A password can be any string of length 7, 8, or 9. Each character in the password can be any capital letter or special character from the set {*, $, &, #, %}. There are no other restrictions on the password. How many possible different passwords are there?

Answers

Answer 1

Answer:

744

Step-by-step explanation:

The alphabet has 26 letters. Since each character of the password can be a capital letter or one of the four character of the set {*, $, &, #, %}, then each space in the password has 26+5=31 options to select a character.

a) If the password has length 7, then there are 31*7=217 different passwords.

b) If the password has length 8, then there are 31*8=248 different passwords and,

c) if the password has length 9, then there are 31*9=279 different passwords.

Then the total of different passwords is 217+248+279=744.

Answer 2
Final answer:

There are different numbers of possible passwords based on the length of the password.

Explanation:

To determine the number of possible different passwords, we need to consider the different options for each character in the password and multiply them together.

For a password of length 7, each character has 5 possible options (capital letters or special characters). Therefore, there are 5 options for each of the 7 characters, giving us a total of 5^7 = 78,125 possible passwords.

Similarly, for a password of length 8, there are 5 options for each of the 8 characters, giving us a total of 5^8 = 390,625 possible passwords.

Finally, for a password of length 9, there are 5 options for each of the 9 characters, giving us a total of 5^9 = 1,953,125 possible passwords.

Learn more about Number of possible passwords here:

https://brainly.com/question/30214499

#SPJ3


Related Questions

The ant hill is 19.5 cm tall. How many mm tall is the ant hill

Answers

195 mm
Because is 19.5 cm = 195 mm

Answer:

195 mm

Step-by-step explanation:

There are 10 mm in one cm. This is due to metric prefix rules

A federal agency responsible for enforcing laws governing weights and measures routinely inspects packages to determine whether the weight of the contents is at least as great as that advertised on the package. A random sample of 18 containers whose packaging states that the contents weigh 8 ounces was drawn. The contents were weighed, and the results follow. Can we conclude at the 1% significance level that on average the containers are mislabeled?

Answers

Answer: We can conclude that the average containers are mislabelled.

Step-by-step explanation:

From the question, the significant level of 0.01 or 1% given is less than 0.05 or 5%. So we say it is significant.

The local orchestra has been invited to play at a festival. There are 111 members of the orchestra and 6 are licensed to drive large multi-passenger vehicles. Busses hold 25 people but are much more expensive to rent. Passenger vans hold 12 people. make a system of equations to find the smallest number of busses the orchestra can rent. Let x= the number of busses and y= the number of vans make an equation representing the number of vehicles needed. __________ make an equation representing the total number of seats in vehicles for the orchestra members. __________ Solve the system of equations. How many busses does the orchestra need to rent? ____________ How many 12-passenger vans does the orchestra need to rent? ____________

Answers

- Make an equation representing the number of vehicles needed.

We have six drivers so

x + y ≤ 6

That's not really an equation; it's an inequality.  We want to use all our drivers so we can use the small vans, so

x + y = 6

- Make an equation representing the total number of seats in vehicles for the orchestra members.

s = 25x + 12y

That's how many seats total; it has to be at least 111 so again an inequality,

25x + 12y ≥ 111

We solve it like a system of equations.  

x + y = 6

y = 6 - x

111 = 25x + 12y = 25x + 12(6-x)

111 = 25x + 72 - 12x

111 - 72 = 13 x

39 = 13 x

x = 3

Look at that,  it worked out exactly.  It didn't have to.

y = 6 - x = 3

Answer: 3 buses, 3 vans

Using a System of equations, the number of buses and vans required are 3 respectively.

Using the system of equations :

Total number of buses :

b + v ≤ 6 - - - - (1)

Total number of passengers :

25b + 12v ≥ 111 - - - - (2)

From (1)

b = 6 - v - - - - - (3)

Substitute (3) into (2)

25(6-v) + 12v = 111

150 - 25v + 12v = 111

-13v = 111 - 150

-13v = - 39

v = 39/13

v = 3

From (3)

b = 6 - 3

b = 3

Hence, the number of vans and buses required are 3 and 3 respectively.

Learn more : https://brainly.com/question/16144029

You invested ​$19,000 in two accounts paying 5% and 9% annual​ interest, respectively. If the total interest earned for the year was
$1390, how much was invested at each​ rate?

Answers

Answer:

0.08x + 0.09y = 1700,     where x is the amount that has 8% interest

                                               y is the amount that has 9% interest

                              -------equation (1)

x+y = 19000

x = 19000 - y ,         -------equation   (2)

substitute (2) into (1):

0.08(19000 - y) + 0.09y = 1700

1520-0.08y+0.09y = 1700

so, y = 18000

x = 19000-y=1000

(1000,   18000) is the answer    

Just to let you know I’m in 7th grade

Final answer:

The problem can be solved by creating a system of linear equations that represent the conditions given in the problem. Solve this system of equations to determine the amounts invested in each of the two accounts.

Explanation:

This is a problem of algebra, specifically a type of word problem called a system of linear equations. You have a total of $19,000 invested across two accounts. Let's denote the amount invested at 5% as x and the amount invested at 9% as y. So, we can write two equations:

x + y = $19,000 (since the total money invested is $19,000), and 0.05x + 0.09y = $1,390 (since the total interest is $1,390)

The next step is to solve this system of equations. Multiply the first equation by 0.05 (so it matches 5% in the second equation), then subtract the resulting equation from the second equation to eliminate x. By doing this, you find the value for y (money in the 9% account). Once you have the value for y, you can substitute it into the first equation to find the value for x (money in the 5% account).

Learn more about System of Linear Equations here:

https://brainly.com/question/33609849

#SPJ11

Two accounting professors decided to compare the variance of their grading procedures. To accomplish this, they each graded the same 10 exams, with the following results: Mean Grade Standard Deviation Professor 1 79.3 22.4 Professor 2 82.1 12.0 At the 10% level of significance, what is the decision regarding the null hypothesis? A) Reject the null hypothesis and conclude the variances are different. B) Fail to reject the null hypothesis and conclude no significant difference in the variances. C) Reject the null hypothesis and conclude the variances are the same. D) Fail to reject the null hypothesis and conclude the variances are the same.

Answers

Final answer:

Without the exact F-statistic and p-value, it is not possible to definitively choose between rejecting or failing to reject the null hypothesis. The decision would depend on whether the calculated p-value is less than the level of significance (0.10).

Explanation:

To determine whether there is a significant difference in the variance of grading procedures between two professors, we need to conduct an F-test for variance. The null hypothesis (H0) would be that there is no significant difference in the variances of grading, while the alternative hypothesis (H1) would be that there is a significant difference in the variances.

Using the data provided:

Professor 1: Mean grade = 79.3, Standard Deviation = 22.4Professor 2: Mean grade = 82.1, Standard Deviation = 12.0

The F-statistic is calculated by dividing the variance of the set with the larger variance (squared standard deviation) by the variance of the set with the smaller variance, which means:

F = (22.4)^2 / (12.0)^2

However, the exact F value is not provided in the data, nor is the p-value. To make the decision, we would compare the p-value to the level of significance (
0.10). If the p-value is less than 0.10, we would reject the null hypothesis, indicating that there is a significant difference between the variances. If the p-value is greater than 0.10, we would fail to reject the null hypothesis, indicating there is no significant difference in variances.

Based on the options provided in the question, without the exact p-value or F-statistic, we cannot provide the correct answer. Thus, the answer would depend on the calculated p-value from the F-statistic. The options, therefore, are between A (rejecting the H0) or B (failing to reject the H0), and an exact answer requires additional information from an F-test.

Find the flux of the following vector fields across the given surface with the specified orientation. You may use either an explicit or parametric description of the surface.

44. F=〈x,y,z〉across the slanted face of the tetrahedron z=10−2x−5y in the first octant; normal vectors point upward.

Answers

The tetrahedron passes through the intercepts (5, 0, 0), (0, 2, 0), and (0, 0, 10). Parameterize the surface (call it [tex]\Sigma[/tex]) by

[tex]\vec r(u,v)=(1-v)\langle5,0,0\rangle+v\left((1-u)\langle0,2,0\rangle+u\langle0,0,10\rangle\right)[/tex]

[tex]\vec r(u,v)=\langle5(1-v),2(1-u)v,10uv\rangle[/tex]

with [tex]0\le u\le1[/tex] and [tex]0\le v\le1[/tex]. Take the normal vector to [tex]\Sigma[/tex] to be

[tex]\vec r_v\times\vec r_u=\langle20v,50v,10v\rangle[/tex]

Then the flux of [tex]\vec F(x,y,z)=\langle x,y,z\rangle[/tex] across [tex]\Sigma[/tex] is

[tex]\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=\int_0^1\int_0^1\langle5(1-v),2(1-u)v,10uv\rangle\cdot\langle20v,50v,10v\rangle\,\mathrm du\,\mathrm dv[/tex]

[tex]=\displaystyle\int_0^1\int_0^1100v\,\mathrm du\,\mathrm dv=\boxed{50}[/tex]

Write the quadratic equation whose roots are -2 and 1, and whose leading coefficient is 4 .

Answers

Answer: the equation is

4x^2 + 4x - 12

Step-by-step explanation:

A quadratic equation is an equation in which the highest power of the unknown is 2.

The general form of a quadratic equation is expressed as

ax^2 + bx + c

Where

a is the leading coefficient

c is a constant

Assuming we want to write the quadratic equation in x, from the information given, the roots which are given are -2 and 1 and the leading coefficient is 4.

Therefore, the linear factors of the quadratic equation will be (x+2) and (x-1)

the equation becomes

(x+2)(x-1)

= x^2 - x +2x - 3

= x^2 + x - 3

Given a leading coefficient of 4, we will multiply the quadratic expression by 4. It becomes

4(x^2 + x - 3)

= 4x^2 + 4x - 12

Final answer:

The quadratic equation with roots -2 and 1 and a leading coefficient of 4 is 4x^2 - 12x + 8 = 0.

Explanation:

To write a quadratic equation with roots -2 and 1 and a leading coefficient of 4, we need to use the fact that if α and β are roots of a quadratic equation, then the equation can be expressed in the form:

a(x - α)(x - β) = 0

Here, α is -2 and β is 1, and the leading coefficient, a, is 4. Therefore, we can write:

4(x + 2)(x - 1) = 0

Multiplying it out, we have:

4(x2 - 1x - 2x + 2) = 0

Combining like terms, we get:

4x2 - 12x + 8 = 0, which is the desired quadratic equation.

A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 447 gram setting. It is believed that the machine is underfilling the bags. A 19 bag sample had a mean of 443 grams with a standard deviation of 21. A level of significance of 0.025 will be used. Assume the population distribution is approximately normal. Determine the decision rule for rejecting the null hypothesis. Round your answer to three decimal places.

Answers

The decision rule for rejecting the null hypothesis H₀ is

if t-statistic < -2.093.

First , let's state the null and alternative hypotheses:

Null hypothesis (H₀): The population mean weight of banana chips is 447 grams (the machine works correctly).

Alternative hypothesis (H₁): The population mean weight of banana chips is less than 447 grams (the machine is underfilling).

α = 0.025

Since this is a one-tailed test (we only care if the weight is less than 447 grams), we need to find the t-value for a single-tailed test with α = 0.025 and degrees of freedom (df) = n - 1 = 19 - 1 = 18.

We can use a t-distribution table or a statistical calculator to find this value. In most calculators, you can use the TINV function with df = 18, tails = 1, and p = 0.025. The critical value (t_α) is approximately -2.093.

Reject the null hypothesis (H₀) if the calculated t-statistic (t_stat) is less than the critical value (t_α). In other words, if the sample mean weight is significantly lower than 447 grams, we have evidence to suggest the machine is underfilling.

Reject H₀ if t_stat < -2.093.

This will require  sample data (the weights of the 19 bags). Once we have that, we can calculate the t-statistic using the formula:

t_stat = (sample mean - hypothesized mean) / (standard deviation / sqrt(sample size)).

The complete question is : A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 447 gram setting. It is believed that the machine is underfilling the bags. A 19 bag sample had a mean of 443 grams with a standard deviation of 21. A level of significance of 0.025 will be used. Assume the population distribution is approximately normal. Determine the decision rule for rejecting the null hypothesis. Round your answer to three decimal places.

Suppose a compact disk​ (CD) you just purchased has 1515 tracks. After listening to the​ CD, you decide that you like 66 of the songs. The random feature on your CD player will play each of the 1515 songs once in a random order. Find the probability that among the first 55 songs played​ (a) you like 2 of​ them; (b) you like 3 of​ them; (c) you like all 55 of them.

Answers

Answer:

(A) 0.4196

(B) 0.2398

(C) 0.0020

Step-by-step explanation:

Given,

Total songs = 15,

Liked songs = 6,

So, not liked songs = 15 - 6 = 9

If any 5 songs are played,

Then the total number of ways =  [tex]^{15}C_5[/tex]

(A) Number of ways of choosing 2 liked songs = [tex]^6C_2\times ^9C_3[/tex]

Since,

[tex]\text{Probability}=\frac{\text{Favourable outcomes}}{\text{Total outcomes}}[/tex]

Thus, the probability of choosing 3 females and 2 males = [tex]\frac{ ^6C_2\times ^9C_3}{^{15}C_5}[/tex]

[tex]=\frac{\frac{6!}{2!4!}\times \frac{9!}{3!6!}}{\frac{15!}{10!5!}}[/tex]

= 0.4196

Similarly,

(B)

The probability of choosing 3 liked songs = [tex]\frac{ ^6C_3\times ^9C_2}{^{15}C_5}[/tex]

[tex]=\frac{\frac{6!}{3!3!}\times \frac{9!}{2!7!}}{\frac{15!}{10!5!}}[/tex]

= 0.2398

(C)

The probability of choosing 5 liked songs = [tex]\frac{ ^6C_5\times ^9C_0}{^{15}C_5}[/tex]

[tex]=\frac{\frac{6!}{5!1!}}{\frac{15!}{5!10!}}[/tex]

≈ 0.0020

Based on the following information, what is the standard deviation of returns? State of Economy Probability of State of Economy Rate of Return if State Occurs Recession .22 − .112 Normal .25 .127 Boom .53 .237

Answers

The standard deviation of returns is 2.82% by calculating expected value, variance and standard deviation.

Given that:

State of Economy Probability Rate of Return if State Occurs

Recession 0.22                         -0.9

Normal         0.47                                 0.105

Boom         0.31                                 0.215

To calculate the standard deviation of returns, by  using the formula:

Standard Deviation = [tex]\sqrt{}[/tex][Σ (Probability * (Rate of Return - Expected Return[tex])^2[/tex])]

Step 1: calculate the Expected Return: Multiply each rate of return by its corresponding probability and sum the results:

E = Σ(Rate of Return* Probability )

Plugging the given data gives:

E = (0.22 * -0.9) + (0.47 * 0.105) + (0.31 * 0.215)

On multiplication gives

E = 0.0225 - 0.04935 + 0.06665

On solving gives:

E = 0.0398.

Step 2: Calculate the Variance: For each rate of return, subtract the expected return, square the result, multiply by its corresponding probability, and sum the results:

Variance ( V) = Σ (Probability * (Rate of Return - Expected Return[tex])^2[/tex]

Plugging the given data gives:

[tex]V = [(0.22 * (-0.9 - 0.0398)^2) + (0.47 * (0.105 - 0.0398)^2) + (0.31 * (0.215 - 0.0398)^2)][/tex]

On squaring and solving gives:

[tex]V = [0.0225 + 0.02741 + 0.0412][/tex]

On adding gives:

[tex]V = 0.09111.[/tex]

Step3: Find the square root of the variance to get the Standard Deviation:

[tex]\sigma = \sqrt V[/tex]

Plugging the given data gives:

[tex]\sigma = \sqrt{0.09111 }[/tex]

On taking square root gives:

[tex]\sigma \approx 0.282[/tex] or 2.82%.

Learn more about standard deviation here:

https://brainly.com/question/13498201

SPJ4

Question:

Based on the following information, what is the standard deviation of returns?

State of Economy Probability Rate of Return if State Occurs

Recession 0.22                         -0.9

Normal         0.47                                 0.105

Boom         0.31                                 0.215

Final answer:

To calculate the standard deviation of returns, follow these steps: 1) Calculate the expected return for each state by multiplying the probability of the state occurring by the rate of return. 2) Calculate the squared difference between each state's return and the expected return. 3) Multiply each squared difference by the probability of the state occurring. 4) Sum up all the values obtained in step 3. 5) Take the square root of the sum obtained in step 4.

Explanation:

To calculate the standard deviation of returns, we need to follow these steps:

Calculate the expected return for each state of the economy by multiplying the probability of the state occurring by the rate of return for that state.Calculate the squared difference between each state's return and the expected return.Multiply each squared difference by the probability of the state occurring.Sum up all the values obtained in step 3.Take the square root of the sum obtained in step 4.

Using the given information:

Expected return for Recession: (.22)*(-.112) = -0.02464Expected return for Normal: (.25)*(0.127) = 0.03175Expected return for Boom: (.53)*(0.237) = 0.12561

Next, we calculate the squared difference between each state's return and the expected return:

For Recession: (-0.112 - (-0.02464))^2 = 0.005019024For Normal: (0.127 - 0.03175)^2 = 0.00718400625For Boom: (0.237 - 0.12561)^2 = 0.0122397638

Then, we multiply each squared difference by the probability of the state occurring:

For Recession: 0.005019024 * 0.22 = 0.00110478528For Normal: 0.00718400625 * 0.25 = 0.0017960015625For Boom: 0.0122397638 * 0.53 = 0.006496061714

Finally, we sum up all the values obtained:

0.00110478528 + 0.0017960015625 + 0.006496061714 = 0.0093968483025

And take the square root of the sum:

Square root of 0.0093968483025 = 0.096919769

Therefore, the standard deviation of returns is approximately 0.0969.

Rounded to the nearest hundredth, what is the positive solution to the quadratic equation 0=2x2+3x-8?
Quadratic formula: x =StartFraction negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFraction
A. 1.39
B. 2.00
C. 2.89
D. 3.50

Answers

Answer:

Step-by-step explanation:

The given quadratic equation is

2x^2+3x-8 = 0

To find the roots of the equation. We will apply the general formula for quadratic equations

x = -b ± √b^2 - 4ac]/2a

from the equation,

a = 2

b = 3

c = -8

It becomes

x = [- 3 ± √3^2 - 4(2 × -8)]/2×2

x = - 3 ± √9 - 4(- 16)]/2×2

x = [- 3 ± √9 + 64]/2×2

x = [- 3 ± √73]/4

x = [- 3 ± 8.544]/4

x = (-3 + 8.544) /4 or x = (-3 - 8.544) / 4

x = 5.544/4 or - 11.544/4

x = 1.386 or x = - 2.886

The positive solution is 1.39 rounded up to the nearest hundredth

Answer:

its a. 1.39

Step-by-step explanation:

In 2012, Gallup asked participants if they had exercised more than 30 minutes a day for three days out of the week. Suppose that random samples of 100 respondents were selected from both Vermont and Hawaii. From the survey, Vermont had 65.3% who said yes and Hawaii had 62.2% who said yes. What is the value of the sample proportion of people from Hawaii who exercised for at least 30 minutes a day 3 days a week?

Answers

Answer:

0.622

Step-by-step explanation:

According to the question,

62.2% of the respondents from Hawaii said that they had exercised more than 30 minutes a day for 3 days out of the week.

So, value of the sample proportion of people from Hawaii who exercised for at least 30 minutes a day for 3 days in a week is given by,

[tex]\frac {62.2}{100}[/tex]

= 0.622  

PLEASE HELP



Answer all three of the questions below.

1. Write an equivalent expression to 2 + 3 + 5 + 6 by combining like terms.


2. Find the sum of (8a – 2b - 4) and (3b − 5).


3.Write the expression in standard form: 4(2a) + 7(−4b) + (3 ∙ c ∙ 5).

Answers

Answer:

a)[tex]2 + 3 + 5 + 6 = 16[/tex]

b)[tex]8a + b-9[/tex]

c)[tex]8a - 28b + 15c[/tex]

Step-by-step explanation:

We are given the following in the question:

1. Equivalent expression

[tex]2 + 3 + 5 + 6[/tex]

Since all the terms are like terms, we can write,

[tex]2 + 3 + 5 + 6 = 16[/tex]

2. Sum of given expression

[tex](8a - 2b - 4) \text{ and } (3b - 5)\\ (8a - 2b - 4) + (3b -5)\\= 8a -2b -4 + 3b -5\\\text{Collecting the like terms}\\8a + (-2b+3b) + (-4-5)\\= 8a + b-9[/tex]

3. Standard form of the expression

[tex]4(2a) + 7(-4b) + (3 \times c \times 5)\\=(8a) + (-28b) + (15c)\\=8a - 28b + 15c[/tex]

which is the required standard form of the given expression.

Suppose that a​ one-way ANOVA is being performed to compare the means of five populations and that the sample sizes are 17 comma 15 comma 16 comma 18 comma and 11. Determine the degrees of freedom for the​ F-statistic.

(a) the degree of freedom of the numerator _______________________
(b) the degree of freedom of the denominator______________________

Answers

Answer:

a) [tex]df_{num}=k-1=5-1=4[/tex]

b) [tex]df_{den}=N-k=77-5=72[/tex]

Step-by-step explanation:

Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".

The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"

If we assume that we have [tex]p[/tex] groups and on each group from [tex]j=1,\dots,p[/tex] we have [tex]n_j[/tex] individuals on each group we can define the following formulas of variation:  

[tex]SS_{total}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x)^2 [/tex]

[tex]SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2 [/tex]

[tex]SS_{within}=SS_{error}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x_j)^2 [/tex]

And we have this property

[tex]SST=SS_{between}+SS_{within}[/tex]

The degrees for the numerator are [tex]df_{num}=k-1=5-1=4[/tex], where k represent the number of groups on this case k =5.

The degrees for the denominator are [tex]df_{den}=N-k=77-5=72[/tex], where N represent the total number of people N=17+15+16+18+11=77.

And the total degrees of freedom are given by: [tex]df_{tot}=df_{num}+df_{den}=N-1=4+72=76[/tex]

Final answer:

The degrees of freedom for the F-statistic in a one-way ANOVA with five populations and sample sizes of 17, 15, 16, 18, and 11 are 4 and 72.

Explanation:

The degrees of freedom for the F-statistic in a one-way ANOVA are determined by the sample sizes of the populations being compared. In this case, the sample sizes are 17, 15, 16, 18, and 11.

The degrees of freedom for the numerator (df(num)) is equal to the number of groups being compared minus 1, which is 5-1=4.

The degrees of freedom for the denominator (df(denom)) is equal to the total number of observations minus the number of groups, which is 77-5=72. Therefore, the degrees of freedom for the F-statistic are 4 and 72.

A firm that stocks lightbulbs gathers the following information: Demand = 19,500 units per year, Ordering cost = $25 per order, Holding cost = $4 per unit per year. The firm wants to calculate the: a) EOQ for the lightbulbs. b) Annual holding costs for the lightbulbs. c) Annual ordering costs for the lightbulbs.

Answers

Answer:

Step-by-step explanation:

Demand = 19,500 units per year (D)

Ordering cost = $25 per order (O)

Holding cost = $4 per unit per year (C)

a) [tex]EOQ=\sqrt{ \frac{2\times D\times O}{C}}[/tex]

   [tex]EOQ=\sqrt{ \frac{2\times 19,500\times 25}{4}}[/tex]

   = [tex]\sqrt{\frac{975000}{4}}[/tex]

   = [tex]\sqrt{243,750}[/tex]

   = 493.71044 ≈ 494

b) Annual holding cost = [tex]4\times(\frac{Q}{2})[/tex]

                                      = [tex]4\times(\frac{494}{2})[/tex]

                                      = 4 × 247

                                      = 988

c) Annual ordering cost = [tex]O\times(\frac{D}{Q} )[/tex]

                                       = [tex]25\times(\frac{19,500}{494} )[/tex]

                                       = 25 × 39.47

                                       = 986.75

AOQ = 494

Annual holding cost = 988

Annual ordering cost = 986.75

In a recent poll of 750 randomly selected​ adults, 589 said that it is morally wrong to not report all income on tax returns. Use a 0.05 significance level to test the claim that 70​% of adults say that it is morally wrong to not report all income on tax returns. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method. Use the normal distribution as an approximation of the binomial distribution.

Answers

Answer:

z= 5.08

The p value obtained was a very low value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of adults who say's that it is morally wrong to not report all income on tax returns differs from 0.7 or 70% .

Step-by-step explanation:

1) Data given and notation

n=750 represent the random sample taken

X=589 represent the adults that said that it is morally wrong to not report all income on tax returns

[tex]\hat p=\frac{589}{750}=0.785[/tex] estimated proportion of adults that said that it is morally wrong to not report all income on tax returns

[tex]p_o=0.7[/tex] is the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)

pv represent the p value (variable of interest)  

2) Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that 70% of adults say that it is morally wrong to not report all income on tax returns.:  

Null hypothesis:[tex]p=0.7[/tex]  

Alternative hypothesis:[tex]p \neq 0.7[/tex]  

When we conduct a proportion test we need to use the z statisitc, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

3) Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.785 -0.7}{\sqrt{\frac{0.7(1-0.7)}{750}}}=5.08[/tex]  

4) Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level provided [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.  

Since is a bilateral test the p value would be:  

[tex]p_v =2*P(z>5.08)=0.000000377[/tex]  

So the p value obtained was a very low value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of adults who say's that it is morally wrong to not report all income on tax returns differs from 0.7 or 70% .  

For a rectangular cube with a square base, suppose that it costs $3/cm^2 for the material used on the side and $6/cm^2 for the material used for the top lid and the base. Assuming that the volume of this container is 54 cm^3 , what is the side length of the cube with the smallest cost?

Answers

Answer:

The sides of the container should be 3 cm and height should be 6 cm to minimize the cost

Step-by-step explanation:

Data provided in the question:

costs  for the material used on the side = $3/cm²

costs for the material used for the top lid and the base = $6/cm²

Volume of the container = 54 cm³

Now,

let the side of the base be 'x' and the height of the box be 'y'

Thus,

x × x × y = 54 cm³

or

x²y = 54

or

y = [tex]\frac{54}{x^2}[/tex]  ............(1)

Now,

The total cost of material, C

C = $3 × ( 4 side area of the box ) + $6 × (Area of the top and bottom)

or

C = ( $3 × 4xy ) + ( $6 × (x²)  )

substituting the value of y in the above equation, we get

C = [tex]3x\times4\times\frac{54}{x^2}+2\times6x^2[/tex]

or

C = [tex]\frac{648}{x}+12x^2[/tex]

Differentiating with respect to x and putting it equals to zero to find the point of maxima of minima

thus,

C' = [tex]-\frac{648}{x^2}+2\times12x[/tex] = 0

or

[tex]2\times12x=\frac{648}{x^2}[/tex]

or

24x³ = 648

or

x = 3 cm

also,

C'' = [tex]+\frac{2\times648}{x^3}+2\times12[/tex]

or

C''(3) = [tex]+\frac{2\times648}{3^3}+2\times12[/tex] > 0

Hence,

x = 3 cm is point of minima

Therefore,

y = [tex]\frac{54}{x^2}[/tex]               [from 1]

or

y = [tex]\frac{54}{3^2}[/tex]

or

y = 6 cm

Hence,

The sides of the container should be 3 cm and height should be 6 cm to minimize the cost

When the moon is exactly half full, the earth, moon, and sun form a right triangle. The right angle is the angle at the moon. At that time, the angle formed by the sun earth and moon is 89.85◦ (the angle at the Earth). If the distance from the earth to the moon is 240,000 miles, estimate the distance from the earth to the sun.

Answers

The distance from earth to sun is 91,673,351.94 miles  

Solution:

Given that the earth, moon, and sun form a right triangle shown in figure

The figure is attached below

Point A represents moon

Point B represents sun

Point C represents earth

The right angle is the angle at the moon. This is represented by point A in right angle triangle

Given that angle at earth is 89.85 degree

Angle BCA = 89.85 degree

Distance between earth and moon = AC = 240,000 miles

Since, Right angled triangle is formed we can use trigonometric identities

[tex]\cos \theta=\frac{B a s e}{\text {Hypotenuse}}[/tex]

The angle θ means angle created on earth

i.e. angle BCA = θ = 89.85 degree

[tex]\cos \left(89.85^{\circ}\right)=\frac{A C}{B C}[/tex]

Let BC = d, which is the distance between Earth and the sun

[tex]\mathrm{D}=\frac{240,000}{\cos (89.85)}=91,673,351.94 \mathrm{miles}[/tex]

So the distance from earth to sun is 91,673,351.94 miles  

Final answer:

To estimate the distance from the Earth to the Sun when the Moon is exactly half full and the Earth, Moon, and Sun form a right triangle, we can use the concept of similar triangles. By setting up a proportion and using the tangent function, we can calculate that the estimated distance is approximately 243,480,000 miles.

Explanation:

To estimate the distance from the Earth to the Sun, we can use the concept of similar triangles. When the Moon is exactly half full, the Earth, Moon, and Sun form a right triangle, with the right angle at the Moon. We know that the angle formed by the Sun, Earth, and Moon is 89.85 degrees.

We can use this information to set up a proportion between the distance from the Earth to the Moon and the distance from the Earth to the Sun. Let x be the distance from the Earth to the Sun. We can use the tangent function to find x:

Tan(89.85) = (240,000 miles) / x

Solving for x, we get:

x = (240,000 miles) / Tan(89.85)

Using a calculator, we find that x is approximately 243,480,000 miles.

Consider an unreliable communication channel that can successfully send a message with probability 1/2, or otherwise, the message is lost with probability 1/2. How many times do we need to transmit the message over this unreliable channel so that with probability 63/64 the message is received at least once? Explain your answer.
Hint: treat this as a Bernoulli process with a probability of success 1/2. The question is equivalent to: how many times do you have to try until you get at least one success?

Answers

Answer:

6 times we need to transmit the message over this unreliable channel so that with probability 63/64.

Step-by-step explanation:

Consider the provided information.

Let x is the number of times massage received.

It is given that the probability of successfully is 1/2.

Thus p = 1/2 and q = 1/2

We want the number of times do we need to transmit the message over this unreliable channel so that with probability 63/64 the message is received at least once.

According to the binomial distribution:

[tex]P(X=x)=\frac{n!}{r!(n-r)!}p^rq^{n-r}[/tex]

We want message is received at least once. This can be written as:

[tex]P(X\geq 1)=1-P(x=0)[/tex]

The probability of at least once is given as 63/64 we need to find the number of times we need to send the massage.

[tex]\frac{63}{64}=1-\frac{n!}{0!(n-0)!}\frac{1}{2}^0\frac{1}{2}^{n-0}[/tex]

[tex]\frac{63}{64}=1-\frac{n!}{n!}\frac{1}{2}^{n}[/tex]

[tex]\frac{63}{64}=1-\frac{1}{2}^{n}[/tex]

[tex]\frac{1}{2}^{n}=1-\frac{63}{64}[/tex]

[tex]\frac{1}{2}^{n}=\frac{1}{64}[/tex]

By comparing the value number we find that the value of n should be 6.

Hence, 6 times we need to transmit the message over this unreliable channel so that with probability 63/64.

A survey of 61 comma 646 people included several questions about office relationships. Of the​ respondents, 26.5​% reported that bosses scream at employees. Use a 0.05 significance level to test the claim that more than 1 divided by 4 of people say that bosses scream at employees. How is the conclusion affected after learning that the survey is an online survey in which Internet users chose whether to​ respond? Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method. Use the normal distribution as an approximation of the binomial distribution.

Answers

Answer:

H ₀ : p ≤ 0.25

H ₁: p > 0.25

Test statics value  z = 12.91

Decision Rule:

Reject the value of null hypothesis

Conclusion:

If survey is online then there is sufficient evidence to claim . If the sample is  voluntary response sample then conclusion is not valid.

Step-by-step explanation:

step by step explanation is shown in attachment.

For a standardized psychology examination intended for psychology majors, the historical data show that scores have a mean of 505 and a standard deviation of 170. The grading process of this year's exam has just begun. The average score of the 35 exams graded so far is 530.What is the probability that a sample of 35 exams will have a mean score of 530 or more if the exam scores follow the same distribution as in the past?

Answers

Answer:

[tex]P(\bar X>530)=1-0.808=0.192[/tex]

Step-by-step explanation:

1) Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Let X the random variable that represent the scores, and for this case we know the distribution for X is given by:

[tex]X \sim N(\mu=505,\sigma=170)[/tex]  

And let [tex]\bar X[/tex] represent the sample mean, the distribution for the sample mean is given by:

[tex]\bar X \sim N(\mu,\frac{\sigma}{\sqrt{n}})[/tex]

On this case  [tex]\bar X \sim N(505,\frac{170}{\sqrt{35}})[/tex]

2) Calculate the probability

We want this probability:

[tex]P(\bar X>530)=1-P(\bar X<530)[/tex]

The best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

If we apply this formula to our probability we got this:

[tex]P(\bar X >530)=1-P(Z<\frac{530-505}{\frac{170}{\sqrt{35}}})=1-P(Z<0.87)[/tex]

[tex]P(\bar X>530)=1-0.808=0.192[/tex]

Final answer:

Using the central limit theorem, the probability of a sample mean of 530 or more is calculated considering the distribution of the sample mean, which is approximately normal due to the sample size.

Explanation:

To calculate the probability that a sample of 35 exams will have a mean score of 530 or more, when the population mean is 505 with a standard deviation of 170, we use the concept of the sampling distribution of the sample mean. Since the sample size is 35, which is less than 10% of all psychology majors (assuming they number in the thousands), and the population distribution is normal or the sample size is large enough (which it is in this case), we can apply the Central Limit Theorem.

This theorem states that the sampling distribution of the sample mean will be approximately normally distributed with a mean equal to the population mean (μ = 505) and a standard deviation equal to σ/√n, where σ is the population standard deviation and n is the sample size (which is √35 in this case).

Apply the Gram-Schmidt orthonormalization process to transform the given basis for Rn into an orthonormal basis. Use the Euclidean inner product on Rn and use the vectors in the order in which they are given. B = {(8, −6, 0), (5, 1, 0), (0, 0, 2)}U1=??U2=??U3=??

Answers

Answer:

Remember, if [tex]\{x_1,x_2,...,x_k\}[/tex] is a basis for a subspace W of [tex]\mathbb{R}^n[/tex] then [tex]\{q_1,q_2,...,q_k\}[/tex] is an orthonormal basis of W, where

[tex]q_i=\frac{1}{||v_i||}[/tex] and [tex]v_i[/tex] is defined as:

[tex]v_1=x_1\\v_2=x_2-\frac{v_1\cdot x_2}{v_1\cdot v_1}v_1\\v_k=x_k-\frac{v_1\cdot x_k}{v_1\cdot v_1}v_1 - \cdots - \frac{v_{k-1}\cdot x_k}{v_{k-1}\cdot v_{k-1}}v_{k-1}[/tex]

Then, to find a orthonormal basis of [tex]\{x_1=(8, -6, 0), x_2=(5, 1, 0), x_3=(0, 0, 2)\}[/tex] we will find first the [tex]v_i[/tex]'s.

[tex]v_1=x_1[/tex]

[tex]v_2=x_2-\frac{v_1\cdot x_2}{v_1\cdot v_1}v_1=(5,1,0)-\frac{(8,-6,0)\cdot (5,1,0)}{(8,-6,0)\cdot (8,-6,0)}(8,-6,0)=\\=(5,1,0)-\frac{17}{50}(8,-6,0)=(\frac{57}{25},\frac{76}{25},0)[/tex]

[tex]v_3=x_3-\frac{v_1\cdot x_3}{v_1\cdot v_1}v_1-\frac{v_2\cdot x_3}{v_2\cdot v_2}v_2=\\=(0,0,2)-\frac{(8-6,0)\cdot (0,0,2)}{(8,-6,0)\cdot (8,-6,0)}(8,-6,0) -\frac{(\frac{57}{25},\frac{76}{25},0)\cdot (0,0,2)}{(\frac{57}{25},\frac{76}{25},0)\cdot (\frac{57}{25},\frac{76}{25},0)}(\frac{57}{25},\frac{76}{25},0)=\\=(0,0,2)-0-0=\\=(0,0,2)[/tex]

Therefore, [tex]\{v_1=(8,-6,0),v_2=(\frac{57}{25},\frac{76}{25},0),v_3=(0,0,2)\}[/tex] is a ortogonal basis for [tex]\mathbb{R}^3[/tex]. But we need a orthonormal basis. Then is enough find the corresponding unit vector of the ortogonal basis found.

[tex]q_1=\frac{1}{||v_1||}v_1=\frac{1}{\sqrt{100}}(8,-6,0)\\q_2=\frac{1}{||v_2||}v_2=\frac{1}{\frac{19}{5}}(\frac{57}{25},\frac{76}{25},0)=\frac{5}{19}(\frac{57}{25},\frac{76}{25},0)\\q_3=\frac{1}{||v_3||}v_3=\frac{1}{2}(0,0,2)[/tex]

Hence

[tex]\{q_1=({\frac{8}{\sqrt{100}},\frac{-6}{\sqrt{100}},0), q_2=(\frac{3}{5},\frac{4}{5},0), q_3=(0,0,1)\}[/tex] is a orthonormal basis for [tex]\mathbb{R}^3[/tex]

Final answer:

To transform the given basis B into an orthonormal basis using the Gram-Schmidt orthonormalization process, we can follow the steps outlined.

Explanation:

To apply the Gram-Schmidt orthonormalization process to the given basis B = {(8, −6, 0), (5, 1, 0), (0, 0, 2)} in Rn, we'll follow these steps:

Take the first vector from the basis, let's call it U1, and normalize it to obtain the first vector of the orthonormal basis, which we'll also call U1.For the second vector, U2, subtract the projection of U2 onto U1 from U2 to obtain a vector orthogonal to U1. Normalize this resulting vector to obtain U2 of the orthonormal basis.For the third vector, U3, subtract the projection of U3 onto U1 and U2 from U3 to obtain a vector orthogonal to U1 and U2. Normalize this resulting vector to obtain U3 of the orthonormal basis.

By applying this process to B, we find that U1 is (8/10, -6/10, 0), U2 is (1/2, 7/10, 0), and U3 is (0, 0, 2/√10).

Which triangle congruence postulate proves these two triangle are congruent?

A. AAS
B. HL
C. SAS
D. ASA

Please answer this

Answers

Answer:

A. AAS

Step-by-step explanation:

The vertical angles are congruent, the adjacent marked angles are congruent, and the marked sides on the far side of both angles are congruent. This geometry matches the conditions for Angle-Angle-Side (AAS) congruence.

There are 20 members of a basketball team.

(a) The coach must select 12 players to travel to an away game. How many ways are there to select the players who will travel?
(b) From the 12 players who will travel, the coach must select her starting line-up. She will select a player for each of the five positions: center, power forward, small forward, shooting guard and point guard. How many ways are there for her to select the starting line-up?
(c) From the 12 players who will travel, the coach must select her starting line-up. She will select a player for each of the five positions: center, power forward, small forward, shooting guard and point guard. However, there are only three of the 12 players who can play center. Otherwise, there are no restrictions. How many ways are there for her to select the starting line-up?

Answers

Final answer:

There are 125,970 ways to select the players who will travel to an away game. There are 79,833,600 ways to select the starting line-up. With a restriction on the center position, there are 12 ways to select the starting line-up.

Explanation:

(a) The coach must select 12 players to travel to an away game:

There are 20 members on the basketball team, and the coach needs to select 12 players to travel. This is a combination problem, since the order doesn't matter. The formula for calculating combinations is: nCr = n! / (r! * (n-r)!), where n is the total number of players and r is the number of players to be selected.

Using this formula, we can calculate the number of ways to select the traveling players: 20C12 = 20! / (12! * (20-12)!) = 125,970 ways.

(b) The coach must select her starting line-up:

There are 12 players who will travel, and the coach needs to select 5 players for the starting line-up. This is a permutation problem, since the order does matter. The formula for calculating permutations is: nPr = n! / (n-r)!, where n is the total number of players and r is the number of players to be selected.

Using this formula, we can calculate the number of ways to select the starting line-up: 12P5 = 12! / (12-5)! = 12! / 7! =  79,833,600 ways.

(c) The coach must select her starting line-up, with a restriction on the center position:

There are 12 players who will travel, and only 3 players who can play center. The remaining 4 positions have no restrictions. We can calculate the number of ways to select the starting line-up by first selecting the center player (3 ways), and then selecting the players for the other positions (4P4 = 4 ways).

Therefore, the total number of ways to select the starting line-up with the restriction on the center position is: 3 * 4 = 12 ways.

A 1000-liter (L) tank contains 500 L of water with a salt concentration of 10 g/L. Water with a salt concentration of 50 g/L flows into the tank at a rate of Rin=80 L/minutes (min). The fluid mixes instantaneously and is pumped out at a specified rate Rout. Let y(t) denote the quantity of salt in the tank at time t. Assume that Rout=40L/min. (a) Set up and solve the differential equation for y(t). (b) What is the salt concentration when the tank overflows?

Answers

Final answer:

It would take roughly 22.22 hours to fill an 80,000 L swimming pool with a garden hose at a rate of 60 L/min. However, if diverting a moderate size river flowing at 5000 m³/s, it would fill the pool in approximately 0.016 seconds.

Explanation:

To estimate the time it would take to fill a private swimming pool with a capacity of 80,000 L using a garden hose delivering 60 L/min, we simply divide the total volume of the pool by the flow rate of the hose. For this calculation:

Time (min) = Total Volume (L) / Flow Rate (L/min)

Time = 80,000 L / 60 L/min = 1333.33 min

To convert minutes to hours, we divide by 60:

Time = 1333.33 min / 60 = 22.22 hours

For part (b), if you could divert a moderate size river, flowing at 5000 m³/s, into the pool, we need to convert this flow rate into liters per second (L/s) for consistency:

Flow Rate (L/s) = 5000 m³/s * 1000 L/m³

Flow Rate = 5000000 L/s

Now we can calculate the time it would take to fill the pool with this flow rate:

Time = 80,000 L / 5000000 L/s

Time = 0.016 seconds

For an average​ person, the rate of change of weight W​ (in pounds) with respect to height h​ (in inches) is given approximately by the following formula.

dW/dh=0.0018h^2

Find​ W(h) if ​W(80​)equals=287.2 pounds. ​ Also, find the weight of a person who is 5​ feet, 8 inches tall.

W(h)=_______

A Person who is 5 feet, 8 inches tall weighs about _______ lbs

Answers

Answer:

[tex]W(h)=0.0006h^3-20[/tex].

A Person who is 5 feet, 8 inches tall weighs about 168.7 lbs.

Step-by-step explanation:

We know the rate of change of weight W​ (in pounds) with respect to height h​ (in inches)

[tex]\frac{dW}{dh}=0.0018h^2[/tex]

This is a separable equation. A separable equation is a first-order differential equation in which the expression for [tex]\frac{dy}{dx}[/tex] can be factored as a function of x times a function of y. In other words, it can be written in the form

[tex]\frac{dy}{dx}=g(x)f(y)[/tex]

To find W(h), we write the equation in terms of differentials and integrate both sides:

[tex]\frac{dW}{dh}=0.0018h^2\\\\dW=(0.0018h^2)dh\\\\\int dW=\int (0.0018h^2)dh\\\\W=0.0006h^3+C[/tex]

To find the value of C, we use W(80​) = 287.2 lbs

[tex]287.2=0.0006(80)^3+C\\0.0006\left(80\right)^3+C=287.2\\307.2+C=287.2\\307.2+C-307.2=287.2-307.2\\C=-20[/tex]

Thus,

[tex]W(h)=0.0006h^3-20[/tex]

To find the weight of a person who is 5​ feet, 8 inches tall you must:

Convert the 5 feet into inches

[tex]5 \:ft \:\frac{12 \:in}{1\:ft} = 60 \:in[/tex]

Add 60 in and 8 in, to find the total height of the person

h = 68 in

Substitute h = 68 in into [tex]W(h)=0.0006h^3-20[/tex] to find the weight:[tex]W(68)=0.0006(68)^3-20=168.7[/tex]

A Person who is 5 feet, 8 inches tall weighs about 168.7 lbs.

Final answer:

To find the weight function W(h) and the weight of a person who is 5 feet, 8 inches tall, we need to integrate the given rate of change formula and substitute the values into the equation.

Explanation:

To find the weight function W(h), we need to integrate the given rate of change formula dW/dh = 0.0018[tex]h^2[/tex].

Integrating both sides, we get:

∫ dW = ∫ 0.0018[tex]h^2[/tex] dh

Integrating, we have:

W(h) = 0.0018 * (1/3) * [tex]h^3[/tex] + C

To find the value of C, we use the given information W(80) = 287.2 pounds.

Substituting the values, we have:

287.2 = 0.0018 * (1/3) * [tex]80^3[/tex] + C

Simplifying the equation, we solve for C and find:

C = 287.2 - 0.0018 * (1/3) * [tex]80^3[/tex]

Now, we can write the weight function W(h) as:

W(h) = 0.0018 * (1/3) * [tex]h^3[/tex] + (287.2 - 0.0018 * (1/3) * [tex]80^3[/tex])

To find the weight of a person who is 5 feet, 8 inches tall, we need to convert the height to inches.

5 feet is equal to 60 inches, and 8 inches is 8 inches. So, the total height is 60 + 8 = 68 inches.

Substituting the value into the weight function, we have:

W(68) = 0.0018 * (1/3) * [tex]68^3[/tex] + (287.2 - 0.0018 * (1/3) * [tex]80^3[/tex])

Simplifying the equation, we find the weight of a person who is 5 feet, 8 inches tall.

Learn more about Weight function and finding weight here:

https://brainly.com/question/38986050

#SPJ3

(1 point) You are given the parametric equations x=2t3+3t2−12t,y=2t3+3t2+1. (a) List all of the points (x,y) where the tangent line is horizontal. In entering your answer, list the points starting with the smallest value of x. If two or more points share the same value of x, list those points starting with the smallest value of y. If any blanks are unused, type an upper-case "N" in them.

Answers

Answer:

(0,1) and (13,2)

Step-by-step explanation:

We are given that parametric equations

[tex]x=2t^3+3t^2-12t[/tex]

[tex]y=2t^3+3t^2+1[/tex]

a.We have to find the points where tangent line is horizontal.

Differentiate x and y w.r.t.time

[tex]\frac{dx}{dt}=6t^2+6t-12[/tex]

[tex]\frac{dy}{dt}=6t^2+6t[/tex]

[tex]\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}[/tex]

Substitute the values

[tex]\frac{dy}{dx}=\frac{6t^2+6t}{6t^2+6t-12}[/tex]

We know that when tangent line is horizontal then

[tex]\frac{dy}{dx}=0[/tex]

[tex]\frac{6t^2+6t}{6t^2+6t-12}=0[/tex]

[tex]6t^2+6t=0[/tex]

[tex]t^2+t=0[/tex]

[tex]t(t+1)=0[/tex]

[tex]t=0, t+1=0[/tex]

[tex]t+1=0\implies t=-1[/tex]

Substitute the t=0 then we get

[tex]x=2(0)^3+3(0)^2-12(0)=0[/tex]

[tex]y=2(0)^3+3(0)^2+1=1[/tex]

Substitute t=-1

[tex]x=2(-1)^3+3(-1)^2-12(-1)=-2+3+12=13[/tex]

[tex]y=2(-1)^3+3(-1)^2+1=-2+3+1=2[/tex]

The points  (0,1) and (13,2) where tangent line is horizontal .

Final answer:

To find the points where the tangent line is horizontal, we need to find the values of t that make the derivative of y with respect to x equal to 0. The points where the tangent line is horizontal are (0,1) and (20,0).

Explanation:

To find the points where the tangent line is horizontal, we need to find the values of t that make the derivative of y with respect to x equal to 0. Let's start by finding the derivatives of x and y with respect to t:

[d/dt(x)]=(6t^2)+(6t)-12

[d/dt(y)]=(6t^2)+(6t)

To find the values of t that make [d/dt(y)] equal to 0, we set (6t^2)+(6t)=0. By factoring out a 6t, we get t(t+1)=0. So t=0 or t=-1. We can substitute these values of t back into the parametric equations to find the corresponding points (x,y):

t=0: x=0, y=1t=-1: x=20, y=0

Therefore, the points (x,y) where the tangent line is horizontal are (0,1) and (20,0).

Learn more about Tangent line here:

https://brainly.com/question/34884506

#SPJ3

A random variable x has a Normal distribution with an unknown mean and a standard deviation of 12. Suppose that we take a random sample of size n = 36 and find a sample mean of ¯ x = 98 . What is a 95% confidence interval for the mean of x ?

Answers

Answer: The 95% confidence interval for the mean of x is (94.08, 101.92) .

Step-by-step explanation:

We are given that ,

A random variable x has a Normal distribution with an unknown mean and a standard deviation of 12.

i.e. [tex]\sigma= 12[/tex]

Also, it is given that , Sample mean [tex]\overline{x}=98[/tex] having sample size : n= 36

For 95% confidence ,

Significance level : [tex]\alpha=1-0.95=0.05[/tex]

By using the z-value table , the two-tailed critical value for 95% Confidence interval :

[tex]z_{\alpha/2}=z_{0.025}=1.96[/tex]

We know that the confidence interval for unknown population mean[tex](\mu)[/tex] is given by :-

[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

, where [tex]\overline{x}[/tex] = Sample mean

[tex]\sigma[/tex] = Population standard deviation

[tex]z_{\alpha/2}[/tex] = Critical z-value.

Substitute all the given values, then the required confidence interval will be :

[tex]98\pm (1.96)\dfrac{12}{\sqrt{36}}[/tex]

[tex]=98\pm (1.96)\dfrac{12}{6}[/tex]

[tex]=98\pm (1.96)(2)[/tex]

[tex]=98\pm 3.92=(98-3.92,\ 98+3.92)\\\\=( 94.08,\ 101.92)[/tex]

Therefore, the 95% confidence interval for the mean of x is (94.08, 101.92) .

An engineer is comparing voltages for two types of batteries (K and Q) using a sample of 37 type K batteries and a sample of 58 type Q batteries. The mean voltage is measured as 8.54 for the type K batteries with a standard deviation of 0.225, and the mean voltage is 8.69 for type Q batteries with a standard deviation of 0.725. Conduct a hypothesis test for the conjecture that the mean voltage for these two types of batteries is different. Let μ1 be the true mean voltage for type K batteries and μ2 be the true mean voltage for type Q batteries. Use a 0.10.1 level of significance.
Step 1 of 4: State the null and alternative hypotheses for the test.
Step 2 of 4: Compute the value of the test statistic. Round your answer to two decimal places.
Step 3 of 4: Determine the decision rule for rejecting the null hypothesis H0. Round the numerical portion of your answer to two decimal places.
Step 4 of 4: Make the decision for the hypothesis test.

Answers

Answer:

Step-by-step explanation:

Hello!

You want to test two samples of batteries to see is the mean voltage of these battery types are different.

Sample 1 (type K)

n₁= 37

sample mean x₁[bar]= 8.54

standard deviation S₁= 0.225

Sample 2 (Type Q)

n₂= 58

sample mean x₂[bar]= 8.69

standard deviation S₂= 0.725

1. The test hypothesis are:

H₀: μ₁ = μ₂

H₁: μ₁ ≠ μ₂

2. I'll apply the Central Limit Theorem and approximate the distribution of the sample means to normal so that I can use an approximate Z statistic for this test.

Z: (x₁[bar] - x₂[bar]) - (μ₁ - μ₂) ≈ N(0;1)

        √ (S₁²/n₁) + (S₂²/n₂)

[tex]Z_{H0}[/tex]= (8.54 - 8.69) / [√ (0.225²/37) + (0.725²/58)]

[tex]Z_{H0}[/tex]= -1.468 ≅ -1.47

3. This is a two tailed test, so you'll have two critical values

[tex]Z_{\alpha/2} = Z_{0.025} = - 1.96[/tex]

[tex]Z_{1 - \alpha/2} = Z_{0.975} = 1.96[/tex]

You'll reject the null hypothesis if [tex]Z_{H0}[/tex] ≤ -1.96 or if [tex]Z_{H0}[/tex] ≥ 1.96

You'll not reject the null hypothesis if -1.96 < [tex]Z_{H0}[/tex] < 1.96

4.

Since the value [tex]Z_{H0}[/tex] = -1.47 is in the acceptance region, the decision is to not reject the null hypothesis.

I hope it helps!

Answer:

Step-by-step explanation:

Find the absolute extrema of f(x) = e^{x^2+2x}f ( x ) = e x 2 + 2 x on the interval [-2,2][ − 2 , 2 ] first and then use the comparison property to find the lower and upper bounds for I = \displaystyle \int_{-2}^{2} f(x) \, dxI = ∫ − 2 2 f ( x ) d x.

Answers

[tex]f(x)=e^{x^2+2x}\implies f'(x)=2(x+1)e^{x^2+2x}[/tex]

[tex]f[/tex] has critical points where the derivative is 0:

[tex]2(x+1)e^{x^2+2x}=0\implies x+1=0\implies x=-1[/tex]

The second derivative is

[tex]f''(x)=2e^{x^2+2x}+4(x+1)^2e^{x^2+2x}=2(2x^2+4x+3)e^{x^2+2x}[/tex]

and [tex]f''(-1)=\frac2e>0[/tex], which indicates a local minimum at [tex]x=-1[/tex] with a value of [tex]f(-1)=\frac1e[/tex].

At the endpoints of [-2, 2], we have [tex]f(-2)=1[/tex] and [tex]f(2)=e^8[/tex], so that [tex]f[/tex] has an absolute minimum of [tex]\frac1e[/tex] and an absolute maximum of [tex]e^8[/tex] on [-2, 2].

So we have

[tex]\dfrac1e\le f(x)\le e^8[/tex]

[tex]\implies\displaystyle\int_{-2}^2\frac{\mathrm dx}e\le\int_{-2}^2f(x)\,\mathrm dx\le\int_{-2}^2e^8\,\mathrm dx[/tex]

[tex]\implies\boxed{\displaystyle\frac4e\le\int_{-2}^2f(x)\,\mathrm dx\le4e^8}[/tex]

Other Questions
Prove that congruent triangles have congruent corresponding medians. To start his business, Neil borrows money from every source available to him, including all his credit cards and a line of credit at his bank. The business fails, and Neil files a voluntary Chapter 7 petition in good faith to discharge his debts. He returns to work as an attorney, where he makes over twice the median family income in his state. Neil's debts will most likely:_____________. When driving through the streets of New York early in the morning, what type of cloud sometimes reduces visibility?o cumulusO stratusO fogcirrus Twice a number added to a smaller number is 5. The difference of 5 times the smaller number and the larger number is 3. Letx represent the smaller number and y represent the larger number. Which equations represent the situation? 2y+x255x-y-32x+y = 55y-x-32y+x=5y- 5x-3 2x+y=5x-5y-3 According to the law of reflection, which statement must be true? The measure of angle A equals the measure of angle B. The measure of angle B equals the measure of angle C. The measure of angle A equals the measure of angle C. The measure of angle B equals the measure of angle D. The English Bill of Rights of 1689 declares the pretender power of suspending the laws to the execution of laws by regal authority without consent of Parliament is illegal , a declaration supporting which concepts? An adult woman is admitted to an isolation unit in the hospital after tuberculosis was detected during a pre-employment physical.Although frightened about her diagnosis, she is anxious to cooperate with the therapeutic regimen.The teaching plan includes information regarding the most common means of transmitting the tubercle bacillus from one individual to another. Which contamination is usually responsible? a. Hands. b. Droplet nuclei. c. Milk products. d. Eating utensils. according to Tuckman's five-stage model of group and team development, what is the second stage in the process? Your computer displays the error message ""A disk read error occurred."" You try to boot from the Windows setup DVD and you get the same error. What is most likely the problem? Group of answer choices Cole is a minimum wage employee in Santa Fe, NM, where the minimum wage is $10.91 per hour. His employer claims that since the federal minimum wage is $7.25 per hour, Cole should only receive the federal amount. What is the correct answer in this situation?A) The employer has the discretion to pay either the federal or the state-designated minimum wage.B) The employer may choose to pay less than the state-designated minimum wage, based on the employee's qualifications and job description.C) The employer is correct that the federal minimum wage overrules the state wage.D) The employer must pay the state-designated minimum wage for the area. The school system is trying to help their students be more successful. They are going to hire tutors to help. They must have more teachers than tutors. The maximum number of teachers and tutors to be hired is 50. How many tutors and how many teachers can they hire? Let x = number of teachers hired. Let y = number of tutors hired. a. Write an inequality that represents the statement that the number of teachers hired must exceed the number of tutors hired. (2 points) b. Write an inequality that represents the statement that the maximum number of teachers and tutors is 50. (2 points) c. Choose a point that satisfies the situation, and explain why you chose that number of tutors and teachers. (1 point) Ian is a phycologist interested in determining the proportion of algae samples from a local rivulet that belonged to a particular phylum. A random sample of 50 alga were obtained and each was categorized as either being cyanobacteria or not. It was found that 38 were, in fact, cyanobacteria.Without relying on any previous knowledge Ian wanted to estimate the proportion that were cyanobacteria with a margin of error of at most 0.01 in a 99% confidence interval. How large a sample size would be required? How do I solve this? Positive feedback differs from negative feedback in that:A. positive feedback benefits the organism, whereas negative feedback is detrimental.B. the positive feedback's responses are in the same direction as the initiating stimulus, rather than opposite to it.C. positive feedback results in increases in some parameter (such as body temperature), whereas negative feedback results only in decreases to the parameter. D. positive feedback systems have control centers that are lacking in negative feedback systems. If you take a number, times by 3 then add 5. You get the same as if you took the number, times by 7 then subtract 8. What is the number? Ese beb ____ hermoso.estessonests Why is the right to a jury trial guaranteed by the Bill of Rights? Why might someone choose not to have a jury trial? Approximately what core temperature is required before hydrogen fusion can begin in a star? In a voltaic cell, electrons flow from the ________ to the ________. In a voltaic cell, electrons flow from the ________ to the ________. a. anode, salt bridge. b. salt bridge, cathode.c. anode, cathode.d. salt bride, anode.e. cathode, anode explain how a number can be a power of 10