates?

Answers

Final answer:

The magnitude of the charge on each plate of a 4.50 μF capacitor connected to a 12.0 V battery is 54 μC.

Explanation:

To find the magnitude of charge stored on each plate of a capacitor when a voltage is applied, you can use the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage applied. Given a capacitor with a capacitance (C) of 4.50 μF and a voltage (V) of 12.0 V, we can calculate the charge (Q) as follows:

Q = CV = (4.50 μF) (12.0 V) = (4.50 × 10-6 F) (12.0 V) = 54 × 10-6 C = 54 μC

Therefore, the magnitude of the charge on each of the plates of the capacitor is 54 μC.

Learn more about Capacitor Charge Calculation here:

https://brainly.com/question/14048432

#SPJ12

To find the charge stored on a capacitor with given capacitance and voltage, use the formula Q = C × V. Substituting 4.50 μF and 12.0 V into the equation yields a charge of 5.40 × 10⁻⁵ C on each plate.

To determine the charge stored on a capacitor's plates, we use the formula:

Q = C × V

Where:

C is the capacitance in farads (F).V is the potential difference in volts (V).Q is the charge in coulombs (C).

In this case, we have a capacitance C = 4.50 μF (which is 4.50 × 10⁻⁶ F) and a voltage V = 12.0 V.

By substituting these values into the formula, we get:

[tex]Q = 4.50 \times 10^{-6} \, \text{F} \times 12.0 \, \text{V}[/tex]

Q = 5.40 × 10⁻⁵C

Therefore, the magnitude of the charge on each of the plates is 5.40 × 10⁻⁵ C.

a college student exerts 100N of force to lift his laundry basket the weighs 75N. at what rate is the basket accelerated upwards?

Answers

You can use the formula A=F/M, the rate that it is being accelerated upward is 3.3, so about 3.

The mass of the basket = weight/acceleration due to gravity. (75/10=7.5 kg)

100 (upward force from girl) minus 75 (downward force from basket) is 25.
So 25=7.5a, which becomes 25/7.5, which equals 3.33 kg x m/s.

And when rounded, the momentum is about 3, (or 3 p).

Hope this helps!

A generator has a terminal voltage of 113 v when it delivers 13.6 a, and 91 v when it delivers 25.3

a. calculate the emf. answer in units of v. 002 (part 2 of 2) 10.0 points calculate the internal resistance. answer in units of Ï.

Answers

From Kirchhoff's voltage law, the formula would be:
EMF E = terminal voltage + voltage across 'internal resistance[R]' of generator 
Using Ohm's Law, v = ir, let set up a pair of simultaneous equations:
E = 113 + 13.6R would be eq 1
and 
E = 91 + 25.3R would be eq 2
Rearrange these: 
(E - 113) / 13.6 = R 
(E - 91) / 25.3 = R 
(E - 113) / 13.6 = (E - 91) / 25.3 
25.3(E - 113) = 13.6(E - 91) 
25.3E - 2858.9 = 13.6 E - 1237.6
25.3E - 13.6E = 2858.9 - 1237.6
11.7E = 1621.3
E = 1621.3 / 11.7
E = 138.57 v
Other Questions
Can someone please help meI really would appreciate it. A road crew can repave 1/56 miles of road each hour. They must repave a road that is 7/8 miles long. How long will it take the crew to repave the road? NEED IT ASAP !!!!As the economies of both Canada and the U.S. continued to grow in the twentieth century, so too did _______________ and _______________.A.urbanization / populationB.federalism / dualismC.landmass / interstate highways D.international trade / birthrates The neurons of the central nervous system are also known as ________. Religions may be classified as "monistic" if they _________ Which excerpt from the Maori creation myth shows that Papa is gentle and welcoming? Slowly but surely, he pushed his legs upward until his parents were wrenched apart. Papa fell and became the Earth. When the mist rises from the earth, it moves to Rangi as a measure of Papas affection. These offspring fell to Papa, and were warmly received by the earth, their new home. Light flooded into the world that had been created between Rangi and Papa. Fashion critics have traveled from every country to witness the unveiling of the designer's latest line of shoes; the show will not disappoint them.Identify the sentence type According to erik erikson's theory of development the key concern for early adulthood is Points P(6, 8) and Q(18, 2) are plotted on the coordinate plane. Enter the distance, in units, between points P and Q. the number of sentence is an example of which multiplication property What is the magnitude of a star that's 10 times brighter than a fifth magnitude star? Which best describes the top and bottom images of muscle contraction?The top image is more relaxed than the bottom image. The top image has greater actin-myosin interactions than the bottom image. The bottom image is more relaxed than the top image. The bottom image has fewer overlaps than the top image. Use the variables k and total to write a while loop that computes the sum of the squares of the first 50 counting numbers, and associates that value with total. Thus your code should associate 1*1 + 2*2 + 3*3 +... + 49*49 + 50*50 with total. Use no variables other than k and total. In this sentence, what part of speech is the word in bold?The initial impression was positive. ( the world in bold is initial) verb noun adjective adverb Where did the earliest Chinese writing appear? If the federal government took no other action would slavery still exist in the United States at the end of the war? Why or why not? How well does wollstonecraft use counter arguments in developing her points dr gregory? According to Erik H. Erikson, which challenge do adolescents face?1) gaining trust versus mistrust2) gaining intimacy versus isolation3) taking initiative versus guilt4) gaining identity versus confusion An association has been found between postpartum depression and infant characteristics. what is a major difficulty involved in interpreting this relationship? A cell's mitochondria cease to function, and the cell has no more energy. will all the transport across the plasma membrane stop?