A mixture of He
, N2
, and Ar
has a pressure of 13.6
atm at 28.0
°C. If the partial pressure of He
is 1831
torr and that of Ar
is 997
mm Hg, what is the partial pressure of N2
?

Answers

Answer 1

Answer : The partial pressure of nitrogen gas in the mixture is, 9.88 atm

Explanation :

According to the Dalton's Law, the total pressure of the gas is equal to the sum of the partial pressure of individual gases.

Formula used :

[tex]p_T=p_{He}+p_{Ar}+p_{N_2}[/tex]

where,

[tex]p_T[/tex] = total pressure of gas  = 13.6 atm

[tex]p_{He}[/tex] = partial pressure of helium gas  = 1831 torr =  2.41 atm

[tex]p_{Ar}[/tex] = partial pressure of argon gas  = 997 torr =  1.31 atm

Conversion used: (1 atm = 760 torr)

[tex]p_{N_2}[/tex] = partial pressure of nitrogen gas  = ?

Now put all the given values in the above formula, we get:

[tex]13.6=2.41+1.31+p_{N_2}[/tex]

[tex]p_{N_2}=9.88atm[/tex]

Thus, the partial pressure of nitrogen gas in the mixture is, 9.88 atm


Related Questions

A sample of an unknown gas effuses in 12.5 min. An equal volume of H2 in the same apparatus under the same conditions effuses in 2.42 min. What is the molar mass of the unknown gas

Answers

Answer:

53.4 gMol-1

Explanation:

Let the mass of the unknown gas be M

Let the molar mass of hydrogen gas be 2×1=2gMol-1

Time for diffusion of unknown gas = 12.5 min

Time for diffusion of hydrogen= 2.42 min

From Graham's law:

t1/t2=√M1/M2

Hence:

2.42/12.5= √2/M

Hence M= 53.4 gMol-1

Answer:

The molar mass of the unknown gas is 40.06 g/mol

Explanation:

Graham's law of effusion states that the rate of effusion of a gaseous substance is inversely proportional to the square root of its molar mass.

[tex]\frac{R_{b} }{R_{a} } = \sqrt{\frac{M_{a} }{M_{b} } }[/tex]  [tex]= \frac{t_{a} }{t_{b} }[/tex] where R = rate of effusion, M = molar mass and t= time of effusion

⇒ [tex]\sqrt{\frac{2 g/mol}{x g/mol} } = \frac{162secs}{725secs}[/tex]

x g/mol = [tex]\frac{2}{0.223448^{2} }[/tex]

= 40.06 g/mol

What is the partial pressure of carbon dioxide in a container that contains 3.63 mol of oxygen, 1.49 mol of nitrogen, and 4.49 mol of carbon dioxide when the total pressure is 871 mmHg?

Answers

Answer:

Partial pressure of CO₂ is 406.9 mmHg

Explanation:

To solve the question we should apply the concept of the mole fraction.

Mole fraction = Moles of gas / Total moles

We have the total moles of the mixture, if we have the moles for each gas inside. (3.63 moles of O₂, 1.49 moles of N₂ and 4.49 moles of CO₂)

Total moles = 3.63 mol O₂ + 1.49 mol N₂ + 4.49 mol CO₂ = 9.61 moles

To determiine the partial pressure of CO₂ we apply

Mole fraction of CO₂ → mol of CO₂ / Total moles = P. pressure CO₂ / Total P

Partial pressure of CO₂ = (mol of CO₂ / Total moles) . Total pressure

We replace values: (4.49 moles / 9.61 moles) . 871 mmHg = 406.9 mmHg

Answer:

Partial pressure O2 = 329 mmHg

Partial pressure N2 = 135 mmHg

Partial pressure CO2 = 407 mmHg

Explanation:

Step 1: Data given

Number of moles oxygen (O2) = 3.63 moles

Number of moles nitrogen (N2) = 1.49 moles

Number of moles carbon dioxide (CO2) = 4.49 moles

Total pressure = 871 mmHg

Step 2: Calculate total number of moles

Total moles = moles O2 + moles N2 + moles CO2

Total moles = 3.63 + 1.49 + 4.49

Total moles =  9.61 moles

Step 3: Calculate the mol ratio

Mol ratio number of moles compound / total moles

Mol ratio O2 = 3.63 moles / 9.61 moles

Mol ratio O2 = 0.378

Mol ratio N2 = 1.49 moles / 9.61 moles

Mol ratio N2 = 0.155

Mol ratio CO2 = 4.49 moles / 9.61 moles

Mol ratio CO2 = 0.467

Step 4: Calculate partial pressure

Partial pressure = mol ratio * total pressure

Partial pressure O2 = 0.378 * 871 mmHg

Partial pressure O2 = 329 mmHg

Partial pressure N2 = 0.155 * 871mmHg

Partial pressure N2 = 135 mmHg

Partial pressure CO2 = 0.467 * 871 mmHg

Partial pressure CO2 = 407 mmHg

Select all the correct locations on the image. The model shows global atmospheric circulation. Identify the wind directions that are correct.

Answers

Answer:1 2 4

Explanation:

Answer: 1.3.5.6.

Explanation:

Density is a physical property that relates the mass of a substance to its volume. Calculate the density, in g / mL , of a liquid that has a mass of 0.175 g and a volume of 0.000225 L.

Answers

Answer: Density = 0.77g/ml

Explanation:

From the question,

Mass = 0.175g

Volume = 0.000225L

Convert the volume in Litres to Millilitres by multiplying it by 1000, hence the volume is 0.225ml.

Therefore,

Density = mass / volume

0.175g / 0.225ml = 0.77g/ml

Answer:

Density = Mass/ Volume,

Mass = 0.000175kg

Volume = 0.000225L,

Density = 0.000175/ 0.000225

Density = 0.78kg/L

Explanation:

Density is an important physical property. Density is the mass of a substance per unit volume. Volume is the amount of space an object occupies. Chemical properties- These are properties that can only be observed by changing the identity of the substance.

Write a balanced half-reaction for the oxidation of gaseous arsine AsH3 to aqueous arsenic acid H3AsO4 in acidic aqueous solution. Be sure to add physical state symbols where appropriate.

Answers

Answer:

AsH3(g) + 4H2O(l)------> H3AsO4(aq) +8H^+(aq) + 8e-

Explanation:

Now we need to work through the problem in steps.

Step1: reaction of arsine with water

AsH3(g) + 4H2O(l) -----> H3AsO4(aq) this is the molecular reaction

Step II: oxygen is balanced using hydrogen ions

AsH3(g) + 4H2O(l)------> H3AsO4(aq) +8H^+(aq)

Step III: We specify the number of electrons transferred in the redox reaction

AsH3(g) + 4H2O(l)------> H3AsO4(aq) +8H^+(aq) + 8e-

The balanced half-reaction for the oxidation of gaseous arsine AsH₃ to

aqueous arsenic acid H₃AsO₄ in acidic aqueous solution is

AsH₃(g) + 4H₂O(l)------> H₃AsO₄(aq) +8H+(aq) + 8e-

The first step involves reaction of arsine with water

AsH₃(g) + 4H₂O(l) -----> H₃AsO₄(aq)

The second step involves balancing oxygen using hydrogen ions

AsH₃(g) + 4H₂O(l)------> H₃AsO₄(aq) +8H⁺(aq)

The third and final step involves noting the the number of electrons transferred in the redox reaction

AsH₃(g) + 4H₂O(l)------> H₃AsO4(aq) +8H⁺(aq) + 8e⁻

Read more on https://brainly.com/question/16069439

At 5 atmospheres of pressure and 70oC, how many moles are present in 1.5 L of O2 gas?

Answers

Answer:

0.27 mol

Explanation:

Given data

Pressure (P): 5 atmTemperature (T): 70°CVolume (V): 1.5 LMoles of O₂ (n): ?

Step 1: Convert the temperature to the Kelvin scale

When working with gases, we need to convert all temperatures to the absolute scale, using the following expression.

[tex]K = \° + 273.15\\K = 70 + 273.15 = 343 K[/tex]

Step 2: Calculate the moles of gaseous oxygen

We will apply the ideal gas equation.

[tex]P \times V = n \times R \times T\\n = \frac{P \times V}{R \times T} = \frac{5 atm \times 1.5 L}{\frac{0.0821atm.L}{mol.K} \times 343 K} = 0.27 mol[/tex]

What is the name of this compound?
CH3CH2OCH2CH2CH3

Answers

Answer:

(B) ethyl-propyl-ether

Explanation:

ethyl-propyl-ether

a step by step explanation

As the compound has ether as functional group the name of the compound is ethyl propyl ether.

Functional group is defined as a substituent or group of toms or an atom which causes chemical reactions.Each functional group will react similarly regardless to the parent carbon chain to which it is attached.This helps in prediction of chemical reactions.

The reactivity of functional group can be enhanced by making modifications in the functional group .Atoms present in functional groups are linked to each other by means of covalent bonds.They are named along with organic compounds according to IUPAC nomenclature.

The compound has ether as functional group,thus  the name of the compound is ethyl propyl ether.

Learn more about functional group,here:

https://brainly.com/question/33836452

#SPJ6

Problem PageQuestion The airbags that protect people in car crashes are inflated by the extremely rapid decomposition of sodium azide, which produces large volumes of nitrogen gas. 1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide () into solid sodium and gaseous dinitrogen. 2. Suppose of dinitrogen gas are produced by this reaction, at a temperature of and pressure of exactly . Calculate the mass of sodium azide that must have reacted. Round your answer to significant digits.

Answers

Answer:

1. 2NaN₃(s) → 2Na(s) + 3N₂(g)

2. 14.5 g NaN₃

Explanation:

The answer is incomplete, as it is missing the required values to solve the problem. An internet search shows me these values for this question. Keep in mind that if your values are different your result will be different as well, but the solving methodology won't change.

" The airbags that protect people in car crashes are inflated by the extremely rapid decomposition of sodium azide, which produces large volumes of nitrogen gas. 1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen. 2. Suppose 71.0 L of dinitrogen gas are produced by this reaction, at a temperature of 16.0 °C and pressure of exactly 1 atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits. "

1. The reaction that takes place is:

2NaN₃(s) → 2Na(s) + 3N₂(g)

2. We use PV=nRT to calculate the moles of N₂ that were produced.

P = 1 atm

V = 71.0 L

n = ?

T = 16.0 °C ⇒ 16.0 + 273.16 = 289.16 K

1 atm * 71.0 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 289.16 Kn = 0.334 mol

Now we convert N₂ moles to NaN₃ moles:

0.334 mol N₂ * [tex]\frac{2molNaN_{3}}{3molN_2}[/tex] = 0.223 mol NaN₃

Finally we convert NaN₃ moles to grams, using its molar mass:

0.223 mol NaN₃ * 65 g/mol = 14.5 g NaN₃

Which of the following substances is never a Brønsted-Lowry base in an aqueous solution?Group of answer choicespotassium hydroxide, KOHsodium hydrogen phosphate, Na2HPO4sodium phosphate, Na3PO4ammonium chloride, NH4Clsodium bicarbonate, NaHCO3

Answers

Among the following substances, NH₄Cl is never a Brønsted-Lowry base in an aqueous solution because it is a salt.

What is Brønsted-Lowry base?

There are different types of theories of acids and bases like Arrhenius theory, Bronsted Lowry theory and Lewis acids and bases theory. According to Bronsted Lowry theory, acids are the substances which release H+ ions in the solution and bases are the substances which accepts H+ ions in the solution.

This also introduce the concept of conjugate acid base pair. A salt can never be an acid or a base because it is made up of both of them.

Given options are sodium hydrogen phosphate, sodium phosphate, ammonium chloride, sodium bicarbonate and Potassium Hydroxide.

Therefore, Among the following substances, NH₄Cl is never a Brønsted-Lowry base in an aqueous solution because it is a salt.

Learn more about Brønsted-Lowry base, here:

https://brainly.com/question/21736327

#SPJ2

The Brønsted-Lowry theory, ammonium chloride (NH₄Cl) is never a base in an aqueous solution. It dissociates into NH₄+ and Cl-, where NH₄+ acts as a Brønsted-Lowry acid. This makes NH₄Cl the correct answer.

The Brønsted-Lowry theory defines a base as a substance that can accept a proton (H+) during a chemical reaction. In an aqueous solution, the behavior of different substances can be predicted based on this definition.

Potassium hydroxide (KOH): This is a strong base as it dissociates completely in water to give OH- ions.Sodium hydrogen phosphate (Na₂HPO₄): This compound can act as a base because the HPO₄²- ion can accept a proton.Sodium phosphate (Na₃PO₄): This compound can also behave as a base, with the PO₄³- ion capable of accepting protons.Ammonium chloride (NH₄Cl): This substance does not act as a Brønsted-Lowry base. In aqueous solution, it dissociates into NH₄+ and Cl-, where NH4+ is an acid (the conjugate acid of the weak base NH₃).Sodium bicarbonate (NaHCO₃): This compound can act as a base because the HCO₃- ion can accept a proton.

Based on the Brønsted-Lowry definition, ammonium chloride (NH₄Cl) is never a base in an aqueous solution.

The expected first intermediate formed during a halohydrin reaction is:
a. a cyclic oxonium ion.
b. the most stable carbocation with OH on the adjacent carbon.
c. ahalonium ion.
d. the most stable carbanion.
e. the most stable carbocation with X on the adjacent carbon.

Answers

Final answer:

The first intermediate formed during a halohydrin reaction is a halonium ion. This intermediate is key in the process of adding a halogen and an OH group to adjacent carbons in the formation of halohydrins.

Explanation:

The expected first intermediate formed during a halohydrin reaction is c. ahalonium ion. In the presence of a halogen and water, the reaction of an alkene leads to the formation of a halonium ion intermediate. Specifically, the alkene undergoes an addition reaction with a halogen such as bromine or chlorine to form a three-membered ring halonium intermediate. This is followed by the nucleophilic attack by water, which opens the ring and leads to the formation of the halohydrin, with the halogen and an OH group on two adjacent carbons. Halohydrins such as bromohydrins or chlorohydrins are important intermediates in organic synthesis.

The Ph scale is logarithmic; how many times stronger is a Ph of 4 versus a Ph of 2?

Answers

Answer:

A pH greater than 7 is basic. The pH scale is logarithmic and as a result, each whole pH value below 7 is ten times more acidic than the next higher value. For example, pH 4 is ten times more acidic than pH 5 and 100 times (10 times 10) more acidic than pH 6.

Cycloalkanes are (saturated/unsaturated) compounds.
(which one)

Answers

Answer:

Saturated .

Explanation:

What are two causes of soil loss?​

Answers

Answer: The agents of soil erosion are the same as of other types of erosion for example water, ice, wind, and gravity. Soil erosion is more likely where the ground has been disturbed by agriculture, grazing animals, logging, mining, construction, and recreational activities.Basically what I mean is some causes of solid loss is mining, construction

Element X reacts with hydrogen gas at 200°C to form compound Y. When Y is heated to a higher temperature, it decomposes to the element X and hydrogen gas in the ratio of 559 mL of H2 (measured at standard temperature and pressure) for 1.00 g of X reacted. X also combines with chlorine to form a compound Z, which contains 63.89 percent by mass of chlorine. Deduce the identity of X. The symbol of element X is

Answers

Answer:

X is calcium with the symbol Ca

Explanation:

From the first statement:

X reacted with H2 to produce Z i.e

X + H2 —> Y

Y is heated to form X and H2 i.e

Y —> X + H2

Let us obtain moles of H2 produced. This is illustrated below:

Volume of H2 produced = 559 mL = 0.559 L.

I mole of H2 occupy 22.4L at stp

Therefore, b mol of H2 will occupy 0.559 L at stp i.e

b mol of H2 = 0.559/22.4

b mol of H2 = 0.025 mole

Next 0.025 mole of H2 to gram..

Molar Mass of H2 = 2x1 = 2g/mol

Mole of H2 = 0.025 mole

Mass = number of mole x molar Mass

Mass of H2 = 0.025 x 2

Mass of H2 = 0.05g

From the question given, we were told that 1g of X reacted. This means that 1g of X reacted with 0.05g of H2. Now let us determine the mass of X that will react with 1 mol ( i.e 2g) of H2. This is illustrated below:

From the reaction,

It was discovered that 1g of X reacted with 0.05g of H2.

Therefore, P g of X will react with 2g of H2 i.e

P g of X = 2/0.05 = 40g/mol

The molar mass of X is 40g/mol.

Now let us consider the second statement to see if we'll obtained the same result as 40g/mol of X

From the second statement:

X also combines with chlorine to form a compound Z, which contains 63.89 percent by mass of chlorine i.e

X + Cl2 —> Z

Molar Mass of Z (X + 2Cl) = X + (35.5 x 2) = X + 71.

Z contains 63.89% by mass of Cl2.

We can obtain the molar mass of X as follow:

Percentage by mass of Cl2 in the compound Z is given by:

Mass of Cl2/Molar Mass x100

63.89/100 = 71/(X + 71)

Cross multiply to express in linear form

63.89(X + 71) = 100 x 71

Clear the bracket

63.89X + 4536.19 = 7100

Collect like terms

63.89X = 7100 - 4536.19

63.89X = 2563.81

Divide both side by 63.89

X = 2563.81/63.89

X = 40g/mol

Now we can see that in both experiments, the molar mass of X is 40g/mol.

Comparing the value of X i.e 40g/mol with that from the periodic table, X is calcium with the symbol Ca

what are the three laws of motion​

Answers

Answer:

Newton's three laws of motion may be stated as follows:

Every object in a state of uniform motion will remain in that state of motion unless an external force acts on it.

Force equals mass times acceleration

For every action there is an equal and opposite reaction

Explanation:

pls mark brainliest

A simple equation relates the standard free‑energy change, ΔG∘′, to the change in reduction potential. ΔE0′. ΔG∘′ = −nFΔE0′ The n represents the number of transferred electrons, and F is the Faraday constant with a value of 96.48 kJ⋅mol^(−1)⋅V^(−1). Use the standard reduction potentials provided to determine the standard free energy released by reducing O2 with FADH2. FADH2 + 1/2O2 → FAD + H2O
given that the standard reduction potential for the reduction of oxygen to water is +0.82 V and for the reduction of FAD to FADH2 is +0.03 V.

Answers

Answer :  The value of standard free energy is, -152.4 kJ/mol

Explanation :

The given balanced cell reaction is:

[tex]FADH_2+\frac{1}{2}O_2\rightarrow FAD+H_2O[/tex]

The half reaction will be:

Reaction at anode (oxidation) : [tex]FADH_2\rightarrow FAD+2H^++2e^-[/tex]     [tex]E^0_{Anode}=+0.03V[/tex]

Reaction at cathode (reduction) : [tex]\frac{1}{2}O_2+2H^++2e^-\rightarrow H_2O[/tex]     [tex]E^0_{Cathode}=+0.82V[/tex]

First we have to calculate the standard electrode potential of the cell.

[tex]E^o=E^o_{cathode}-E^o_{anode}[/tex]

[tex]E^o=(+0.82V)-(+0.03V)=+0.79V[/tex]

Relationship between standard Gibbs free energy and standard electrode potential follows:

[tex]\Delta G^o=-nFE^o_{cell}[/tex]

where,

[tex]\Delta G^o[/tex] = standard free energy = ?

n = number of electrons transferred = 2

F = Faraday constant = [tex]96.48kJ.mol^{-1}V^{-1}[/tex]

[tex]E^o_{cell}[/tex]  = standard electrode potential of the cell = 0.79 V

Now put all the given values in the above formula, we get:

[tex]\Delta G^o=-(2)\times (96.48kJ.mol^{-1}V^{-1})\times (0.79V)[/tex]

[tex]\Delta G^o=-152.4kJ/mol[/tex]

Therefore, the value of standard free energy is, -152.4 kJ/mol

Final answer:

To calculate the standard free energy change for the reduction of O2 with FADH2, we first calculate the difference in reduction potentials to find ΔE0′. We then substitute the values into the relation ΔG∘′ = −nFΔE0′, with n=2 and Faraday constant F=96.48 kJ⋅mol‾¹⋅V‾¹. The calculated ΔG∘′ is -152.4384 kJmol‾¹.

Explanation:

The standard free energy change, ΔG∘′, is related to the change in reduction potential, ΔE0′, by the equation ΔG∘′ = −nFΔE0′. To find the standard free energy released by the reduction of O2 with FADH2, we first need to find ΔE0′.

ΔE0′ is given by the difference in reduction potentials of the two half reactions involved. In this case, the reduction of O2 to H2O (+0.82 V) and the reduction of FAD to FADH2 (+0.03 V). Therefore, ΔE0′ = E(O2/H2O) - E(FAD/FADH2) = +0.82 V - (+0.03 V) = +0.79 V.

Inserting the values into the equation, and knowing that the number of transferred electrons (n) is 2 and the Faraday constant (F) is 96.48 kJ⋅mol‾¹⋅V‾¹, we get ΔG∘′ = −2 * 96.48 kJ⋅mol‾¹⋅V‾¹ * (+0.79 V) = -152.4384 kJmol‾¹. Thus, the standard free energy released by reducing O2 with FADH2 is -152.4384 kJmol‾¹.

Learn more about Standard Free Energy Change here:

https://brainly.com/question/31431702

#SPJ11

Drag each title to the correct location identify each process as carbon source or carbon sink

Answers

Answer:

PLATO Answer

Explanation:

Underneath Photosynthesis Is Carbon Sink

Underneath Animals Is Carbon Sink

Underneath Combustion Is Carbon Source

Final answer:

Among the given options, only the title 'a' correctly identifies the processes as carbon sources and sinks. Burning fossil fuels is a carbon source, while oceans are a carbon sink. The other titles misinterpret the roles of various processes in the carbon cycle.

Explanation:

The correct title to location identifications for each process as carbon source or sink are as follows:

a. Carbon sources, such as burning fossil fuels, produce carbon while carbon sinks, such as oceans, absorb carbon.b. Incorrect, as carbon sources like volcanic activity produce carbon, they don't absorb it. And carbon sinks such as vegetation absorb carbon, they don't produce it.c. Incorrect, as carbon sources like vegetation produce carbon, they do not absorb it. Carbon sinks, like volcanic activity, in reality, does not absorb carbon, they produce it.d. Incorrect, because carbon sources (for example, volcanic activity) produce carbon and don't absorb it, and carbon sinks (for example, burning fossil fuels) actually absorb carbon, rather than producing it.

Learn more about Carbon Cycle here:

https://brainly.com/question/2076640

#SPJ2

A chemist dissolves 751.mg of pure nitric acid in enough water to make up 290.mL of solution. Calculate the pH of the solution. Be sure your answer has the correct number of significant digits.

Answers

Answer:

1.4

Explanation:

Mass of pure nitric acid = 751mg

Volume of solution  = 290mL

Unknown:

pH of the solution  = ?

Solution:

To solve this problem, we need the concentration of the acid in the aqueous form.

   This is given by molarity;

               Molarity  = [tex]\frac{number of moles }{volume}[/tex]

Since the number of moles of nitric acid is unknown, we can easily solve for it.

      Number of moles of nitric acid  = [tex]\frac{mass}{molar mass}[/tex]

            molar mass of HNO₃   =  1 + 14 + 3(16)  = 63g/mol

             mass of nitric acid  = 751mg  = 0.751g

     Number of moles  = [tex]\frac{0.751}{63}[/tex]    = 0.012mole

Volume of solution = 290mL  = 0.29dm³

Now molarity of the solution  = [tex]\frac{0.012}{0.29}[/tex]   = 0.041moldm⁻³

Since:

     pH  = -log [H₃O⁺]

         HNO₃   +     H₂O  →    H₃O⁺         +         NO₃⁻

      1moldm⁻³                     1moldm⁻³            1moldm⁻³

   0.041moldm⁻³             0.041moldm⁻³    0.041moldm⁻³

  pH  = -log[0.041]   = 1.4

Enter your answer in the provided box. Calculate the pH of 1.00 L of a buffer that is 1.00 M in acetic acid and 1.00 M in sodium acetate after the addition of 0.450 mole of NaOH.

Answers

Answer : The  pH of buffer is, 5.17

Explanation : Given,

[tex]pK_a=4.75[/tex]

Concentration of acetic acid = 1.00 M

Concentration of sodium acetate = 1.00 M

Volume of solution = 1.00 L

As, [tex]Moles=Concentration\times Volume[/tex]

So,

Moles of acetic acid = 1.00 mol

Moles of sodium acetate = 1.00 mol

Moles of NaOH added = 0.450 mol

The balanced chemical equilibrium reaction is:

                      [tex]CH_3COO+NaOH\rightleftharpoons CH_3COONa+H_2O[/tex]

Initial mole        1                0.450              1

At eqm.         (1-0.450)            0            (1+0.450)

                       = 0.55                                =1.450

Now we have to calculate the pH of buffer.

Using Henderson Hesselbach equation :

[tex]pH=pK_a+\log \frac{[Salt]}{[Acid]}[/tex]

[tex]pH=pK_a+\log \frac{[CH_3COONa]}{[CH_3COOH]}[/tex]

Now put all the given values in this expression, we get:

[tex]pH=4.75+\log (\frac{1.450}{0.55})[/tex]

[tex]pH=5.17[/tex]

Therefore, the pH of buffer is, 5.17

A student measures the S2- concentration in a saturated aqueous solution of iron(II) sulfide to be 2.29×10-9 M. Based on her data, the solubility product constant for iron(II) sulfide is

Answers

Answer:

Ksp FeS = 5.2441 E-18

Explanation:

FeS ↔ Fe2+  + S2-

         S          S           S

∴ Ksp = [Fe2+]*[S2-].....solubility product constant

∴ [S2-] = 2.29 E-9 M = S

⇒ Ksp = (S)(S) = S²

⇒ Ksp = (2.29 E-9)²

⇒ Ksp = 5.2441 E-18

The presence of intermolecular forces in liquids is observed through several different phenomena. Match each of below statement with its corresponding option.
adhesion, surface tension, capillary action, cohesion, meniscus, viscosity.1. _____ the ability of a liquid to flow up a narrow tube unassisted against gravity.2. _____ the attraction between molecules of the same substance.3. _____ the curvature of the surface of a liquid at the interface with the container.4. _____ the attraction between dissimilar molecules.5. _____ the resistance of a liquid to flow.6. _____ the elasticity of the surface layer of a liquid due to the liquid trying to minimize its surface area.
Options:
a. adhesion,
b. surface tension,
c. capillary action,
d. cohesion,
e. meniscus,
f. viscosity.

Answers

Answer:

1) Capillary action

2) Cohesion

3)Miniscus

4) Adhesion

5) Viscousity

6) Surface tension

Explanation:

Intermolecular forces are forces that holds molecules together in liquid, these is possible by inter-molecular interactions that exist within the liquids.these forces includes forces such as Waals forces and hydrogen bonds.

When there is great inter-molecular forces, there will be high freezing point and boiling point . At a lower inter-molecular forces the boiling point becomes low too,which brings about great fluidity of the liquid. The liquid flow reluctantly where greater force exist in the liquid. Some of those factors used in characterizing which are;

1)adhesion,

2) surface tension,

3)capillary action,

4)cohesion,

5) meniscus,

6)viscosity.

The statement with its corresponding option is as follows:

Capillary action is the ability of a liquid to flow up a narrow tube unassisted against gravity.

Capillarity is a phenomenon through which liquids have the ability to rise or fall through a capillary tube.

Cohesion is the attraction between molecules of the same substance.

Cohesion is the force of attraction between adjacent particles within the same body.

Meniscus is the curvature of the surface of a liquid at the interface with the container.

The meniscus is the up or down curve on the surface of a liquid that occurs in response to the surface of its container.

Adhesion is the attraction between dissimilar molecules.

Adhesion is the interaction between the surfaces of different bodies and they are held together by intermolecular forces.

Viscousity is the resistance of a liquid to flow.

Viscosity refers to the resistance that some liquids possess during their gradual flow and deformation as a result of shear stresses or tensile stresses.

Surface tension is the elasticity of the surface layer of a liquid due to the liquid trying to minimize its surface area.

Surface tension refers to the amount of energy required to increase the surface of a liquid per unit area.

Therefore, we can conclude that fluids have elemental properties that define and differentiate them from other forms of matter, such as viscosity, surface tension, among others.

Learn more here: https://brainly.com/question/92006

How many moles of water are present in 15.00 ml of water
that has a density of 0.9956 g/ ml.
MW for Hydrogen 1.00 g/ 1 mole; MW for Oxygen 16.00 g/ 1 mole

Answers

Answer : The moles of water present in solution are, 0.8297 moles.

Explanation :

First we have to calculate the mass of water.

[tex]\text{Mass of water}=\text{Density of water}\times \text{Volume of water}[/tex]

[tex]\text{Mass of water}=0.9956g/mL\times 15.00mL=14.934g[/tex]

Now we have to calculate the moles of water.

[tex]\text{Moles of water}=\frac{\text{Mass of water}}{\text{Molar mass of water}}[/tex]

Molar mass of water = (2 × Molecular weight of hydrogen) + Molecular weight of oxygen

Molar mass of water = (2 × 1.00g/mol) + 16.00 g/mol

Molar mass of water = 18.00 g/mol

[tex]\text{Moles of water}=\frac{14.934g}{18.00g/mol}[/tex]

[tex]\text{Moles of water}=0.8297mol[/tex]

Therefore, the moles of water present in solution are, 0.8297 moles.

The pressure of a balloon made of a stretchy material is held constant at
2 atm. If the initial volume is 250 mL at room temperature (25 ˚C), what
would be the final volume at 50 ˚C?

Answers

Answer:

New volume is 271 mL

Explanation:

To determine the volume for a gas, when the pressure remains constant we follow this ratio:

V₁ / T₁ = V₂ / T₂

Remember the Ideal Gases Law → P . V = n . R . T

That's why we propose V / T

We need to determine the Absolute T°

25°C + 273 = 298 K

50°C + 273 = 323 K

We convert the volume from mL to L → 250 mL . 1L / 1000 mL = 0.250L

Now we replace: 0.250L / 298K = V₂ / 323K

V₂ = (0.250L / 298K) . 323K  → 0.271 L

In conclussion volume of a gas will be increased, while the temperature is also increased and the pressure remains constant.

Answer:

The final volume is 271 mL

Explanation:

Step 1: Data given

The initial pressure = 2 atm

The pressure will be kept constant

The initial volume = 250 mL = 0.250 L

The initial temperature = 25°C = 298 K

The final temperature = 50 °C = 323 K

Step 2: Calculate the final volume

V1/T1 = V2/T2

⇒with V1 = the initial volume = 0.250 L

⇒with T1 = the initial temperature = 25 °C = 298 K

⇒with V2 = the final volume = TO BE DETERMINED

⇒with T2 = the final temperature = 50 °C = 323 K

0.250 L / 298 K = V2 / 323 K

V2 = (0.250 /298) *323

V2 = 0.271 L = 271 mL

The final volume is 271 mL

The rovibrational transition of 1H 35Cl with v = 0 to 1, J = 11 to 10 occurs at 2757.89 cm-1 , and the transition with v = 0 to 1, J = 10 to 9 occurs at 2779.07 cm-1 . From this information, i) calculate the spring constant of the vibrational potential (assuming the harmonic approximation and rigid rotor approximation) and ii) the equilibrium length of the HCl bond.

Answers

Answer:

Explanation:

find the solution below

When toluene is used in free radical bromination, a very small amount of product is formed that contains only carbons and hydrogens and no bromine. Show the structure of that product and the arrow curved mechanism of how it is formed starting from the alkyl radical intermediate of the reaction.(9 pts)

Answers

Answer:

Explanation:

The product formed that contains only carbons and hydrogens after free radical bromination of toluene is 1,2-diphenylethane.....

Please go through the attached file for the diagrams .

Answer:

happy happy happy happy happy happy happy

Explanation:

What is the scaling factor of the molar mass of
this compound, having an empirical formula of
CH20, is 150 g/mol?

Answers

Final answer:

The scaling factor is determined by dividing the compound's actual molar mass (150 g/mol) by the molar mass of its empirical formula CH2O (30 g/mol), which results in a factor of 5. The molecular formula of the compound is C5H10O5.

Explanation:

The student's question is asking about the scaling factor of a compound's molar mass based on its empirical formula. The empirical formula is CH2O, which has a molar mass of 30 g/mol (C = 12, H = 1 x 2 = 2, O = 16). If the compound's actual molar mass is 150 g/mol, we divide the actual molar mass by the empirical formula's molar mass to find the scaling factor.

Scaling factor = Actual molar mass / Empirical formula molar mass

= 150 g/mol / 30 g/mol

= 5

Thus, the actual compound's formula is obtained by multiplying each subscript in the empirical formula by the scaling factor of 5. Therefore, the molecular formula of the compound is C5H10O5.

Learn more about Scaling Factor here:

https://brainly.com/question/33786301

#SPJ12

An unknown liquid has a pH lower than 7, conducts electricity poorly, and tastes sour, what kind of solution is the unknown?

Answers

Answer:

Weak Acid solution

Explanation:

Acidic substances usually have a pH of 0.1-6.9 or it is usually less than 7. Acidic substances too have a very unique sour taste.

However it is understood that it conducts electricity poorly which means the acid doesn’t readily dissociate in water. This makes it a weak acid and an example is Acetic acid.

For the reaction ? NO + ? O2 → ? NO2 , what is the maximum amount of NO2 which could be formed from 16.42 mol of NO and 14.47 mol of O2? Answer in units of g. 003 1.0 points For the reaction ? C6H6 + ? O2 → ? CO2 + ? H2O 37.3 grams of C6H6 are allowed to react with 126.1 grams of O2. How much CO2 will be produced by this reaction? Answer in units of gram

Answers

Final answer:

The maximum possible mass of NO2 that could be formed from the given amounts of reactants is 755.20 grams, and the amount of CO2 that would be produced from the combustion of 37.3 grams of C6H6 is 126.10 grams.

Explanation:

Calculating the Maximum Amount of NO2 Formed

For the balanced reaction 2 NO + O2 → 2 NO2, the stoichiometry shows a 1:1 ratio between NO and NO2. With 16.42 mol of NO, if O2 is in excess, 16.42 mol of NO2 could theoretically be formed. The molar mass of NO2 is 46.0055 g/mol, so the maximum mass of NO2 would be 16.42 mol × 46.0055 g/mol = 755.20 grams of NO2.

Amount of CO2 Produced from C6H6 Combustion

The balanced reaction for the combustion of benzene (C6H6) is 2 C6H6 + 15 O2 → 12 CO2 + 6 H2O. One mole of C6H6 (78.1134 g/mol) produces 6 moles of CO2. With 37.3 grams of C6H6, there would be 37.3 g / 78.1134 g/mol = 0.4775 mol C6H6 which would yield 0.4775 mol C6H6 × 6 mol CO2/mol C6H6 = 2.865 mol CO2.

The molar mass of CO2 is 44.0095 g/mol, so the mass of CO2 would be 2.865 mol × 44.0095 g/mol = 126.10 grams of CO2.

Final answer:

The maximum amount of NO2 that can be formed from 16.42 mol of NO and 14.47 mol of O2 is 755.1 grams. When reacting 37.3 grams of C6H6 with 126.1 grams of O2, the amount of CO2 produced is 125.96 grams.

Explanation:

Reaction Stoichiometry and Limiting Reactants:

To determine the maximum amount of NO2 that can be formed from 16.42 mol of NO and 14.47 mol of O2, we use the balanced chemical equation 2 NO + O2 → 2 NO2. This equation shows that 2 moles of NO react with 1 mole of O2 to produce 2 moles of NO2. We can see that NO will be the limiting reactant because 14.47 mol of O2 would theoretically react with only 28.94 mol of NO, which is more than the 16.42 mol of NO present.

Since NO is the limiting reactant, we can form a maximum of 16.42 mol of NO2. Using the molar mass of NO2 (46.01 g/mol), this is equivalent to 755.1 grams of NO2. For the reaction C6H6 + O2 → CO2 + H2O, first, we would calculate the moles of C6H6 and O2, then use stoichiometry to determine the moles of CO2 produced. The molar mass of C6H6 (78.11 g/mol) means we start with 0.477 moles of C6H6.

From the balanced equation, we can see that for every 2 moles of NO, we need 1 mole of O2 to produce 2 moles of NO2. This gives us the mole ratio of NO to O2 as 2:1.

To find the limiting reagent (the reactant that is completely consumed and determines the maximum amount of product formed), we compare the number of moles of each reactant to the mole ratio.

For NO:

16.42 mol NO * (1 mol O2 / 2 mol NO) = 8.21 mol O2

For O2:

14.47 mol O2 * (2 mol NO / 1 mol O2) = 28.94 mol NO

Since the calculated amount of O2 (28.94 mol) is greater than the actual amount of O2 (14.47 mol), O2 is in excess and NO is the limiting reagent.

Now, we need to calculate the maximum amount of NO2 produced from the limiting reagent, which is NO.

From the balanced equation, we know that 2 moles of NO react to form 2 moles of NO2. Therefore, the mole ratio of NO to NO2 is 2:2.

Using the moles of NO (8.21 mol), we can calculate the moles of NO2:

8.21 mol NO * (2 mol NO2 / 2 mol NO) = 8.21 mol NO2

To convert moles of NO2 to grams, we need to use the molar mass of NO2, which is 46.01 g/mol.

8.21 mol NO2 * 46.01 g/mol = 377.27 g NO2

Therefore, the maximum amount of NO2 that could be formed from 16.42 mol of NO and 14.47 mol of O2 is 377.27 grams of NO2.

For the second question, we have the balanced chemical equation:

C6H6 + 15O2 → 6CO2 + 3H2O

From the balanced equation, we can see that for every mole of C6H6, we need 15 moles of O2 to produce 6 moles of CO2.

To determine the amount of CO2 produced, we first need to find the limiting reagent.

For C6H6:

37.3 g C6H6 * (1 mol C6H6 / 78.11 g C6H6) = 0.477 mol C6H6

For O2:

126.1 g O2 * (1 mol O2 / 32 g O2) = 3.94 mol O2

Since the calculated amount of C6H6 (0.477 mol) is less than the actual amount of O2 (3.94 mol), C6H6 is the limiting reagent.

Using the mole ratio from the balanced equation, we find that 0.477 mol of C6H6 will produce 6 moles of CO2.

To convert moles of CO2 to grams, we need to use the molar mass of CO2, which is 44.01 g/mol.

0.477 mol CO2 * 44.01 g/mol = 21.0 g CO2

Therefore, 37.3 grams of C6H6 reacted with 126.1 grams of O2 will produce 21.0 grams of CO2.

2. Incoming wastewater, with BOD5 equal to 200 mg/L, is treated in a well-run secondary treatment plant that removes 90 percent of the BOD. You are to run a five-day BOD test with a standard 300-mL bottle, using a mixture of treated sewage and dilution water (no seed). Assume the initial DO is 9.2 mg/L. a. Roughly what maximum volume of treated wastewater should you put in the bottle if you want to have at least 2.0 mg/L of DO at the end of the test (filling the rest of the bottle with water). (answer in mL)

Answers

Answer:

10.8 ml

Explanation:

The BOD is an empirical test to determine the molecular oxygen used during a specified incubation period (usually five days), for the biochemical degradation of organic matter (carbonaceous demand) and the oxygen used to oxidise inorganic matter.

See attached file

The maximum volume of treated wastewater that will be in the bottle is 10.8 mL.

The given parameters;

wastewater density = 200 mg/Lstandard volume = 300 mLinitial DO = 9.2 mg/L

The dilution factor (P) is calculated as follows;

[tex]200 \ mg/L= \frac{9.2 \ mg/L \ - \ 2\ mg/L}{P} \\\\P = \frac{7.2 \ mg/L}{200 \ mg/L} \\\\P = 0.036[/tex]

The maximum  volume of treated wastewater that will be in the bottle to have at least 2.0 mg/L DO;

[tex]0.036 = \frac{V_w}{300 \ mL} \\\\V_w = 0.036 \times 300 \ mL\\\\V_w = 10.8 \ mL[/tex]

Thus, the maximum volume of treated wastewater that will be in the bottle is 10.8 mL.

Learn more here:https://brainly.com/question/15878181

What is the pH of an aqueous solution at 25.0°C in which [H+] is 0.0025 M?
A) 5.99 B) 2.60 C) -2.60 D) -5.99 E) none of the above

Answers

Final answer:

The pH of an aqueous solution at 25.0°C with [H+] = 0.0025 M is calculated using the pH formula and results in a pH of 2.60, which is answer option B.

Explanation:

The pH of an aqueous solution at 25.0°C with a hydrogen ion concentration [H+] of 0.0025 M can be found using the pH formula:

pH = -log [H3O+]

By substituting the given concentration into the formula, the calculation would be:

pH = -log(0.0025) = -log(2.5 x 10-3)

Using a scientific calculator:

pH = 2.60

Therefore, the correct answer is B) 2.60.

Other Questions
Salvia Company recently purchased a truck. The price negotiated with the dealer was $40,500. Salvia also paid sales tax of $2,100 on the purchase, shipping and preparation costs of $3,100, and insurance for the first year of operation of $4,100. At what amount should the truck be recorded on the balance sheet prior to recording depreciation expense? Which of the following statements are true?A:Your lungs can store several hours worth of oxygen.B: your body cant store oxygen at allC: your body stores oxygen in your bloodstream D: your body needs carbon dioxide to function properly Lines 812: How does the Bull represent the Greek ideal of masculinity? Does the Greek idea of what it means to be a man still exist within our society? How does the bull represent Odysseus? What caused the fiords in Scandinavia?erosionearthquakesOglaciersfloods Kay was watching American Idol on television when a commercial for toilet tissue came on. She was not motivated at all to process the information provided in the ad. Which type of learning situation does this represent In the 7th grade class, 25 students have dogs, and 1/4 of the students do not have dogs. What is the total number of students in the class who do not have dogs? A playing card has an area of 50 square centimeters and a perimeter of 30 centimeters. What are the dimensions of the playing card? Marian can weed a garden in 3 hrs. Robin can weed the same garden in 4 hrs. If they work together, how long will the weeding take them? It costs Waterway Industries $12 of variable and $5 of fixed costs to produce one bathroom scale which normally sells for $35. A foreign wholesaler offers to purchase 3600 scales at $15 each. Garner would incur special shipping costs of $1 per scale if the order were accepted. Waterway has sufficient unused capacity to produce the 3600 scales. If the special order is accepted, what will be the effect on net income Why do you think Stalin was prepared to sacrifice millions of Russian lives to achieve his goals? Angela believes that Beamer Corporations stock will drop in value. She borrows 150 shares from a brokerage firm when the stock was selling at $42 per share. When the stocks price dropped to $27 per share, she told the brokerage firm to buy 150 shares of Beamer stock. This stock was returned to the brokerage firm in replace of the stock she first borrowed. What is Angelas profit on her short selling investment? What did the 2009 collision of a United States satellite and a Russian satellite cause? The Fibonacci sequence is the sequence 1, 1, 2, 3, 5, ... where the first and second terms are 1 and each term after that is the sum of the previous two terms. What is the remainder when the 100th term of the sequence is divided by 8? Implement the RC4 stream cipher in C . User should be able to enter any key that is 5 bytes to 32 bytes long. Be sure to discard the first 3072 bytes of the pseudo random numbers. THE KEY OR THE INPUT TEXT MUST NOT BE HARD CODED IN THE PROGRAM. Can someone help me answer this question please. The table shows three unique, discrete functions. Which statements can be used to accurately compare the functions? Select two options. g(x) has the lowest minimum. f(x) has the greatest maximum. All three functions have a y-intercept. All three functions have an x-intercept. The domain of all three functions is the same. Heat transfer focuses on transfers between the system and _____A. accessoriesB. universeC. phasesD. surroundings Please can anyone help me answer this question I'm really struggling with it New help can anybody help An exotic pet distributor finds out there are people who would love to own 1 pointa small elephant as a pet. He contacts all of the zoos in the world and findsa group of elephants that are naturally smaller than average. The petdistributor breedls the smallest of the elephants, and then chooses thesmallest babies to breed, and again chooses the smallest of their offspring,until after many generations he has a bred of dog-sized elephants - whichhe now sells for $100.000 per animal. This is an example of...