A particular Bohr orbit in a hydrogen atom has a total energy of -0.28 eV . What is the kinetic energy of the electron in this orbit? What is the electric potential energy of the system?

Answers

Answer 1

Answer:

Explanation:

The total energy of an electron in an orbit consists of two components

1 ) Potential energy which is - ve because the field is attractive

2) Kinetic energy which represents moving electron having some velocity.

Kinetic is always positive.

3 ) In an orbit , The magnitude of potential energy is twice that of kinetic energy. So if -2E is the value of potential energy E wil be the value of kinetic energy.

4 ) Total energy will become some of potential energy and kinetic energy

-2E + E = -E

5 ) So total energy becomes equal to kinetic energy with only sign reversed.

In the given case total energy is -0.28 eV . Hence kinetic energy will be +0.28 eV.

When kinetic energy is calculated as +.28 eV , the potential energy will be

- 2 x .28 or - 0.56  eV .


Related Questions

To which types of thermodynamic processes will the relation Tds =đQ apply? What is the correct term for the symbol T in this expression, and what exactly does dQ represent? (5) (b) Calculate the change in entropy when tkg of ice is melted at 273.16K Calculate the change in entropy when lkg of water is heated from 273 16K to 300K (15) (c) Why is the change in entropy much larger for one of the calculations in part (b) of this question

Answers

Answer:

a) Reversible processes

b) 1222.73 J/K and 392.144 J/K

c) Because of breaking bonds that are a stable state, while accelerating molecules in the other is less difficult.

Explanation:

Since it is equality, it should be applied to reversible processes, and even better to isothermal processes, since the Temperature remains constant. The T is the absolute temperature (measured in °K) and dQ is the heat absorbed by the system, which DEPENDS on the process.

b) The heat absorbed in the fusion process depends on the latent heat of fusion, L, of the water, which is 334 J/g. It says t kg, but I assume it was a mistake in the typing, so the change in entropy is calculated for 1 kg of water melting as follows:

[tex]\Delta S=\frac{\Delta Q}{T}=\frac{mass*L}{T}=\frac{1kg*334J/g*(1000 g/kg)}{273.16 K} \\\Delta S= 1222.73 J/K[/tex]

Now, to proceed with the change of entropy for water heated from 273.16K to 300K we use the specific heat of water, which is 4184 J/kg°K as follows:

[tex]\Delta S=m_{mass}c_{water}*ln(\frac{T_f}{T_i} )=1kg*4184\frac{J}{Kg*K}*ln(\frac{300}{273.16})\\ \Delta S=392.144 J/K[/tex]

c) In the solid state, water molecules have different bonds with other water molecules creating the crystals. In the liquid state, each molecule moves freely with less interaction between molecules. So, it required more energy to break these bonds and alter this ordered state than just accelerating the molecules in the liquid state.

A placekicker must kick a football from a point 36.0 m (about 40 yards) from the goal. Half the crowd hopes the ball will clear the crossbar, which is 3.05 m high. When kicked, the ball leaves the ground with a speed of 22.8 m/s at an angle of 51.0° to the horizontal. (a) By how much does the ball clear or fall short of clearing the crossbar? (Enter a negative answer if it falls short.)
(b) Does the ball approach the crossbar while still rising or while falling?

Answers

Answer:

a) The ball clears the crossbar by 10.6 m

b) The ball approaches the crossbar while falling

Explanation:

The position of the ball is described by the vector position r (see attached figure):

r = (x0 + v0 t cos α ; y0 + v0 t sin α + 1/2 g t²)

where:

x0 = initial horizontal position

v0 = magnitude of the initial velocity

t = time

α = launching angle  

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s²)

The vector r is composed by rx and ry (see figure):

r = (rx ; ry)

a) Let´s find the time at which the ball flies a distance of  36.0 m. If at that time the vertical component of the vector r, ry, is equal or greater than 3.05 m, then the ball will clear the crossbar.

rx = x0 + v0 t cos α = 36.0 m

Since the origin of the system of reference is located where the kicker is, x0 = 0.

36.0 m = v0 t cos  α

36.0 m /(v0 cos  α) = t

36.0 m / (22.8 m/s * cos 51.0°) = t

t = 2.51 s

Now let´s calculate the height of the ball at that time:

ry = y0 + v0 t sin α + 1/2 g t²

Since the kicker is on the ground, y0 = 0

ry = 22.8 m/s * 2.51 s * sin 51.0° - 1/2 * 9.8 m/s² * (2.51 s)² = 13.6 m

Since the crossbar is 3.05 m high, the ball clears it by (13.6 m - 3.05 m) 10.6 m

b) Please see the figure to figure this out ;)

If the ball approaches the crossbar while still rising, the vertical component (vy) of the velocity vector will be positive. In change, if the ball approaches the crossbar while falling the vertical component of the velocity will be negative. See the figure.

The velocity vector is given by this equation:

v = (vx ; vy)

v = ( v0 cos α ; v0 sin α + g t)

Let´s see the vertical component at time t = 2.51

vy = v0 sin α + g t

vy = 22.8 m/s * sin 51.0° - 9.8 m/s² * 2.51 s

vy = -6.88 m/s

Then, the ball approaches the crossbar while falling.

Who among the following educators did not contribute to the study or play?

A. Howard Gardner

B. Jean Jacques Rousseau

C. Johann Amos Comenius

D. Friedrich Froebel

Answers

Answer:

A. Howard Gardner

Explanation:

Howard Gardner was the educator who did not contribute to study or play.

- His parents fled Nazi Germany with their first son who died in accident before Howard was born.

-He was not allowed to play sports.

- He was an excellent pianist.

-He attended Harvard university.

-Influenced by Erickson

Final answer:

Among Howard Gardner, Jean Jacques Rousseau, Johann Amos Comenius, and Friedrich Froebel, Friedrich Froebel is the one most directly associated with the study of play for establishing the kindergarten system.

Explanation:

The question asks who among the listed educators did not contribute to the study or theory of play. Let's examine the contributions of each figure to determine the answer:

Howard Gardner is known for his theory of multiple intelligences, which includes the idea of bodily-kinesthetic intelligence, relating to the way we control our body motions and handle objects, suggesting a recognition of play's importance.Jean Jacques Rousseau emphasized naturalism and the importance of allowing children to interact with their environment, which is in line with the principles of learning through play.Johann Amos Comenius advocated for educational reform that included playful learning, which he saw as a natural way for children to learn.Friedrich Froebel is recognized as the creator of the concept of kindergarten, where play is a fundamental educational approach.

Considering the contributions of these educators, Friedrich Froebel is the one who stands out the most as being directly linked to the concept of play in education by virtue of establishing the kindergarten system.

Given two charges, pick the answers that are true : The two charges act on one another no matter how far apart they are, all the way to infinity
If charge "A" is attracted to "B", then charge "B" is repelled from "A"
Plus and plus repel
If charge "A" is attracted to "B", then charge "B" is equally attracted to "A"
Minus and minus repel
Plus and minus attract

Answers

Answer:

All true except the second one.

Explanation:

The two charges act on one another no matter how far apart they are, all the way to infinity . True. Coulomb law doesn't have a distance limitation.

If charge "A" is attracted to "B", then charge "B" is repelled from "A" . False. This violates Newton 3rd Law (Action-Reaction)

Plus and plus repel . True . Charges of same sign repel and opposite sign atract.

If charge "A" is attracted to "B", then charge "B" is equally attracted to "A" . True. This is Newton 3rd Law (Action-Reaction)

Minus and minus repel . True . Charges of same sign repel and opposite sign atract.

Plus and minus attract . True . Charges of same sign repel and opposite sign atract.

A square coil with 100 turns of wire has sides of length 5 cm. The resistance of the coil is 12.0 Ω. The coil is placed in a uniform magnetic field that is perpendicular to the face of the coil and whose magnitude is decreasing at a rate of 0.081 T/s. What is the magnitude of the current circulating through the coil?

Answers

Answer:

The magnitude of the current circulating through the coil is 1.68 mA.

Explanation:

Given that,

Number of turns = 100

Length = 5 cm

Resistance = 12.0 Ω

Rate of magnetic field = 0.081 T/s

We need to calculate the magnitude of the current circulating through the coil

Using formula of current

[tex]I=\dfrac{e}{R}[/tex]

[tex]I=\dfrac{-NA\dfrac{dB}{dt}}{R}[/tex]

Where, A = area

N = number of turns

R = resistance

Put the value into the formula

[tex]I=\dfrac{100\times(0.05)^2\times0.081}{12.0}[/tex]

[tex]I=0.0016875\ A[/tex]

[tex]I=1.68\times10^{-3}\ A[/tex]

[tex]I=1.68\ mA[/tex]

Hence, The magnitude of the current circulating through the coil is 1.68 mA.

Final answer:

The question involves Faraday's law, which relates changing magnetic fields to induced currents. Given the rate of change of the magnetic field and the resistance of the coil, the magnitude of the induced current is calculated to be 1.67 mA.

Explanation:

This question involves the concept of electromagnetic induction in physics. According to Faraday's law, a changing magnetic field will induce an electromotive force (EMF) in a circuit. In this case, we're given that the magnetic field is decreasing at a rate of 0.081 T/s. This rate of change can be used to calculate the induced EMF, which is equal to the rate of change of the magnetic flux.

The magnetic flux (Φ) through the coil is given by Φ = NBA, where N is the number of turns in the coil, B is the magnetic field, and A is the area of the coil. So, the rate of change of magnetic flux (dΦ/dt) is N*d(BA)/dt. Because the area of the coil is constant, this simplifies to NAdB/dt. A is 0.0025 m^2, N is 100, and dB/dt is -0.081T/s, so dΦ/dt is -0.02 Wb/s.

Faraday's law tells us that the induced EMF (ε) is equal to -dΦ/dt, so ε has magnitude 0.02 V. If we define positive current as current that would generate a magnetic field opposing the decrease in the existing field (Lenz's Law), the induced EMF 'pushes' positive current in this direction. The current (I) can then be calculated using Ohm's Law (V = IR), giving I = ε/R = 0.02V / 12 Ω = 0.00167 A, or 1.67 mA.

Learn more about Electromagnetic Induction here:

https://brainly.com/question/31384468

#SPJ3

Describe the difference between the velocity graph made walking at a steady rate and the velocity graph made at an increasing rate.

Answers

Answer:

The difference between the velocity graph made walking at a steady rate means that its the same value in time, that means there's no slope on the graph, so its acceleration is 0

On the other hand, if the velocity is increasing with time, the slope of the graph becomes positive, which means that the acceleration of the particle is positive.

A student places her 490 g physics book on a frictionless table. She pushes the book against a spring, compressing the spring by 7.10 cm , then releases the book. What is the book's speed as it slides away? The spring constant is 1550 N/m .

Answers

Answer:

book speed is 3.99 m/s

Explanation:

given data

mass m = 490 g = 0.490 kg

compressing x = 7.10 cm = 0.0710 m

spring constant k = 1550 N/m

to find out

book speed

solution

we know energy is conserve so

we can say

loss in spring energy is equal to gain in kinetic energy

so

[tex]\frac{1}{2}*k*x^2 = \frac{1}{2}*m*v^2[/tex]    ..................1

put here value

[tex]\frac{1}{2}*1550*0.071^2 = \frac{1}{2}*0.490*v^2[/tex]

v = 3.99 m/s

so book speed is 3.99 m/s

An airplane is heading due south at a speed of 430 km/h . A wind begins blowing from the northwest at a speed of 85.0 km/h (average).What should the plane's course shift be so that it will fly due south?

Answers

Answer:

It should fly 8° to west of south at 430km/h

Explanation:

According to the diagram. X components for both velocities must have the same magnitude in order to get the resultant velocity due south.

[tex]V_{w}*cos(45) = V_{A}*sin(\alpha )[/tex]   Solving for α:

α = 8.03°

A car that weighs 1.5 × 10^4 N is initially moving at a speed of 36 km/h when the brakes are applied and the car is brought to a stop in 17 m. Assuming that the force that stops the car is constant, find (a) the magnitude of that force and (b) the time required for the change in speed. If the initial speed is doubled, and the car experiences the same force during the braking, by what factors are (c) the stopping distance and (d) the stopping time multiplied? (There could be a lesson here about the danger of driving at high speeds.)

Answers

Answer:

Explanation:

Initial velocity u = 36 km/h = 10 m /s

v = 0 , accn = a , Time taken to stop = t , distance covered to stop = s

v² = u² - 2as

u² = 2as

a = u² / 2s

= 10 x 10 / 2 x 17

= 2.94 ms⁻²

Force applied = mass x acceleration

= 15000 / 9.8 x 2.94

= 4500 N

b )

v = u + at

0 = 10 - 2.94 t

t = 10 / 2.94

= 3.4 s

c )

from the relation

u² = 2as

it is clear that stopping distance is proportional to u², if acceleration a is constant .

If initial speed u is doubled , stopping distance d will become 4 times or 17 x 4 = 68 m .

d )

u = at

if a is constant time taken to stop will be proportional to initial velocity.

If initial velocity is doubled , time too will be doubled. Or time will become

3.4 x 2 = 6.8 s .

The radius of Mercury (from the centerto just above the atmosphere)
is 2440km (2440103
m),and its mass is 0.31024
kg.An object is launched straight up from just above the atmosphere
ofMercury.
(a) What initial speed is needed so that when the object is farfrom
Mercury its final speed is2000 m/s?

Answers

Answer:

u = 12962.11 m/s

Explanation:

Given that,

The radius of mercury, [tex]r=2440\ km=2440\times 10^3\ m[/tex]

Mass of Mercury, [tex]M=3\times 10^{24}\ kg[/tex]

Final speed of the object, v = 2000 m/s

Let u is its initial speed when the object is far from  Mercury. It can be calculated by applying the conservation of energy as :

Initial kinetic energy + gravitational potential energy = final kinetic energy

[tex]\dfrac{1}{2}mu^2+(-\dfrac{GmM}{r})=\dfrac{1}{2}mv^2[/tex]

[tex]\dfrac{1}{2}u^2+(-\dfrac{GM}{r})=\dfrac{1}{2}v^2[/tex]

[tex]\dfrac{1}{2}u^2=\dfrac{1}{2}v^2+\dfrac{GM}{r}[/tex]

[tex]u^2=2\times (\dfrac{1}{2}v^2+\dfrac{GM}{r})[/tex]

[tex]u^2=2\times (\dfrac{1}{2}(2000)^2+\dfrac{6.67\times 10^{-11}\times 3\times 10^{24}}{2440\times 10^3})[/tex]

u = 12962.11 m/s

So, the initial speed of the object is 12962.11 kg. Hence, this is the required solution.

Express the following angles in radians: (a) 16.8°, (b) 53.7°, (c) 94.2°. Convert the following angles to degrees: (d) 0.258 rad, (e) 1.01 rad, (f) 7.51 rad.

Answers

Explanation:

(a) We need to convert following angles in radians. The conversion formula from degrees to radian is given by :

[tex]Radians=(\dfrac{\pi}{180})\times degrees[/tex]

1. If angle is 16.8°

[tex]Radians=(\dfrac{\pi}{180})\times 16.8[/tex]

16.8 degrees = 0.29 radians

2. If angle is 53.7°

[tex]Radians=(\dfrac{\pi}{180})\times 53.7[/tex]

53.7 degrees = 0.937 radians

3. If angle is 94.2°

[tex]Radians=(\dfrac{\pi}{180})\times 94.2[/tex]

53.7 degrees = 1.64 radians

(b) We need to convert following angles to degrees. The conversion formula from radian degrees to is given by :

[tex]Degrees=(\dfrac{180}{\pi})\times radians[/tex]

1. If angle is 0.258 radian

[tex]Degrees=(\dfrac{180}{\pi})\times 0.258[/tex]

0.258 radian = 14.78 degrees

2.  If angle is 1.01 radian

[tex]Degrees=(\dfrac{180}{\pi})\times 1.01[/tex]

0.258 radian = 57.86 degrees

3.  If angle is 7.51 radian

[tex]Degrees=(\dfrac{180}{\pi})\times 7.51[/tex]

0.258 radian = 430.29 degrees

Hence, this is the required solution.

A 9.0 μF capacitor, a 13 μF capacitor, and a 16 μFcapacitor are connected in series. What is their equivalent capacitance? Express your answer using two significant figures.

Answers

Answer:

Equivalent capacitance, [tex]C'=3.9\ \mu F[/tex]

Explanation:

Capacitance, [tex]C_1=9\ \mu F[/tex]

Capacitance, [tex]C_2=13\ \mu F[/tex]

Capacitance, [tex]C_3=16\ \mu F[/tex]

Let C' is the equivalent capacitance of the combination of capacitors. It is given by :

[tex]\dfrac{1}{C'}=\dfrac{1}{C_1}+\dfrac{1}{C_2}+\dfrac{1}{C_3}[/tex]

[tex]\dfrac{1}{C'}=\dfrac{1}{9}+\dfrac{1}{13}+\dfrac{1}{16}[/tex]

[tex]C'=3.99\ \mu F[/tex]

or

[tex]C'=3.9\ \mu F[/tex]

So, their equivalent capacitance is [tex]3.9\ \mu F[/tex]. Hence, this is the required solution.

Final answer:

The equivalent capacitance of a 9.0 μF, 13 μF, and a 16 μF capacitors connected in series is approximately 4.0 μF when expressed with two significant figures.

Explanation:

The question concerns the calculation of the equivalent capacitance when multiple capacitors are connected in series. To find the equivalent capacitance of the 9.0 μF, 13 μF, and 16 μF capacitors connected in series, you use the formula for capacitors in series:


1/Ceq = 1/C1 + 1/C2 + 1/C3

Substituting the given values:


1/Ceq = 1/9.0 μF + 1/13 μF + 1/16 μF

Calculating the reciprocals and summing them gives:
1/Ceq = 0.111 + 0.077 + 0.063

1/Ceq = 0.251

Now, the equivalent series capacitance, Ceq, can be calculated by taking the reciprocal of the result:
Ceq = 1 / 0.251

Ceq is approximately 3.98 μF.

To express this answer using two significant figures, the equivalent capacitance is 4.0 μF.

Water leaks out of a 3,200-gallon storage tank (initially full) at the rate V '(t) = 80 -t, where t is measured in hours and V in gallons. a. How much water leaked out between 10 and 20 hours? b. How long will it take the tank to drain completely?

Answers

Answer:

water leak is 650 gallons

time required to full drain is 80 hrs

Explanation:

given data

volume V = 3200 gallon

rate = V(t) = 80 - t

to find out

how much water leak between 10 and 20 hour and  drain complete

solution

we know here rate is 80 - t

so here rate will be

[tex]\frac{dV(t)}{dt}[/tex] = 80 - t

and for time 10 and 20 hour

take integrate between 10 and 20

so water leak = [tex]\int\limits^ {20}_ {10} {(80-t)} \, dt[/tex]   .....................1

water leak = ( 80t - [tex]\frac{t^{2} }{2} )^{20}_{10}[/tex]

water leak = 650

so water leak is 650 gallons

and

we know here for full tank drain condition

water leak full = 80 t - [tex]\frac{t^{2} }{2} [/tex]

3200  = 80 t - [tex]\frac{t^{2} }{2} [/tex]

6400 = t² - 160 t

t = 80

so time required to full drain is 80 hrs

Two blocks of masses 20 kg and 8.0 kg are connected togetherby
a light string and rest on a frictionless level surface.Attached to
the 8- kg mass is a second light string, which a personuses to pull
both blocks horiaontally. If the two- block systemaccelerates at
0.5 m/s ^2, what is the tension in the second stringattached to the
8-kg mass?

Answers

Answer:

The tension is 14 N

Explanation:

For this problem we have to use newton's law, so:

[tex]F=m*a[/tex]

The second string is connected to the mass of 8 kg, but the mass of 8 kg is connected to the mass of 20kg, so we can say that the second string is handling the two masses. so:

[tex]F=28kg*0.5\frac{m}{s^2}=14N[/tex]

A tortoise and a hare are competing in a 1200-meter race. The arrogant hare decides to let the tortoise have a 580-meter head start. When the start gun is fired the hare begins running at a constant speed of 9 meters per second and the tortoise begins crawling at a constant speed of 5 meters per second. Let t t represent the number of seconds that have elapsed since the start gun was fired. Write an expression in terms of t t that represents the hare's distance from the starting line (in meters).

Answers

Answer:

Distance traveled by the hare = d = 9 [tex]t_{t}[/tex]

Explanation:

Tortoise travels an additional distance 580 m .

Since there is no acceleration, the distance traveled by any object is d = v t , where v is the total distance and t is the total time taken.

Speed of hare = [tex]v_{h}[/tex] = 9 m/s

Speed of tortoise = [tex]v_{t}[/tex] =5 m/s

Distance traveled by the hare = d = 9 [tex]t_{t}[/tex]

Distance traveled by tortoise = d +580 m = 5 [tex]t_{t}[/tex]

Final answer:

The distance that the hare travels from the starting line after time t is represented by the expression 9t meters.

Explanation:

To write an expression that represents the hare's distance from the starting line in meters as a function of time, we use the formula for distance traveled at constant speed d = vt, where d is distance, v is speed, and t is time. Since the hare starts running at 9 meters per second, the distance the hare travels from the starting line after t seconds can be represented by the expression 9t meters. Note that we do not include the 580-meter head start given to the tortoise in the hare's expression since we are only considering the hare's distance from the starting line and not its position relative to the tortoise.

If a 10kg block is at rest on a table and a 1200N force is applied in the eastward direction for 10 seconds, what is the acceleration on the block?

Answers

Answer:

a = 120 m/s²

Explanation:

We apply Newton's second law in the x direction:

∑Fₓ = m*a Formula (1)

Known data

Where:

∑Fₓ: Algebraic sum of forces in the x direction

F: Force in Newtons (N)

m: mass (kg)

a: acceleration of the block (m/s²)

F = 1200N

m = 10 kg

Problem development

We replace the known data in formula (1)

1200 = 10*a

a = 1200/10

a = 120 m/s²

Which of the following has the greatest kinetic energy? A. a mass of 4m at velocity v. B. a mass of 3m at velocity 2v. C. a mass of 2m at velocity 3v. D. a mass of m with a velocity of 4v.

Answers

Answer:

Option C

Explanation:

Kinetic energy is the energy that the body possesses by virtue of its motion.

The formula for Kinetic energy is given by [tex]\frac{1}{2} mv^2[/tex]

Using this formula let us find kinetic energy for the bodies given and find out which is the greatest

A) KE = [tex]\frac{1}{2} (4m)(v^2) = 2mv^2[/tex]

B) KE =[tex]\frac{1}{2} (3m)(2v)^2 = 6mv^2[/tex]

C) KE = [tex]\frac{1}{2} (2m)(3v)^2 = 9mv^2[/tex]

D) KE = [tex]\frac{1}{2} (3)(4v)^2 = 8mv^2[/tex]

Comparing these we find that 9mv^2 is the highest.

Hence option C is the answer.

Plot the velocity vs. time and the position vs. time for a car that travels at 20 m/s for 20 seconds, then accelerates in 10 seconds to 30 m/s, travels at this speed for 20 seconds, and the brakes and comes to rest in 10 s.

Answers

Answer:

The position-time graph and the velocity-time graph has been shown in the figure attached.

Explanation:

Given:

For t = 0 s to t = 20 s,

The car moves with a constant velocity whose position-time and the velocity time graph has been shown with a red line.

For t = 20 s to t = 30 s,

The car moves with a constant acceleration whose position-time and the velocity time graph has been shown with a green line.

For t = 30 s to t = 50 s,

The car moves with a constant velocity whose position-time and the velocity time graph has been shown with a blue line.

For t = 50 s to t = 60 s,

The car moves with a constant deceleration whose position-time and the velocity time graph has been shown with a black line.

For a constant velocity, the velocity-time graph of the particle is a straight line parallel to a time axis and the position-time graph is a straight line inclined at some positive angle with the time axis.

For a constant acceleration, the velocity-time graph is a straight line incline at a positive angle with the time axis and the position-time graph is a parabolic curved line having upward concavity.  

For a constant deceleration, the velocity-time graph is a straight line incline at a negative angle with the time axis and the position-time graph is a parabolic curved line having downward concavity.

There are four charges, each with a magnitude of 1.96 µC. Two are positive and two are negative. The charges are fixed to the corners of a 0.47-m square, one to a corner, in such a way that the net force on any charge is directed toward the center of the square. Find the magnitude of the net electrostatic force experienced by any charge.

Answers

Answer:

Magnitude of the resultant force (Fn₁) on q₁

Fn₁ = 0.142N (directed toward the center of the square)

Explanation:

Theory of electrical forces

Because the particle q₁ is close to three other electrically charged particles, it will experience three electrical forces and the solution of the problem is of a vector nature.

Graphic attached

The directions of the individual forces exerted by q₂, q₃ and q₄ on q₁ are shown in the attached figure.

The force (F₁₄) of q₄ on q₁ is repulsive because the charges have equal signs and the forces (F₁₂) and (F₁₃) of q₂ and q₃ on q₁ are attractive because the charges have opposite signs.

Calculation of the forces exerted on the charge q₁

To calculate the magnitudes of the forces exerted by the charges q₂, q₃, and q₄ on the charge q₁ we apply Coulomb's law:

[tex]F_{12} = \frac{k*q_1*q_2}{r_{12}^2}[/tex]: Magnitude of the electrical force of q₂ over q₁. Equation((1)

[tex]F_{13} = \frac{k*q_1*q_3}{r_{13}^2}[/tex]: Magnitude of the electrical force of q₃ over q₁. Equation (2)

[tex]F_{14} = \frac{k*q_1*q_4}{r_{14}^2}[/tex]: Magnitude of the electrical force of q₄ over q₁. Equation (3)

Equivalences

1µC= 10⁻⁶ C

Known data

q₁=q₄= 1.96 µC = 1.96*10⁻⁶C

q₂=q₃= -1.96 µC = -1.96*10⁻⁶C

r₁₂= r₁₃ = 0.47m: distance between q₁ and q₂ and q₁ and q₄

[tex]r_{14} = \sqrt{0.47^2+ 0.47^2}=0.664m[/tex]

k=8.99x10⁹N*m²/C² : Coulomb constant

F₁₂ calculation

We replace data in the equation (1):

[tex]F_{12} = \frac{8.99*10^9*(1.96*10^{-6})^2}{0.47^2}[/tex]

F₁₂ = 0.156 N Direction of the positive x axis (+x)

F₁₃ calculation

We replace data in the equation (2):

[tex]F_{13} = \frac{8.99*10^9*(1.96*10^{-6})^2}{0.47^2}[/tex]

F₁₃ = 0.156 N Direction of the negative y axis (-y)

Magnitude of the net electrostatic force between F₁₃ and F₁₂

[tex]F_{n23}= \sqrt{0.156^2+0.156^2} = 0.22N[/tex] (directed toward the center of the square)

F₁₄ calculation

We replace F₁₄ data in the equation (3):

[tex]F_{14} = \frac{8.99*10^9*(1.96*10^{-6})^2}{0.664^2}[/tex]

F₁₄ = 0.078 N (In the opposite direction to Fn₂₃)  

Calculation of the resulting force on q₁: Fn₁

Fn₁ = Fn₂₃ - F₁₄ = 0.22 - 0.078 = 0.142 N

Final answer:

The net electrostatic force on a charge can be found using Coulomb's law, considering the effects of both attraction and repulsion due to the charges' arrangement at the corners of a square. Calculations account for diagonal opposites and adjacent corners, taking advantage of the square's symmetry.

Explanation:

To calculate the magnitude of the net electrostatic force on a charge in a configuration where two positive charges of 1.96 µC and two negative charges of the same magnitude are placed at the corners of a 0.47-m square, we can use Coulomb's law. Coulomb's law states that the electrostatic force (F) between two point charges is proportional to the product of the charges (q1 and q2) and inversely proportional to the square of the distance (r) between them. It is given by F = k * |q1*q2| / r², where k is Coulomb's constant (k ≈ 8.99 x 10⁹ N·m²/C²).

Since the charges are at the corners of a square, the opposing charges will attract, and like charges will repel. Each charge experiences forces due to its interaction with the other three charges. The net force on any charge is the vector sum of the forces exerted by the other three charges. This sum can be simplified as the square has symmetry so that the forces along one diagonal cancel and the forces along the sides of the square add together to pull the charge towards the center.

The diagonal distance (r) is √2 times the side of the square (a), which is r = √2 * 0.47 m. For simplicity, let's calculate the force between one charge and its diagonal opposite, and then double it for symmetry reasons (each charge has two diagonally opposite charges).

The force due to one diagonal is: F_diagonal = (k * (1.96 x 10⁻⁶)^2) / ((√2 * 0.47)²)
Now we need to calculate this force and then double it to account for both diagonals.

The final step will be to add the forces due to charges on adjacent corners, which are of the same polarity and hence exert repulsion. Their vector sum will be directed towards the square's center due to symmetry.

Initially at rest a single-stage rocket is launched vertically from the ground. The rocket’s thrust overcomes gravity and provides the rocket a constant upward acceleration a. The fuel is exhausted 10 seconds after launch and then the motion of the rocket is free fall only due to gravity. If the total flight time is 30 s when the rocket strikes the ground, determine (a) the initial acceleration a, (b) the rocket’s impact speed as it hits the ground, (c) the height h from the ground the rockets reaches

Answers

Answer:

Explanation:

Let a be the acceleration of launch. In 10 seconds , Distance gone up in 10 seconds

s = 1/2at²

= .5 x a x 100

=50a

Velocity after 10 s

u = at = 10a

Now 50a distance in downward direction is travelled in 20 s with initial velocity 10a in upward direction.

s = ut + 1/2 gt²

50a = -10ax20 + .5 x 10x400

250a = 2000

a = 8 m s⁻² .

Velocity after 10 s

= at = 80 m/s

further height reached with this speed under free fall

h = v² / 2g

= 80 x 80 / 2 x 10

= 320 m

height achieved under acceleration

= 50a

= 50 x 8 = 400m

Total height

= 320 + 400= 720 m

velocity after falling from 720 m

v² = 2gh = 2 x10 x 720

v = 120 m/s

Answer:

a) The initial acceleration is 7.84 m/s²

b) The impact speed is 117.6 m/s

c) The height is 705.6 m

Explanation:

a) The speed from A to B is:

v = u + at

Where

u = initial speed = 0

t = 10 s

Replacing:

v = 10t (eq. 1)

The vertical distance between A to B is:

[tex]h=\frac{1}{2} at^{2} +ut=\frac{1}{2} a*(10)^{2}+0=50a[/tex] (eq. 2)

From B to C, the time it take is equal to 20 s, then:

[tex]h=vt+\frac{1}{2} at^{2}[/tex]

Replacing eq. 1 and 2:

[tex]-50a=(10a*20)-\frac{1}{2} *g*20^{2} \\-250a=-\frac{1}{2} *9.8*20^{2} \\a=7.84m/s^{2}[/tex]

b) The impact speed is equal:

[tex]v_{i} ^{2} =v^{2} +2gs[/tex]

Where

s = h = -50a

[tex]v^{2} _{i} =(10a)^{2} +2*(-9.8)*(-50a)\\v=\sqrt{100a^{2}+980a } \\v=\sqrt{(100*7.84^{2})+(980*7.84) } =117.6m/s[/tex]

c) The height is:

[tex]v_{i} ^{2} =v^{2} +2gs\\0=(10a)^{2} -2gs\\(10a)^{2} =2gs\\s=\frac{(10a)^{2} }{2g} \\s=\frac{(10*7.84)^{2} }{2*9.8} =313.6m[/tex]

htotal = 313.6 + 50a = 313.6 + (50*7.84) = 705.6 m

An object is thrown upward with an initial speed of 18.5 m/s from a location 12.2 m above the ground. After reaching its maximum height it falls to the ground. What will its speed be in the last instant prior to its striking the ground?

Answers

Answer:

The speed of the object in the last instant prior to hitting the ground is -24.1 m/s

Explanation:

The equation for the position and velocity of the object will be:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height of the object at time t

v0 = initial velocity

y0 = initial height

g = acceleration due to gravity

t = time

v = velocity at time t

We know that at its maximum height, the velocity of the object is 0. We can obtain the time it takes the object to reach the maximum height and with that time we can calculate the maximum height:

v = v0 + g · t

0 = 18.5 m/s - 9.8 m/s² · t

-18.5 m/s / -9.8 m/s² = t

t = 1.89 s

Now,let´s find the max-height:

y = y0 + v0 · t + 1/2 · g · t²

y = 12.2 m + 18.5 m/s · 1.89 s + 1/2 ·(-9.8 m/s²) · (1.89 s)²

y = 29.7 m

Now, let´s see how much it takes the object to hit the ground:

In that instant, y = 0.

y = y0 + v0 · t + 1/2 · g · t²

0 = 29.7 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²   (notice that v0 = 0 because the object starts from its maximum height, where v = 0)

-29.7 m = -4.9 m/s² · t²

t² = -29.7 m / -4.9 m/s²

t = 2.46 s

Now, we can calculate the speed at t= 2.46 s, the instant prior to hitting the ground.

v = v0 + g · t

v = g · t

v = -9.8 m/s² · 2.46 s

v = -24.1 m/s

A two stage rocket is launched moving vertically with acceleration 5.0 m/s^2. After 10.0 s, the first stage of the rocket is ejected; the second stage is now accelerating at 8.0 m/s^2. What is the distance between the first and second stages 4.0 s after separation?

Answers

Answer:264 m

Explanation:

Given

acceleration of rocket([tex]a_1[/tex])= 5 m/s^2[/tex]

velocity after 10 s

v=u+at

[tex]v=0+5\times 10[/tex]

v=50 m/s

after first stage rocket is ejected

acceleration of second stage=[tex]8 m/s^2[/tex]

distance between first and second part after 4 sec

[tex]s=u_1t+\frac{1}{2}at^2 [/tex]

here [tex]u_1=50 m/s[/tex]

[tex]s=50\times 4+\frac{1}{2}\times 8\times 4^2[/tex]

s=200+64=264 m  

If the fundamental frequency of a piece of conduit is 707 Hz, and the speed of sound is 343 m/s, determine the length of the piece of conduit (in m) for each of the following cases. (a) the piece of conduit is closed at one end (b) the piece of conduit is open at both ends

Answers

Answer:

i)0.1213m

ii)0.2426 m

Explanation:

The formula to apply here are;

For a closed conduit at one end the fundamental frequency produced by a pipe of length L is ;

f=v/4L where v is speed of sound and L is length of conduit

707=343/4L

707*4L=343

2828L=343

L=343/2828

L=0.1213m

For an open conduit, the fundamental frequency produced by pipe of length L is given by;

f=v/2L where v is speed of sound and L is length of conduit

707=343/2L

707*2L=343

1414L=343

L=343/1414

L=0.2426 m

A thin soap bubble of index of refraction 1.33 is viewed with light of wavelength 550.0nm and appears very bright. Predict a possible value of the thickness of the soap bubble.

Answers

Answer:

Thickness = 103.38 nm

Explanation:

Given that:

The refractive index of the thin soap bubble = 1.33

The wavelength of the light = 550 nm

The minimum thickness that produces a bright fringe can be calculated by using the formula shown below as:

[tex]Thickness=\frac {\lambda}{4\times n}[/tex]

Where, n is the refractive index of the thin soap bubble = 1.33

[tex]{\lambda}[/tex] is the wavelength

So, thickness is:

[tex]Thickness=\frac {550\ nm}{4\times 1.33}[/tex]

Thickness = 103.38 nm

An object moves in one dimensional motion with constant acceleration a = 5 m/s^2. At time t = 0 s, the object is at x0 = 2.7 m and has an initial velocity of v0 = 4.3 m/s. How far will the object move before it achieves a velocity of v = 6.4 m/s?
Your answer should be accurate to the nearest 0.1 m.

Answers

Final answer:

The object will move approximately 10.1 m before it achieves a velocity of 6.4 m/s with a constant acceleration of 5 m/s^2.

Explanation:

To find the distance the object will move before it achieves a velocity of 6.4 m/s, we can use the equation v^2 = v0^2 + 2ax, where v is the final velocity, v0 is the initial velocity, a is the acceleration, and x is the distance. Rearranging the equation, we get x = (v^2 - v0^2) / (2a). Plugging in the values, we have x = (6.4^2 - 4.3^2) / (2 * 5) = 10.12 m. Therefore, the object will move approximately 10.1 m before it achieves a velocity of 6.4 m/s.

Final answer:

To find how far an object with constant acceleration a = 5 [tex]m/s^2[/tex] and initial velocity of 4.3 m/s moves before reaching a velocity of 6.4 m/s, use the kinematic equation [tex]v^2[/tex] = [tex]v0^2[/tex] + 2a(x - x0). After calculation, the object will move 5.0 m before reaching 6.4 m/s.

Explanation:

We need to calculate how far the object moves before it achieves a velocity of v = 6.4 m/s given constant acceleration a = 5 [tex]m/s^2[/tex], initial velocity v0 = 4.3 m/s, and starting position x0 = 2.7 m. We can use the kinematic equation which relates final velocity, initial velocity, acceleration, and displacement:

[tex]v^2[/tex] = [tex]v0^2[/tex] + 2a(x - x0)

Rearranging for displacement (x - x0):

(x - x0) = ([tex]v^2[/tex] - [tex]v0^2[/tex]) / (2a)

Substituting the given values:

(x - 2.7 m) = [tex](6.4 m/s)^2[/tex] - [tex](4.3 m/s)^2[/tex] / [tex](2 * 5 m/s^2)[/tex]

(x - 2.7 m) = (40.96 [tex]m^2/s^2[/tex] - 18.49 [tex]m^2/s^2[/tex]) / (10 [tex]m/s^2[/tex])

(x - 2.7 m) = 22.47 [tex]m^2/s^2[/tex] / (10 [tex]m/s^2[/tex])

(x - 2.7 m) = 2.247 m

x = 2.7 m + 2.247 m

x = 4.947 m

To the nearest 0.1 m, the object will move 5.0 m before it achieves a velocity of 6.4 m/s.

A river with a flow rate of 7 m3/s discharges into a lake with a volume of 9,000,000 m3. The concentration of a particular VOC in the river is 3 mg/L. The lake has a decay coefficient for the VOC of 0.3 per day. What is the concentration of the VOC in the river downstream?

Answers

Answer:

The concentration downstream reduces to 0.03463mg/L

Explanation:

Initially let us calculate the time it is required to fill the lake, since for that period of time the pollutant shall remain in the lake before being flushed out.

Thus the detention period is calculated as

[tex]t=\frac{V}{Q}\\\\t=\frac{9000000}{7}=1.285\times 10^{6}seconds\\\\\therefore t = 14.872days[/tex]

Now the concentration of the pollutant after 14.872 days is calculated as

[tex]N_{t}=N_{0}e^{-kt}[/tex]

where

[tex]N_{o}[/tex] is the initial concentration

't' is the time elapsed after which the remaining concentration is calculated

k is the dissociation constant.

Applying values we get

[tex]N_{t}=3\times e^{-0.3\times 14.872}[/tex]

[tex]N_{t}=0.03463mg/L[/tex]

Two children on opposite sides of a 13 kg door (I = 1/3 mL 2 ) apply a force to the door. The first child pushes with force F at an angle of 80° relative to the door at a position r 1 from the door’s hinges. The second child pushes with a force of 15 N perpendicular to the door at a position 0.3 m from the door’s hinges. The width of the door is 0.4 m. What is the door’s angular acceleration?

Answers

Final answer:

The force that the second child must exert to keep the door from moving is 10.5 N.

Explanation:

To find the force that the second child must exert to keep the door from moving, we need to consider the torque applied by each child.

First, we calculate the torque applied by the first child:

T1 = F1 * r1 * sin(θ)

T1 = (17.5 N) * (0.600 m) * sin(90°) = 10.5 N·m

The torque applied by the second child is:

T2 = F2 * r2

T2 = F2 * (0.450 m)

Since the door is not moving, the net torque must be zero. Therefore:

T1 + T2 = 0

Substituting the values:

10.5 N·m + F2 * (0.450 m) = 0

Simplifying, we find that F2 = -10.5 N * (0.450 m) / (0.450 m) = -10.5 N

Therefore, the force that the second child must exert to keep the door from moving is 10.5 N.

An object with a charge of -2.9 μC and a mass of 1.0×10^−2 kg experiences an upward electric force, due to a uniform electric field, equal in magnitude to its weight. Find the magnitude of the electric field?
If the electric charge on the object is doubled while its mass remains the same, find the direction and magnitude of its acceleration.?

Answers

Answer:

[tex]E=3.38*10^{4}N/C[/tex]The new acceleration will have a value equal to gravity (9.81m/s^2) but pointing upwards.

Explanation:

The electric Force and gravitational Force are the same:

[tex]m*g=E*q[/tex]

[tex]E=m*g/q=1.0*10^{-2}*9.81/(2.9*10^{-6})=3.38*10^{4}N/C[/tex]

If the Electric field is doubled, the Electric Force is doubled, so its new value is twice the weight of the object. If we add this new electric force (upwards), with the weight (downwards), we have a resulting force upwards = one time the weight. in conclusion the acceleration will have a value equal to gravity but pointing upwards.

Ordinary glasses are worn in front of the eye and usually 2.00 cm in front of the eyeball. A certain person can see distant objects well, but his near point is 50.0 cm from his eyes instead of the usual 25.0 cm . Suppose that this person needs ordinary glasses What focal length lenses are needed to correct his vision ?What is their power in diopters?

Answers

Answer:

Focal length: 44.16cm, Power: 2.2645 diopters

Explanation:

The object and image locations are the distance from the point to the lens.

object location =  25 - 2 = 23cm

image location = 50 - 2 = -48cm

the image location is negative since the image is virtual (the light rays do not pass through the image)

We can then use the lens equation to find the focal length.

1/object location + 1/image location = 1/focal length

(1/23)-(1/48)=1/f

Focal length = 44.16cm

To find the power we use the equation

D=1/f where f is the focal length in meters

44.16cm = 0.4416m

power = 2.2645 diopters

Final answer:

The prescription for glasses needed to correct the person's farsightedness should have lenses with a power of approximately 4.35 diopters.

Explanation:

To correct the vision of a person with a near point of 50.0 cm, we must find a lens that will allow them to clearly see objects at the normal near point of 25.0 cm. First, we calculate the lens's focal length (f), which is the distance at which it would bring parallel rays to focus. The formula for lens power (P) in diopters (D) is given by P = 1/f (in meters). The needed focal length is the new near point (25.0 cm, or 0.25 m) minus the distance the glasses are from the eye (2.00 cm, or 0.02 m). Thus, the focal length is f = 0.25 m - 0.02 m = 0.23 m. After conversion to meters, calculating the power gives P = 1/0.23 m ≈ 4.35 D.

The prescription for the glasses should therefore have lenses with a power of approximately 4.35 diopters to correct the vision to a normal near point.

The Baltimore Harbor water taxi is approaching the dock with a velocity of v0 = 5 m/s. The water taxi acceleration is limited to −1 m/s < a < 1 m/s, how far from the dock must the ferry begin slowing down if it is to avoid a collision?

Answers

Answer:

In order to avoid collision, the ferry must stop at a distance of 12.5 m from the dock.

Solution:

The initial velocity of the taxi, [tex]v_{o} = 5 m/s[/tex]

The minimum value of acceleration , [tex]a_{min} = - 1 m/s^{2}[/tex]

The maximum value of acceleration , [tex]a_{max} = 1 m/s^{2}[/tex]

Now,

When the deceleration starts the ferry slows down and at minimum deceleration of [tex]- 1 m/s^{2}[/tex], the ferry stops.

Thus, inthis case, the final velocity, v' is 0.

Now, to calculate the distance covered, 'd' in decelerated motion is given by the third eqn of motion:

[tex]v'^{2} = v_{o}^{2} + 2ad[/tex]

[tex]0^{2} = 5^{2} + 2\times (- 1)d[/tex]

[tex]d = 12.5 m[/tex]

Other Questions
What is the mistake?3a+4b=7ab List in order the 9 most electronegative elements of the periodic table Answer question 1 and 2 below and show your work.Suzie and Devon had breakfast at a cafe. Muffins cost $4 on each, and fruit cups cost $7 each. Suzie had 2 muffins and 2 fruit cups. Devon had 3 muffins and 1 fruit cup. How much did their breakfast cost? Show work.Tyler wants to ride the bumper cars 4 times and Ferris wheel 8 times. It costs 6 tickets to ride the bumper cars and 3 tickets to ride the Ferris wheel. How many tickets does tyler need? Show work. This chart shows the poverty rate for families with single parents and those with married parents.A graph titled Percent of Families Living in Poverty. 37.1% are single parent families. 6.8% are married parent families. What is one possible outcome for children living in single-parent homes?They are more likely to afford college without student loans.They are less likely to rely on reduced-cost school lunches.They are more likely to live in middle-class neighborhoods.They are less likely to have money for extracurricular activities. What is the distance between (8,-3) and (4,-7) Which of these is considered to be the "king" of the social sciencesGeography Economics Sociology Political science Your lumber company has bought a machine that automatically cuts lumber. The seller of the machine claims that the machine cuts lumber to a mean length of 6 feet (72inches) with a standard deviation of 0.5 inch. Assume the lengths are normally distributed. You randomly select 47 boards and find that the mean length is 72.15 inches. Complete parts (a) through (c).Use the standard Normal Table(a) Assuming the seller's claim is correct, what is the probability that the mean of the sample is 72.15 inches or more?____ (Round to four decimal places as needed.)(b) Using your answer from part (a), what do you think of the seller's claim?(c) Assuming the seller's claim is true, would it be unusual to have an individual board with a length of 72.15 inches? Why or why not? What is the probability that a King is drawn from a deck of 52 cards, without replacement, and then a second King is drawn? How many protons are required to generate a charge of +25.0 C? A carpenter is building a ramp, as shown in the diagram.What is mt?A.28B.62C.90D.152 The following enzymes or processes are known to regulate eukaryotic gene expression. In the blank provided by each enzyme or process, enter the number 1 if the enzyme or process increases gene expression or the number 2 if the enzyme or process decreases gene expression.(a) histone acetyltransferases (HATs) ____(b) histone deacetylases (HDACs) ____(c) acetylation ____(d) deacetylation ____(e) decreased attaraction between DNA and histones ____(f) increased attraction between DNA and histones ____ I need the graph for the equation:y=9.50x-3 imagine that you are going to a far away planet there is no water so you will have to take supplies what you will need Help!! Me with my aleks! The management of Omega Manufacturing is implementing a plan to minimize production mistakes by allowing teams that work in each area of the production facility to develop a plan and then monitor their area to ensure the reduction of errors. The managers are engaging in____________ What is an independent data mart? Assume one investor bought a 10-year inflation-protected bond with a fixed annual real rate of 1.5% and another investor bought a 10-year bond without inflation protection with a nominal annual return of 4.2%. If inflation over the 10-year period averaged 2 percent, which investor earned a higher real return? A. The investor who purchased the inflation protected bond. B. The investor who purchased the bond without inflation protection. C. Both investors earned the same real return. D. Neither investor earned a positive real return. Compare the chemical structures of DNA and proteins. A scientific theory A) Holds the highest level of acceptanceB) Explains a number of facts C) Uses a specific hypotheses and descriptive laws that have been well-testedD) All of the above E) None of the above Imagine that you are the manager of valley skateboard shop. the accountant for the business has delivered the news that sales are down by 15 percent compared to last month. she also reports that the rent on the building will be increasing next month by $100. you believe the shop needs a more experienced salesperson and that the building needs new paint and awnings. how might the information delivered by the accountant affect your decisions and course of action?