A man is holding a 6.0-kg (weight = 59 N) dumbbell at arm's length, a distance of 0.56 mfrom his shoulder. What is the torque on the shoulder joint from the weight of the dumbbell if thearm is held at 15° above the horizontal? On the picture, draw the lever arm for this force

Answers

Answer 1

Answer:

[tex]\vec \tau = 31.9 N[/tex]

Explanation:

As we know that torque due to a force is given by the formula

[tex]\vec \tau = \vec r \times \vec F[/tex]

here we know that force is exerted due to weight of the mass hold in his hand

so we have

F = mg = 59 N

Now Lever arm is the perpendicular distance on the line of action of force from the axis about which the system is rotated

so here we can say

[tex]r = Lcos\theta [/tex]

[tex]r = 0.56 cos15 = 0.54 m[/tex]

now we have

[tex]\vec \tau = (0.54)(59)[/tex]

[tex]\vec \tau = 31.9 Nm[/tex]

A Man Is Holding A 6.0-kg (weight = 59 N) Dumbbell At Arm's Length, A Distance Of 0.56 Mfrom His Shoulder.

Related Questions

How fast would the International Space Station (ISS) have to travel to maintain a circular orbit a distance of 1400 km above the earth?

Answers

Answer:

The International Space Station move at 7.22 km/s.

Explanation:

Orbital speed of satellite is given by  [tex]v=\sqrt{\frac{GM}{r}}[/tex], where G is gravitational constant, M is mass of Earth and r is the distance to satellite from centre of Earth.

r = R + h = 6350 + 1400 = 7750 km = 7.75 x 10⁶ m

G = 6.673 x 10⁻¹¹ Nm²/kg²

M = 5.98 x 10²⁴ kg

Substituting

              [tex]v=\sqrt{\frac{6.673\times 10^{-11}\times 5.98\times 10^{24}}{7.75\times 10^6}}=7223.86m/s=7.22km/s[/tex]

  The International Space Station move at 7.22 km/s.      

A box of mass 8 kg slides across a frictionless surface at an initial speed 1.5 m/s into a relaxed spring of spring constant 69 N/m. How long is the box in contact with the spring before it bounces off in the opposite direction?

Answers

Answer:

1.1 sec

Explanation:

m = mass of the box = 8 kg

k = spring constant of the spring = 69 N/m

v = initial speed of the box = 1.5 m/s

t = time period of oscillation of box in contact with the spring

Time period is given as

[tex]t = \pi \sqrt{\frac{m}{k}}[/tex]

Inserting the values

[tex]t = (3.14) \sqrt{\frac{8}{69}}[/tex]

t = 1.1 sec

Exposure to high doses of microwaves can cause cellular damage. Estimate how many photons with λ = 12 cm must be absorbed to raise the temperature of an eye by 5.00 °C. Assume the mass of an eye is 11 g and its specific heat capacity is 4.0 J/g·K.

Answers

Answer:

1.33 x 10^26 photons

Explanation:

λ = 12 cm = 0.12 m

Δ T = 5 degree C

m = 11 g = 0.011 kg

c = 4 J/g K = 4000 J / kg K

Let the number of photons are n.

Energy of one photon = h c / λ

Where, h is the Plank's constant and c be the velocity of light.

Energy of n photons, E = n h c / λ

This energy is used to raise the temperature of eye, so

n h c / λ = m c Δ T

n = m c Δ T λ / h c

n = (0.011 x 4000 x 5 x 0.12) / (6.63 x 10^-34 x 3 x 10^8)

n = 1.33 x 10^26

Thus, there are 1.33 x 10^26 photons.

Final answer:

To estimate the number of photons that must be absorbed to raise the temperature of an eye by 5.00 °C, calculate the energy required and convert it into the number of photons using Planck's constant and the frequency of the microwaves.

Explanation:

To estimate the number of photons that must be absorbed to raise the temperature of an eye by 5.00 °C, we need to calculate the amount of energy required and then convert it into the number of photons. Here are the steps:

Calculate the energy required to raise the temperature of the eye. Energy (Q) = mass (m) × specific heat capacity (c) × temperature change (ΔT). Q = 11 g × 4.0 J/g·K × 5.00 °C = 220 J.Convert the energy into electron volts (eV). 1 eV = 1.6 × 10^-19 J. Energy (Q) = 220 J × (1 eV / 1.6 × 10^-19 J) = 1.375 × 10^21 eV.Convert the energy into photons. Photon energy (E) = Planck's constant (h) × frequency (ν). E = 1.375 × 10^21 eV. Rearrange the equation to calculate the number of photons (N). N = E / (h × ν).Calculate the frequency of the microwaves using the wavelength (λ = 12 cm) and the speed of light (c = 3.0 × 10^8 m/s). Frequency (ν) = c / λ. ν = (3.0 × 10^8 m/s) / (0.12 m) = 2.5 × 10^9 Hz.Now, substitute the values into the equation to calculate the number of photons. N = (1.375 × 10^21 eV) / ((6.63 × 10^-34 J·s) × (2.5 × 10^9 Hz)) = 3.30 × 10^11 photons.

Therefore, approximately 3.30 × 10^11 photons with a wavelength of 12 cm must be absorbed to raise the temperature of an eye by 5.00 °C.

Learn more about Microwaves here:

https://brainly.com/question/2088247

#SPJ3

The Space Shuttle rocket ship starts vertically upward from the launch pad acceleration of 6.5 m/sec^2. (a) Find how much time it takes for the rocket ship to accelerate to 100 m/s. (b) At what height above the ground will the ship reach the velocity of 100 m/s?

Answers

Answer:

(a) 15.4 second

(b) 769.23 m

Explanation:

u = 0, a = 6.5 m/s^2, v = 100 m/s

(a) Let t be the time taken

Use First equation of motion

v = u + a t

100 = 0 + 6.5 x t

t = 15.4 second

(b) Let height covered is h.

Use third equation of motion

v^2 = u^2 + 2 a h

100^2 = 0 + 2 x 6.5 x h

10000 = 13 x h

h = 769.23 m

An electric field of 7.50×105 V/m is desired between two parallel plates, each of area 45.0 cm2 and separated by 2.45 mm of air. What charge must be on each plate?

Answers

Answer:

Charge, [tex]q=2.98\times 10^{-8}\ C[/tex]

Explanation:

It is given that,

Value of electric field, [tex]E=7.5\times 10^5\ V/m[/tex]

Area of parallel plates, [tex]A=45\ cm^2=0.0045\ m^2[/tex]

Distance between two parallel plates, d = 2.45 mm = 0.00245 m

For a parallel plate capacitor, the capacitance is given by :

[tex]C=\dfrac{\epsilon_oA}{d}[/tex].......(1)

Since, [tex]E=\dfrac{V}{d}[/tex]

V = E . d ............(2)

And [tex]C=\dfrac{q}{V}[/tex].....(3)

From equation (1), (2) and (3) we get :

[tex]\dfrac{q}{V}=\dfrac{\epsilon_oA}{d}[/tex]

[tex]q=\epsilon_o EA[/tex]

[tex]q=8.85\times 10^{-12}\ F/m\times 7.5\times 10^5\ V/m\times 0.0045\ m^2[/tex]

[tex]q=2.98\times 10^{-8}\ C[/tex]

So, the charge on the each plate is [tex]2.98\times 10^{-8}\ C[/tex]. Hence, this is the required solution.

Final answer:

To determine the charge on each plate for a desired electric field in a capacitor with parallel plates, use the formula Q = E x A x ε_0. Convert the area to m^2, insert all values including the permittivity of free space, and solve for Q.

Explanation:

To find the charge required on each of the parallel plates to create a specific electric field, you can use the relationship between the electric field (E), the charge (Q) on the plates, and the permittivity of free space (ε0). The electric field between two parallel plates is given by the equation:

E = Q / (ε0 × A)

where E is the electric field, Q is the charge on each plate, A is the area of the plates, and ε0 is the permittivity of free space (ε0 = 8.854 x 10−12 C2/N·m2). Rearranging this for Q gives:

Q = E × A × ε0

First, convert the area from cm2 to m2 by multiplying by (10−4)2. Then, plug in the values:

Q = (7.50 × 105 V/m) × (0.45 × 10−4 m2) × (8.854 × 10−12 C2/N·m2)

Calculate Q to find the charge required on each plate.

If a mile of 24-gauge copper wire has a resistance of 0.14 kΩ and the resistivity of copper is 1.7 × 10−8 Ω ⋅ m, what is the diameter of the wire? (1 mile = 1.6 km)

Answers

D = 497.4x10⁻⁶m. The diameter of a mile of 24-gauge copper wire with resistance of 0.14 kΩ and resistivity of copper 1.7×10−8Ω⋅m is 497.4x10⁻⁶m.

In order to solve this problem we have to use the equation that relates resistance and resistivity:

R = ρL/A

Where ρ is the resistivity of the matter, the length of the wire, and A the area of ​​the cross section of the wire.

If a mile of 24-gauge copper wire has a resistance of 0.14 kΩ and the resistivity of copper is 1.7×10⁻⁸ Ω⋅m. Determine the diameter of the wire.

First, we have to clear A from the equation R = ρL/A:

A = ρL/R

Substituting the values

A = [(1.7×10⁻⁸Ω⋅m)(1.6x10³m)]/(0.14x10³Ω)

A = 1.9x10⁻⁷m²

The area of a circle is given by A = πr² = π(D/2)² = πD²/4, to calculate the diameter D we have to clear D from the equation:

D = √4A/π

Substituting the value of A:

D = √4(1.9x10⁻⁷m²)/π

D = 497.4x10⁻⁶m

Final answer:

The diameter of the wire is approximately 4.5 × 10^-6 meters.

Explanation:

To find the diameter of the wire, we can use the formula for resistance:

R = (ρ * L) / (A),

where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire. Rearranging the formula to solve for the area:

A = (ρ * L) / R.

Given that the mile of 24-gauge copper wire has a resistance of 0.14 kΩ (or 0.14 * 10^3 Ω), the resistivity of copper is 1.7 × 10^-8 Ω ⋅ m, and 1 mile is equal to 1.6 km, we can substitute the values in the formula:

A = (1.7 × 10^-8 Ω ⋅ m * (1.6 * 10^3 m)) / (0.14 * 10^3 Ω).

Calculating the area, we find:

A ≈ 1.94 × 10^-11 m^2.

Next, we use the formula for the area of a circle (A = π * r^2) to find the radius (r) of the wire:

r = √(A / π).

Substituting the values, we have:

r ≈ √(1.94 × 10^-11 m^2 / π).

Calculating the radius, we find:

r ≈ 2.25 × 10^-6 m.

Finally, we can double the radius to find the diameter of the wire:

D = 2r ≈ 2 * 2.25 × 10^-6 m = 4.5 × 10^-6 m.

Therefore, the diameter of the wire is approximately 4.5 × 10^-6 meters.

Learn more about diameter of wire here:

https://brainly.com/question/35710519

#SPJ2

A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. What total distance does the mass travel in 16 seconds?

Answers

Explanation:

It is given that,

A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.

In 2 seconds, distance covered by the mass is 12 cm.

In 1 seconds, distance covered by the mass is 6 cm

So, in 16 seconds, distance covered by the mass is 96 cm

So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.

A boat floats with 25% of its volume under water. a. What is the boatâs density?
b. If the boat was made from 500 kg of metal, what is the volume of the boat? (Assume the air in the boat has negligible mass and density)
c. What mass of cargo will cause the boat to float 75% below the water?

Answers

Answer:

(a) 250 kg/m^3

(b) 2 m^3

(c) 1000 kg

Explanation:

(a) Let V be the total volume of the boat.

Volume immersed = 25 % of total volume = 25 V / 100   = V / 4

Let the density of boat is d.

Density of water = 1000 kg/m^3

Use the principle of flotation

Buoyant force on the boat = weight of the boat

Volume immersed x density of water x g = Volume x density of boat x g

V / 4 x 1000 x g = V x d x g

d = 250 kg/m^3

(b)

mass = 500 kg

density = 250 kg/m^3

V = mass / density = m / d = 500 / 250 = 2 m^3

(c) Let the mass of cargo is m.

Volume immeresed = 75 % of total volume = 75 x 2 / 100 = 1.5 m^3

Buoyant force = weight of boat + weight of cargo

1.5 x 1000 x g = 500 g + m g

1500 = 500 + m

m = 1000 kg

A 2 kg block is lifted vertically 2 m by a man What is work done by the man?

Answers

Answer:

Work done, W = 39.2 J

Explanation:

It is given that,

Mass of the block, m = 2 kg

The block is lifted vertically 2 m by the man i.e the distance covered by the block is, h = 2 m. The man is doing work against the gravity. It is given by :

[tex]W=mgh[/tex]

Where

g is acceleration due to gravity

[tex]W=2\ kg\times 9.8\ m/s^2\times 2\ m[/tex]

W = 39.2 J

So, the work done by the man is 39.2 J. Hence, this is the required solution.

The weight of a car of mass 1.20 × 103 kg is supported equally by the four tires, which are inflated to the same gauge pressure. What gauge pressure in the tires is required so the area of contact of each tire with the road is 1.00 × 102 cm2? (1 atm = 1.01 × 105 Pa.)

Answers

Answer:

[tex]P = 2.94 \times 10^5 Pa[/tex]

Explanation:

Normal force due to four tires is counter balancing the weight of the car

So here we will have

[tex]4F_n = mg[/tex]

[tex]F_n = \frac{mg}{4}[/tex]

[tex]F_n = \frac{1.20 \times 10^3 \times 9.81}{4}[/tex]

[tex]F_n = 2943 N[/tex]

now we know that pressure in each tire is given by

[tex]P = \frac{F}{A}[/tex]

Here we know that

[tex]A = 1.00 \times 10^2 cm^2 = 1.00 \times 10^{-2} m^2[/tex]

[tex]P = \frac{2943}{1.00 \times 10^{-2}}[/tex]

[tex]P = 2.94 \times 10^5 Pa[/tex]

Answer:

P = 294300Pa or 42.67psi by conversion.

Explanation:

Since Four tyres were inflated, we have that area of the four tyres are

4×1×10²cm²

Pressure is given as:

P = f/a but f = mg

P = m×g/a

Therefore,

P = 1.20x10³kg × 9.81m/s² / (4 ×1x10² cm²)

P = 1.20x10³kg×9.81m/s² / (0.04m²)

P = 294300Pa or 42.67psi by conversion.

A disc-shaped grindstone with mass 50 kg and diameter 0.52m rotates on frictionless bearings at 850 rev/min. An ax is pushed against the rim (to sharpen it) with a normal force of 160 N. The grindstone subsequently comes to rest in 7.5 seconds. What is the co-efficient of friction between ax and stone?

Answers

Answer:

0.48

Explanation:

m = mass of disc shaped grindstone = 50 kg

d = diameter of the grindstone = 0.52 m

r = radius of the grindstone = (0.5) d = (0.5) (0.52) = 0.26 m

w₀ = initial angular speed = 850 rev/min = 850 (0.10472) rad/s = 88.97 rad/s

t = time taken to stop = 7.5 sec

w = final angular speed  0 rad/s

Using the equation

w = w₀ + α t

0 = 88.97 + α (7.5)

α = - 11.86 rad/s²

F = normal force on the disc by the ax = 160 N

μ = Coefficient of friction

f = frictional force

frictional force is given as

f = μ F

f = 160 μ

Moment of inertia of grindstone is given as

I = (0.5) m r² = (0.5) (50) (0.26)² = 1.69 kgm²

Torque equation is given as

r f = I |α|

(0.26) (160 μ) = (1.69) (11.86)

μ = 0.48

For copper, ρ = 8.93 g/cm3 and M = 63.5 g/mol. Assuming one free electron per copper atom, what is the drift velocity of electrons in a copper wire of radius 0.625 mm carrying a current of 3 A?

Answers

Answer:

The drift velocity of electrons in a copper wire is [tex]1.756\times10^{-4}\ m/s[/tex]

Explanation:

Given that,

Density [tex]\rho=8.93\ g/cm^3[/tex]

Mass [tex]M=63.5\ g/mol[/tex]

Radius = 0.625 mm

Current = 3 A

We need to calculate the drift velocity

Using formula of drift velocity

[tex]v_{d}=\dfrac{J}{ne}[/tex]

Where, n = number of electron

j = current density

We need to calculate the current density

Using formula of current density

[tex] J=\dfrac{I}{\pi r^2}[/tex]

[tex] J=\dfrac{3}{3.14\times(0.625\times10^{-3})^2}[/tex]

[tex] J=2.45\times10^{6}\ A/m^2[/tex]

Now, we calculate the number of electron

Using formula of number of electron

[tex]n=\dfrac{\rho}{M}N_{A}[/tex]

[tex]n=\dfrac{8.93\times10^{6}}{63.5}\times6.2\times10^{23}[/tex]

[tex]n=8.719\times10^{28}\ electron/m^3[/tex]

Now put the value of n and current density into the formula of drift velocity

[tex]v_{d}=\dfrac{2.45\times10^{6}}{8.719\times10^{28}\times1.6\times10^{-19}}[/tex]

[tex]v_{d}=1.756\times10^{-4}\ m/s[/tex]

Hence, The drift velocity of electrons in a copper wire is [tex]1.756\times10^{-4}\ m/s[/tex]

A block of mass m = 1.5 kg is released from rest at a height of H = 0.81 m on a curved frictionless ramp. At the foot of the ramp is a spring whose spring constant is k = 250.0 N/m. What is the maximum compression of the spring, x?

Answers

Answer:

0.31 m

Explanation:

m = mass of the block = 1.5 kg

H = height from which the block is released on ramp = 0.81 m

k = spring constant of the spring = 250 N/m

x = maximum compression of the spring

using conservation of energy

Spring potential energy gained by spring = Potential energy lost by block

(0.5) k x² = mgH

(0.5) (250) x² = (1.5) (9.8) (0.81)

x = 0.31 m

Final answer:

The maximum compression of the spring, when a block of mass 1.5 kg is released from rest at a height of 0.81 m on a frictionless ramp onto a spring with spring constant 250.0 N/m, is approximately 30.7 cm.

Explanation:

To determine the maximum compression of the spring, x, we use the conservation of energy principle. The gravitational potential energy (PE) at the height H will convert to the elastic potential energy (spring PE) in the spring when the block of mass m compresses the spring at the foot of the ramp.

Initially, the block has gravitational potential energy given by PE = mgh, where g = 9.81 m/s2 is the acceleration due to gravity. At the point of maximum compression, all this energy will be stored as elastic potential energy in the spring given by spring PE = ½kx2.

Setting the initial PE equal to the spring PE and solving for x, we get:

mgh = ½kx2

1.5 kg × 9.81 m/s2 × 0.81 m = ½ × 250.0 N/m × x2

x2 = (1.5 kg × 9.81 m/s2 × 0.81 m) / (0.5 × 250.0 N/m)

x2 = (11.7915 kg·m2/s2) / (125.0 N/m)

x2 = 0.094332 m2

x = √0.094332 m2

x ≈ 0.307 m or 30.7 cm

Therefore, the maximum compression of the spring is approximately 30.7 cm.

Two forces are applied to a tree stump to pull it out of the ground. Force A has a magnitude of 2580 newtons (N) and points 36.0 ° south of east, while force B has a magnitude of 2270 N and points due south. Using the component method, find the (a) magnitude and (b) direction of the resultant force A + B that is applied to the stump. Specify the direction as a positive angle with respect to due east.

Answers

Answer:

(a) 4323.67 N

(b) 421.13 degree

Explanation:

A = 2580 N 36 degree South of east

B = 2270 N due South

A = 2580 ( Cos 36 i - Sin 36 j) = 2087.26 i - 1516.49 j

B = 2270 (-j) = - 2270 j

A + B = 2087.26 i - 1516.49 j - 2270 j

A + B = 2087.26 i - 3786.49 j

(a) Magnitude of A + B = [tex]\sqrt{2087.26^{2}+(-3786.49)^{2}}[/tex]

Magnitude of A + B = 4323.67 N

(b) Direction of A + B

Tan theta = - 3786.49 / 2087.26

theta = - 61.13 degree

Angle from ast = 360 - 61.13 = 421.13 degree.

To determine the magnitude and direction of the resultant force acting on a tree stump when two forces are applied, one must resolve the forces into components, sum the components, then apply the Pythagorean theorem for magnitude and inverse tangent for direction.

We need to resolve each force into its horizontal (east-west) and vertical (north-south) components. For Force A, we can use trigonometry to find the components:

Ax = 2580 N * cos(36°)Ay = 2580 N * sin(36°)

Force B is already pointing due south, so its components are:

Bx = 0 N (no east-west component)By = -2270 N (negative because it is directed south)

The net force components are:

Net Force x-component (Fnet,x) = Ax + BxNet Force y-component (Fnet,y) = Ay + By

With these components, the magnitude of the resultant force can be calculated using the Pythagorean theorem:

Fnet = √(Fnet,x² + Fnet,y²)

To find the direction of the resultant force relative to due east, we can use the inverse tangent function (tan-1):

θ = tan-1(Fnet,y / Fnet,x)

This angle should be positive, as we are measuring it with respect to due east.

Compute the torque about the origin of the gravitational force F--mgj acting on a particle of mass m located at 7-xî+ yj and show that this torque is independent of the;y coordinate.

Answers

Answer:

Explanation:

Force, F = - mg j

r = - 7x i + y j

Torque is defined as the product f force and the perpendicular distance.

It is also defined as the cross product of force vector and the displacement vector.

[tex]\overrightarrow{\tau }=\overrightarrow{r}\times \overrightarrow{F}[/tex]

[tex]\overrightarrow{\tau }=(- 7 x i + yj)\times (-mgj)[/tex]

[tex]\overrightarrow{\tau  }= 7 m g x k

Here, we observe that the torque is independent of y coordinate.

A 20.0-μF capacitor is charged to 200 V and is then connected across a 1000-Ω resistor. What is the initial current just after the capacitor is connected to the resistor

Answers

Answer:

i = 0.2 A

Explanation:

R = resistance of the resistor = 1000 Ω

V = Potential difference across the capacitor = Potential difference across the resistor = 200 V

i = initial current just after the capacitor is connected to resistor

Using ohm's law

[tex]i = \frac{V}{R}[/tex]

Inserting the values

[tex]i = \frac{200}{1000}[/tex]

i = 0.2 A

The initial current flowing through a 1000-Ω resistor when a 20.0-μF capacitor charged to 200 V is connected to it is 200 mA.

To find the initial current, we use Ohm's law, which states I = V / R, where I is the current, V is the voltage, and R is the resistance. At the moment the capacitor is connected to the resistor, the voltage across the resistor is the same as the voltage on the capacitor, so we have I = 200 V / 1000 Ω. The initial current is therefore 0.2 A, or 200 mA.

A space station, in the form of a spoked wheel 120 m in diameter, rotates to provide an artificial gravity of 3.00 m/s² for persons who walk around on the inner wall of the outer rim. Find the rate of the wheel’s rotation in revolutions per minute (rpm) that will produce this effect.

Answers

Answer:

2.12 rpm

Explanation:

[tex]a_c= Centripetal\ acceleration=3.00\ m/s^2\\r=radius=\frac {120}{2}=60\ m\\a_c=\frac {v^2}{r}\\\Rightarrow v^2=a_c\times r\\\Rightarrow v^2=3\times 60=180\\\Rightarrow v=\sqrt{180}=13.41\ m/s\\[/tex]

[tex]v=\omega r\\\Rightarrow \omega=\frac {v}{r}\\\Rightarrow \omega=\frac {13.41}{60}\\\Rightarrow \omega=0.2236\ rad/s\\1\ rad/s=9.55\ rpm\\\Rightarrow 0.2236\ rad/s=2.12\ rpm\\\therefore Wheel\ rotations=2.12\ rpm[/tex]

Final answer:

To generate an artificial gravity of 3.00 m/s² on a space station with a 120 m diameter, it must rotate at approximately 2.14 revolutions per minute.

Explanation:

To find the rate of the wheel's rotation in revolutions per minute (rpm) that will provide an artificial gravity of 3.00 m/s² for a space station with a diameter of 120 m, we use the formula for centripetal acceleration:

a = ω² × r

where a is the centripetal acceleration, ω is the angular velocity in radians per second, and r is the radius of the circle.

Since we are looking for ω in revolutions per minute and not radians per second, we will need to convert our solution. First, we find ω in radians per second by rearranging the formula:


ω = √(a/r)

Given a = 3.00 m/s² and the radius r = 60 m (half the diameter),


ω = √(3.00 m/s² / 60 m) = √0.05 s²/m = 0.224 rad/s

One revolution is 2π radians and there are 60 seconds in a minute, so we can find the number of revolutions per minute by


rev/min = ω × (60 s/min) / (2π rad/rev)

Plugging in our value of ω:


rev/min = 0.224 rad/s × (60 s/min) / (2π rad/rev) ≈ 2.14 rev/min

Therefore, the space station must rotate at approximately 2.14 revolutions per minute to produce the desired artificial gravity.

A rod of 2.0-m length and a square (2.0 mm x 2.0 mm) cross section is made of a material with a resistivity of 6.0 x 10^-8 0.Ω.m. If a potential difference of 0.50 V is placed across the ends of the rod, at what rate is heat generated in the rod?

Answers

Answer:

Heat generated in the rod is 8.33 watts.

Explanation:

It is given that,

Length of rod, l = 2 m

Area of cross section, [tex]A=2\ mm\times 2\ mm=4\ mm^2=4\times 10^{-6}\ m^2[/tex]

Resistivity of rod, [tex]\rho=6\times 10^{-8}\ \Omega-m[/tex]

Potential difference, V = 0.5 V

The value of resistance is given by :

[tex]R=\rho\dfrac{l}{A}[/tex]

[tex]R=6\times 10^{-8}\ \Omega-m\times \dfrac{2\ m}{4\times 10^{-6}\ m^2}[/tex]

R = 0.03 ohms

Let H is the rate at which heat is generated in the rod . It is given by :

[tex]\dfrac{H}{t}=I^2R[/tex]

Since, [tex]I=\dfrac{V}{R}[/tex]

[tex]\dfrac{H}{t}=\dfrac{V^2}{R}[/tex]

[tex]\dfrac{H}{t}=\dfrac{(0.5)^2}{0.03}[/tex]

[tex]\dfrac{H}{t}=8.33\ watts[/tex]

So, the at which heat is generated in the rod is 8.33 watts. Hence, this is the required solution.

A 641-C point charge is at the center of a cube with sides of length 0.47 m. What is the electric flux through one of the six faces of the cube? (Give your answer in scientific notation using N.m2/C as unit)

Answers

Answer:

12 × 10^12 Nm^2/C

Explanation:

According to the Gauss's theorem

The total electric flux by the enclosed charge is given by

Charge enclosed / €0

So flux by each surface

= Q enclosed / 6 × €0

= 641 / ( 6 × 8.854 × 10^-12)

= 12 × 10^12 Nm^2/C

A sinusoidal voltage Δv = 35.0 sin 100t, where Δv is in volts and t is in seconds, is applied to a series RLC circuit with L = 165 mH, C = 99.0 µF, and R = 66.0 Ω. (a) What is the impedance of the circuit? Ω (b) What is the maximum current? A (c) Determine the numerical value for ω in the equation i = Imax sin (ωt − ϕ). rad/s (d) Determine the numerical value for ϕ in the equation i = Imax sin (ωt − ϕ).

Answers

(a) 107.2 Ω

The voltage in the circuit is written in the form

[tex]V=V_0 sin(\omega t)[/tex]

where in this case

V0 = 35.0 V is the maximum voltage

[tex]\omega=100 rad/s[/tex]

is the angular frequency

Given the inductance: L = 165 mH = 16.5 H, the reactance of the inductance is:

[tex]X_L = \omega L=(100)(0.165)=16.5 \Omega[/tex]

Given the capacitance: [tex]C=99\mu F=99\cdot 10^{-6} F[/tex], the reactance of the capacitor is:

[tex]X_C = \frac{1}{\omega C}=\frac{1}{(100)(99\cdot 10^{-6})}=101.0 \Omega[/tex]

And given the resistance in the circuit, R = 66.0 Ω, we can now find the impedance of the circuit:

[tex]Z=\sqrt{R^2+(X_L-X_C)^2}=\sqrt{66^2+(16.5-101.0)^2}=107.2\Omega[/tex]

(b) 0.33 A

The maximum current can be calculated by using Ohm's Law for RLC circuit. In fact, we know the maximum voltage:

V0 = 35.0 V

The equivalent of Ohm's law for an RLC circuit is

[tex]I=\frac{V}{Z}[/tex]

where

Z=107.2 Ω

is the impedance. Substituting these values into the formula, we find:

[tex]I=\frac{35.0}{107.2}=0.33 A[/tex]

(c) 100 rad/s

The equation for the current is

[tex]I=I_0 sin(\omega t-\Phi)[/tex]

where

I0 = 0.33 A is the maximum current, which we have calculated previously

[tex]\omega[/tex] is the angular frequency

[tex]\Phi[/tex] is the phase shift

In an RLC circuit, the voltage and the current have the same frequency. Therefore, we can say that

[tex]\omega=100 rad/s[/tex]

also for the current.

(d) -0.907 rad

Here we want to calculate the phase shift [tex]\Phi[/tex], which represents the phase shift of the current with respect to the voltage. This can be calculated by using the equation:

[tex]\Phi = tan^{-1}(\frac{X_L-X_C}{R})[/tex]

Substituting the values that we found in part a), we get

[tex]\Phi = tan^{-1}(\frac{16.5-101.0}{66})=-52^{\circ}[/tex]

And the sign is negative, since the capacitive reactance is larger than the inductive reactance in this case. Converting in radians,

[tex]\theta=-52 \cdot \frac{2\pi}{360}=-0.907 rad[/tex]

So the complete equation of the current would be

[tex]I=0.33sin(100t+0.907)[/tex]

The impedance of the circuit is 107.2 Ω.

The maximum current is 0.33 A.

The numerical value for ω in the equation i = Imax sin (ωt − ϕ). rad/s is 100 rad/s.

The numerical value for ϕ in the equation i = Imax sin (ωt − ϕ) is -0.907 rad.

Calculations and Parameters:

1. To find the voltage, we already know that V0=35V

And the voltage in the circuit is V= V0sin(wt)

Hence, the angular frequency, w= 100 rad/s

Given the inductance is 16.5Ω and the capacitance is 101Ω.

And the resistance is 66Ω

Hence, the impedance of the circuit is [tex]\sqrt{66^{2} + (16.5-101)^2} =107.2[/tex]Ω

2. To find the maximum current, since Z= 107.2Ω,

Recall, I = V/Z

Put the values into the formula

I = 0.33A.

3. To find the numerical value for ω in the equation i = Imax sin (ωt − ϕ)
We recall that I0 = 0.33A

In an RLC circuit, the voltage and the current have the same frequency. Therefore, we can say that

w= 100 rad/s.

4. To find the numerical value for ϕ in the equation i = Imax sin (ωt − ϕ)

Because the sign is in the negative and since the capacitive reactance is larger than the inductive reactance in this case.

Converting in radians,

θ = -52. 2π/360

= -0.907rad.

Hence, the complete equation would be:

I = 0.33sin(100t + 0.907)

Read more about impedance here:

https://brainly.com/question/13134405

A rock climber throws a small first aid kit to another climber who is higher up the mountain. The initial velocity of the kit is 5.70 m/s at an angle of 45.7 ° above the horizontal. At the instant when the kit is caught, it is traveling horizontally, so its vertical speed is zero. What is the vertical height between the two climbers?

Answers

Final answer:

The vertical height between the climbers can be calculated from the projectile motion's kinematic formula: h = (v₀² sin²θ) / 2g. Here, the first aid kit has reached its trajectory's peak when caught, and its vertical velocity component is zero, making it ideal to implement the equation.

Explanation:

In your question, you want to know the vertical height between the two climbers. This is a question in projectile motion in physics. When an object is thrown with an initial velocity at an angle, it creates a trajectory as it travels. When the climber above catches the first aid kit, it's mentioned that it is moving horizontally, which means its vertical speed is zero at that very moment. Hence the first aid kit has reached the maximum height of its trajectory or the peak where the vertical component of the velocity is zero.

We can calculate the vertical distance or height (h) using a formula from kinematics. The formula is: h = (v₀² sin²θ) / 2g. Where v₀ is the initial velocity, θ is the angle of elevation, and g is the acceleration due to gravity (which is ~9.8 m/s² on Earth). Plugging in the values we get: h = (5.70 m/s)² × sin²(45.7 °) / (2 * 9.8 m/s²). Solve this to get the height.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ12

The vertical height between the two climbers is approximately 0.8616 meters.

The vertical height between the two climbers is given by the equation for the vertical displacement in projectile motion:

[tex]\[ h = \frac{{v_{0y}^2}}{{2g}} \][/tex]

First, we need to find the initial vertical component of the velocity[tex](\( v_{0y} \))[/tex]. Since the initial velocity[tex](\( v_0 \))[/tex] is given as 5.70 m/s at an angle of 45.7 we can use the sine function to find [tex]\( v_{0y} \):[/tex]

[tex]\[ v_{0y} = v_0 \sin(\theta) \][/tex]

[tex]\[ v_{0y} = 5.70 \, m/s \times \sin(45.7) \][/tex]

Now, we calculate the sine of 45.7 and multiply it by the initial velocity:

[tex]\[ v_{0y} = 5.70 \, m/s \times 0.721 \][/tex]

[tex]\[ v_{0y} = 4.1117 \, m/s \][/tex]

Next, we use the equation for vertical displacement to find the height h :

[tex]\[ h = \frac{{(4.1117 \, m/s)^2}}{{2 \times 9.81 \, m/s^2}} \][/tex]

[tex]\[ h = \frac{{16.9046 \, m^2/s^2}}{{19.62 \, m/s^2}} \][/tex]

[tex]\[ h = 0.8616 \, m \][/tex]

A small 1.0 kg steel ball rolls west at 3.0 m/s collides with a large 3.0 kg ball at rest. After the collision, the small ball moves south at 2.0 m/s. What is the direction of the momentum (with respect to east) of the large ball after the collision

Answers

Answer:

The direction of the momentum of the large ball after the collision with respect to east is 146.58°.

Explanation:

Given that,

Mass of large ball = 3.0 kg

Mass of steel ball = 1.0 kg

Velocity = 3.0 kg

After collision,

Velocity = 2.0 m/s

Using conservation of momentum

[tex]m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}[/tex]

[tex]3.0\times0+1.0\times(3.0)(-i)=1.0\times2(-j)+3.0\times v_{2}[/tex]

[tex]-3i+2j=3.0\times v_{2}[/tex]

[tex]v_{2}=-i+0.66j[/tex]

The direction of the momentum

[tex]tan\theta=\dfrac{0.66}{-1}[/tex]

[tex]\theta=tan^{-1}\dfrac{0.66}{-1}[/tex]

[tex]\theta=-33.42^{\circ}[/tex]

The direction of the momentum with respect to east

[tex]\theta=180-33.42=146.58^{\circ}[/tex]

Hence, The direction of the momentum of the large ball after the collision with respect to east is 146.58°.

If 5.0 x 10^21 electrons pass through a 20-Ω resistor in 10 min, what is the potential difference across the resistor?

Answers

Answer:

26.67 Volt

Explanation:

number of electrons, n = 5 x 10^21

R = 20 ohm

t = 10 min = 10 x 60 = 600 sec

V = ?

q = n x charge of one electron

q = n x e

q = 5 x 10^21 x 1.6 x 10^-19 = 800 C

i = q / t = 800 / 600 = 4 / 3 A

According to Ohm's law

V = i x R

V = 4 x 20 / 3 = 26.67 Volt

The voltage or potential difference across the resistor is 26.67 Volt.

Given the data in the question;

Number of electrons; [tex]n = 5*10^{21}[/tex]Resistor; [tex]R = 20ohms[/tex]Time elapsed; [tex]t = 10min = 600s[/tex]

Ohm's Law and Resistance

Ohm’s law states that the potential difference between two points is directly proportional to the current flowing through the resistance.

Hence

[tex]V = IR[/tex]

Where V is the voltage or potential difference, potential difference, I is the current and R is the resistance.

First we determine the total charge.

[tex]Q = n * e[/tex]

Where Q is the charge, n is the number of electrons and e is the charge on one electron. ( [tex]e = 1.6 * 10^{-19}C[/tex] )

Hence

[tex]Q = (5*10^{21}) * (1.6 * 10^{-19C)}\\\\Q = 800C[/tex]

Since current is the electric charge transferred per unit time.

[tex]I = \frac{Q}{t}[/tex]

Hence

[tex]I = \frac{800C}{600s}\\ \\I = 1.33A[/tex]

Now, we input our values into the above expression

[tex]V = I * R\\\\V = 1.33A * 20Ohms\\\\V = 26.67Volt[/tex]

Therefore, the voltage or potential difference across the resistor is 26.67 Volt.

Learn more about potential difference: https://brainly.com/question/2364325

Water is travelling at 2.3 m/s through a pipe 3.2 cm in diameter. When the pipe narrows to 2.9 cm in diameter, what is the new speed, in m/s?

Answers

Answer:

New speed of water is 2.8 m/s.

Explanation:

It is given that,

Speed of water, v₁ = 2.3 m/s

Diameter of pipe, d₁ = 3.2 cm

Radius of pipe, r₁ = 1.6 cm = 0.016 m

Area of pipe, [tex]A_1=\pi(0.016)^2=0.000804\ m^2[/tex]

If the pipe narrows its diameter, d₂ = 2.9 cm

Radius, r₂ = 0.0145 m

Area of pipe, [tex]A_2=\pi(0.0145)^2=0.00066\ m^2[/tex]

We need to find the new speed of the water. It can be calculated using equation of continuity as :

[tex]v_1A_1=v_2A_2[/tex]

[tex]v_2=\dfrac{v_1A_1}{A_2}[/tex]

[tex]v_2=\dfrac{2.3\ m\times 0.000804\ m^2}{0.00066\ m^2}[/tex]

[tex]v_2=2.8\ m/s[/tex]

So, the new speed of the water is 2.8 m/s. Hence, this is the required solution.

A crude approximation for the x-component of velocity in an incompressible laminar boundary layer flow is a linear variation from u = 0 at the surface (y = 0) to the freestream velocity, U, at the boundary layer edge (y = δ). The equation for he profile is u = Uy/δ, where δ = cx1/2 and c is a constant. Show that the simplest expression for the y component of velocity is v = uy/4x. Evaluate the maximum value of the ratio v /U, at a location where x = 0.5 m and δ = 5 mm.

Answers

Answer:

v/U=0.79

Explanation:

Given u=[tex]u=\frac{Uy}{\partial }=\frac{Uy}{cx^{1/2}}[/tex]

Now for the given flow to be possible it should satisfy continuity equation

[tex]\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0[/tex]

Applying values in this equation we have

[tex]\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0\\\\\frac{\partial u}{\partial x}=\frac{\partial (\frac{Uy}{cx^{1/2}})}{\partial x}\\\\\frac{\partial u}{\partial x}=\frac{-1}{2}\frac{Uy}{cx^{3/2}}\\\\[/tex]

Thus we have

[tex]\frac{\partial v}{\partial y}=\frac{1}{2}\frac{Uy}{cx^{3/2}}\\\\\therefore \int \partial v=\int \frac{1}{2}\frac{Uy}{cx^{3/2}}\partial x\\\\v=\frac{1}{4}\frac{Uy^{2}}{cx^{3/2}}\\\\v=\frac{1}{4}\frac{uy}{x}[/tex] Hence proved [tex]\because u=\frac{Uy}{cx^{1/2}}[/tex]

For maximum value of v/U put y =[tex]\partial[/tex]

[tex]v=\frac{1}{4}\frac{Uy^{2}}{cx^{3/2}}[/tex]

[tex]v=\frac{1}{4}\frac{Uy^{2}}{cx^{3/2}}\\\\\frac{v}{U}=\frac{\partial ^{2}}{4cx^{3/2}}\\\\[/tex]

Thus solving we get using the given values

v/U=0.79

Final answer:

The y-component of velocity in a boundary layer flow is derived using the principle of continuity for an incompressible fluid. Upon evaluation, the ratio v /U has a maximum of 0.25 at the specified location (x = 0.5 m and δ = 5 mm).

Explanation:

The y-component v of the velocity can be solved using the continuity equation, d/dx (u A) + d/dy (v A) = 0, where A is the cross-sectional area of the pipe. This equation arises from the principle of conservation of mass for an incompressible fluid. In this case, our A is the width of the plate (into the page) times the y-distance from the plate or y*b. When the equation derived for velocity, u = Uy/δ, and the equation for the boundary layer thickness, δ = cx1/2, are plugged into the continuity equation and simplified, we derive the expression v = uy/4x.  Substituting for δ, we get v = Uy/(4δ*sqrt(x)), and at x = 0.5 m and δ = 5 mm, the maximum value of v /U is 1/4 or 0.25.

Learn more about Laminar Flow here:

https://brainly.com/question/33954336

#SPJ3

A box of mass ????=21.0 kgm=21.0 kg is pulled up a ramp that is inclined at an angle ????=21.0∘θ=21.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is ????k=0.285μk=0.285 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of ????=2.09 m/s2a=2.09 m/s2 , calculate the tension ????TFT in the rope. Use ????=9.81 m/s2g=9.81 m/s2 for the acceleration due to gravity.

Answers

Answer:

The tension of the rope is T= 172.52 N

Explanation:

m= 21 kg

α= 21º

μ= 0.285

a= 2.09 m/s²

g= 9.81 m/s²

W= m*g

W=206.01 N

Fr= μ*W*cos(α)

Fr= 54.81 N

Fx= W * sin(α)

Fx= 73.82 N

T-Fr-Fx = m*a

T= m*a + Fr + Fx

T= 172.52 N

The magnitude of the force of motion of an object pulled by a rope up an inclined plane is the tension in the rope less the frictional forces as well as the component of the weight of the object acting along the plane

The tension in the rope is approximately 172.53 Newtons

Known:

The mass of the box, m = 21.0 kg

The angle of inclination of the ramp, θ = 21.0°

The coefficient of kinetic friction, μk= 0.285

The acceleration of the box up the ramp, a = 2.09 m/s²

The acceleration due to gravity, g = 9.81 m/s²

Required:

The tension in the rope, T

Solution;

The normal reaction of the box, N = m × g × cos(θ)

∴ N = 21.0 × 9.81 × cos(21.0°) ≈ 192.33

The normal reaction, N ≈ 192.33 N

The frictional force, [tex]F_f[/tex] = μ × N

∴ [tex]F_f[/tex] = 0.285 × 192.33 ≈ 54.81405

The frictional force, [tex]F_f[/tex] ≈ 54.81405 N

The force pulling the box, F = m×a = T - [tex]F_f[/tex] - The component of the weight acting along the plane

The component of the weight acting along the plane = m·g·sin(θ)

∴ m×a = T - [tex]F_f[/tex] - m·g·sin(θ)

T = m×a + [tex]F_f[/tex] + m·g·sin(θ)

Which gives;

T = 21.0 × 2.09 + 54.81405 + 21.0 × 9.81 × sin(21.0°) ≈ 172.53

The tension in the rope, T ≈ 172.53 N

Learn more about motion on an inclined plane here:

https://brainly.com/question/13881699

B. A hydraulic jack has a ram of 20 cm diameter and a plunger of 3 cm diameter. It is used for lifting a weight of 3 tons. Find the force required at the plunger.

a. 675.2kgf

b. 67.52kgf

c. 6752.0kgf

d. None of the above

Answers

Answer:

option (b)

Explanation:

According to the Pascal's law

F / A = f / a

Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.

Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm

A = π R^2 = π x 100 cm^2

F = 3 tons = 3000 kgf

diameter of plunger, d = 3 cm, r = 1.5 cm

a = π x 2.25 cm^2

Use Pascal's law

3000 / π x 100 = f / π x 2.25

f = 67.5 Kgf

Two converging lenses with focal lengths of 40 cm and 20 cm are 16 cm apart. A 2.0 cm -tall object is 14 cm in front of the 40 cm -focal-length lens.

Calculate the image position.

Calculate the image height.

Answers

The final image position is 4.34 cm to the right of the second lens, and the final image height is 2.4 cm.

First, we will consider the object in front of the first lens (with a focal length of 40 cm). The object is placed 14 cm in front of this lens.

For the first lens, the lens equation is given by:

[tex]\[\frac{1}{f_1} = \frac{1}{d_o} + \frac{1}{d_i}\][/tex]

where [tex]\(f_1\)[/tex] is the focal length of the first lens, [tex]\(d_o\)[/tex] is the object distance from the first lens, and [tex]\(d_i\)[/tex] is the image distance from the first lens.

Rearranging the equation to solve for [tex]\(d_i\)[/tex], we get:

[tex]\[d_i = \frac{f_1 \cdot d_o}{d_o - f_1}\][/tex]

Plugging in the values:

[tex]\[d_i = \frac{40 \cdot 14}{14 - 40}\] \[d_i = \frac{560}{-26}\] \[d_i = -21.54 \text{ cm}\][/tex]

This means the image formed by the first lens is 21.54 cm to the left of the first lens (virtual image).

Next, we calculate the height of this image using the magnification equation:

[tex]\[m_1 = -\frac{d_i}{d_o}\] \[m_1 = -\frac{-21.54}{14}\] \[m_1 = 1.54\][/tex]

The height of the image formed by the first lens is:

[tex]\[h_i = m_1 \cdot h_o\][/tex]

where [tex]\(h_o\)[/tex] is the object height (2.0 cm).

So, [tex]\(h_i = 1.54 \cdot 2.0\)[/tex]

[tex]\[h_i = 3.08 \text{ cm}\][/tex]

Now, this image becomes the object for the second lens (with a focal length of 20 cm). The distance between the two lenses is 16 cm, so the object distance for the second lens is the image distance from the first lens plus 16 cm.

For the second lens, the object distance [tex]\(d_o'\)[/tex] is:

[tex]\[d_o' = -21.54 + 16\] \[d_o' = -5.54 \text{ cm}\][/tex]

Using the lens equation for the second lens:

[tex]\[\frac{1}{f_2} = \frac{1}{d_o'} + \frac{1}{d_i'}\][/tex]

where [tex]\(f_2\)[/tex] is the focal length of the second lens, [tex]\(d_o'\)[/tex] is the object distance from the second lens, and [tex]\(d_i'\)[/tex] is the image distance from the second lens.

Rearranging the equation to solve for [tex]\(d_i'\)[/tex], we get:

[tex]\[d_i' = \frac{f_2 \cdot d_o'}{d_o' - f_2}\][/tex]

Plugging in the values:

[tex]\[d_i' = \frac{20 \cdot (-5.54)}{-5.54 - 20}\] \[d_i' = \frac{-110.8}{-25.54}\] \[d_i' = 4.34 \text{ cm}\][/tex]

This means the final image is 4.34 cm to the right of the second lens (real image).

To find the height of the final image, we use the magnification equation for the second lens:

[tex]\[m_2 = -\frac{d_i'}{d_o'}\] \[m_2 = -\frac{4.34}{-5.54}\] \[m_2 = 0.78\][/tex]

The height of the final image is:

[tex]\[h_i' = m_2 \cdot h_i\] \[h_i' = 0.78 \cdot 3.08\] \[h_i' = 2.4 \text{ cm}\][/tex]

travelling with velocity 1) Calculate the energy E (in eV) and direction vector Ω for a neutron v= 2132 +3300+154 k [m/sec]. (3 points) ^ ^

Answers

Answer:

[tex]K.E =0.081eV[/tex]

[tex]\vec{\Omega}=(0.54\hat{i}+0.83\hat{j}+0.039\hat{k}[/tex]

Explanation:

Given:

Velocity vector [tex]\vec{v}=(2132\hat{i}+3300\hat{j}+154\hat{k})m/s[/tex]

the mass of neutron, m = 1.67 × 10⁻²⁷ kg

Now,

the kinetic energy (K.E) is given as:

[tex]K.E =\frac{1}{2}mv^2[/tex]

[tex]\vec{v}^2 = \vec{v}.\vec{v}[/tex]

or

[tex]\vec{v}^2 = (2132\hat{i}+3300\hat{j}+154\hat{k}).(2132\hat{i}+3300\hat{j}+154\hat{k})[/tex]

or

[tex]\vec{v}^2 =15.45\times 10^6 m^2/s^2[/tex]

substituting the values in the K.E equation

[tex]K.E =\frac{1}{2}1.67\times 10^{-27}kg\times 15.45\times 10^6 m^2/s^2[/tex]

or

[tex]K.E =1.2989\times 10^{-20}J[/tex]

also

1J = 6.242 × 10¹⁸ eV

thus,

[tex]K.E =1.2989\times 10^{-20}\times 6.242\times 10^{18}[/tex]

[tex]K.E =0.081eV[/tex]

Now, the direction vector [tex]\vec{\Omega}[/tex]

[tex]\vec{\Omega}=\frac{\vec{v}}{\left | \vec{v} \right |}[/tex]

or

[tex]\vec{\Omega}=\frac{(2132\hat{i}+3300\hat{j}+154\hat{k})}{\left |\sqrt{((2132\hat{i})^2+(3300\hat{j})^2+(154\hat{k}))^2} \right |}[/tex]

or

[tex]\vec{\Omega}=\frac{(2132\hat{i}+3300\hat{j}+154\hat{k})}{3930.65}[/tex]

or

[tex]\vec{\Omega}=0.54\hat{i}+0.83\hat{j}+0.039\hat{k}[/tex]

You make a simple instrument out of two tubes which looks like a flute and extends like a trombone. One tube is placed within another tube to extend the length of the instrument. There is an insignificantly small hole on the side of the instrument to blow on. Other than this, the instrument behaves as a tube with one end closed and one end open. You lengthen the instrument just enough so it emits a 1975Hz tone when you blow on it, which is the 4th allowed wave for this configuration. The speed of sound in air at STP is 343m/s.

The instrument's sound encounters warmer air which doubles its speed. What is the new amplitude of this sound, in m, if the original sound has an amplitude of 0.5m?

The instrument's sound encounters warmer air which doubles its speed. What is the new wavelength of this sound in m?

The instrument's sound encounters warmer air which doubles its speed. What is the new frequency of this sound in Hz?

What length do you have to extend the instrument to for it to make this sound in m?

What is the fundamental frequency of the instrument at this length in Hz?

Your friend has a similar instrument which plays a tone of 2034.25 Hz right next to yours so they interfere. What will the frequency of the combined tone be in Hz?

You play your instrument in a car travelling at 12m/s away from your friend travelling on a bicycle 4m/s away from you. What frequency does your friend hear in Hz?

Answers

Explanation:

We know

the frequency of the tube with one end open and the other end closed follows the given relations as

[tex]f_{1}[/tex] : [tex]f_{2}[/tex] : [tex]f_{3}[/tex] : [tex]f_{4}[/tex] = 1 : 3 : 5 : 7

∴ the 4th allowed wave is [tex]f_{4}[/tex] = 7 [tex]f_{1}[/tex]

                                                                   = [tex]\frac{7v}{4l}[/tex]

We know  [tex]f_{4}[/tex] = 1975 Hz and v = 343 m/s ( as given in question )

∴[tex]l = \frac{7\times v}{4\times f_{4}}[/tex]

 [tex]l = \frac{7\times 343}{4\times 1975}[/tex]

           = 0.303 m

We know that v = [tex]f_{4}[/tex] x [tex]λ_{4}[/tex]

[tex]\lambda _{4}= \frac{v}{f_{4}}[/tex]

[tex]\lambda _{4}= \frac{343}{1975}[/tex]

                            = 0.17 m

Now when the warmer air is flowing, the speed gets doubled and the mean temperature increases. And as a result the wavelength increases but the amplitude and the frequency remains the same.

So we can write

v ∝ λ

or  [tex]\frac{v_{1}}{v_{2}}= \frac{\lambda _{1}}{\lambda _{2}}[/tex]

Therefore, the wavelength becomes doubled = 0.17 x 2

                                                                             = 0.34 m

Now the new length of the air column becomes doubled

∴ [tex]l^{'}[/tex] = 0.3 x 2

                        = 0.6 m

∴ New speed, [tex]v^{'}[/tex] = 2 x 343

                                               = 686 m/s

∴ New frequency is [tex]f^{'}=\frac{v^{'}}{4\times l^{'}}[/tex]

                                 [tex]f^{'}=\frac{686}{4\times 0.6}[/tex]

                                               = 283 Hz

∴ The new frequency remains the same.

Now we know

[tex]v_{s}[/tex] = 12 m/s, [tex]v_{o}[/tex] = 4 m/s, [tex]f_{o}[/tex] = 1975 Hz

Therefore, apparent frequency is [tex]f^{'}=f^{o}\left ( \frac{v+v_{s}}{v+v_{o}} \right )[/tex]

[tex]f^{'}=1975\left ( \frac{343+12}{343+4} \right )[/tex]

            = 2020.5 Hz

Other Questions
solve ABC c=10, B=35, C=65% Which of the following is in the solution set of y < 8x + 3?(10, 84)(7, 52)(7, 69)(9, 88) How does connective tissue differ from the other three major tissue types?A.Connective tissue often consists of relatively few cells embedded in an extracellular matrix.B.Connective tissue consists of contractile proteins.C.Connective tissue consists of cells capable of transmitting electrical impulses.D.There are three types of connective tissue.E.Connective tissue is found lining body surfaces. A bat can detect small objects, such as an insect, whose size is approximately equal to one wavelength of the sound the bat makes. If bats emit a chirp at a frequency of 7.84 104 Hz, and if the speed of sound in air is 343 m/s, what is the smallest insect a bat can detect? Express the hcf of 234 and 111 as 234x and111y.where x and y are integers give three other environmental factors that would increase the rate of water loss from plants Enter a balanced chemical equation for the combustion of gaseous methanol. what is the p(x) and profit for selling 100 tickets Baron de montesquieu was an enlightenment philosopher from WHOEVER ANSWERS FIRST GETS BRAINLIEST!!!!Which statements are true regarding the sequence below? Check all that apply.A: The domain is a set of natural numbersB: The range is a set of natural numbersC: The recursive formula representing the sequence is f(x + 1) = 3/2(f(x )) when f(1) = 4. D: An explicit formula representing the sequence isf(x) = 4 (3/2)^xE: The sequence shows exponential growth. A scientist uses a simulation because it: A. Provides the most meaningful type of information B. Costs less money than a real experiment C. Is more fun than making measurements in the natural world D. Can help make sense of a difficult problem A very rigid materialone that stretches or compresses only slightly under large forceshas a large value of __________.A. Young's modulusB. densityC. tensile strengthD. elastic limit 15 POINTS PLEASE HELP AND STAY ON MY ACC IF U GUD AT ENGLISH CAUSE I NEED HECKA HELPConsider this: someone stole the cookies from the cookie jar. If you dont know the person performing an action and you want to emphasize the stolen cookies, what sentence structure would be the best fit for your purpose? A. Active B. Passive C. You should never use passive. D. You should never use active. what did mussolini do after becoming a leader In a negligence action in a jurisdiction that had adopted comparative negligence, a jury rendered a verdict that the plaintiff suffered $90,000 in damages and was 10 percent at fault. The plaintiffs attorney had presented evidence and argued in his closing argument that the plaintiffs damages were $100,000. Immediately after the verdict, the plaintiff, with permission from the court, discussed the case with all six of the jurors together before they left the courtroom. The plaintiff discovered that each of the jurors thought, contrary to the courts instructions, that the damage amount was the amount that the plaintiff would receive, rather than the amount from which 10 percent would be deducted. The plaintiff seeks to offer testimony from each juror to that effect in order to increase the amount of the verdict to $100,000. Is the testimony of the jurors admissible?A. Yes, because a mistake was made by the jury in rendering its verdict.B. Yes, because the jury misunderstanding was related to the applicable law, rather than the facts.C. No, because a juror cannot be questioned about a verdict in the presence of the other jurors.D. No, because a juror cannot testify as to any jurors mental processes concerning a verdict. An achiral hydrocarbon A of molecular formula C7H12 reacts with two equivalents of H2 in the presence of Pd-C to form CH3CH2CH2CH2CH(CH3)2. One oxidative cleavage product formed by the treatment of A with O3 is CH3COOH. Reaction of A with H2 and Lindlar catalyst forms B, and reaction of A with Na, NH3 forms C. Identify compounds A, B, and C. Be sure to answer all parts. What would display if the following pseudocode was coded and executed? Declare String user = "Martha and George" Declare Integer number Set number = length(user) Display number What is white flight?A. When whites move into neighborhoods abandoned by minoritiesB. When the upper class moves out of neighborhoods after middle-class families move inc. When whites move out of neighborhoods after minorities move inD. When whites move into neighborhoods where minorities live A digital computer has a memory unit with 24 bits per word. The instruction set consists of 150 different operations. All instructions have an operation code part (opcode) and an address part (allowing for only one address). Each instruction is stored in one word of memory. How many bits are needed for the opcode? A diesel engine with CR= 20 has inlet at 520R, a maximum pressure of 920 psia and maximum temperature of 3200 R. With cold air properties find the cutoff ratio, the expansion ratio v4/v3, and the exhaust temperature.