A pilot claims to have seen a UFO moving initially at a speed of about 351 m/s in an easterly direction and then, in a time interval of only 1.0 s, turning 48° south of east and moving at 351 m/s. Compute the UFO's average acceleration during the turn. Find Magnitude and direction

Answers

Answer 1

Answer:

Explanation:

This problem can be solved easily if we represent velocity in the form of vector.

The velocity of 351 was towards easterly direction so

V₁ = 351 i

The velocity of 351 was towards south west making - 48° with east or + ve x direction.

V₂ = 351 Cos 48 i - 351 sin 48 j

V₂ = 234.86 i - 260.84 j

Change in velocity

= V₂ - V₁ = 234.86 i - 260.84 j - 351 i

= -116.14 i - 260.84 j

acceleration

= change in velocity / time

(-116.14 i - 260.84 j )/ 1

= -116.14 i - 260.84 j

magnitude = 285.53 ms⁻²

Direction

Tan θ = 260.84 / 116.14 = 2.246

θ = 66 degree south of west .


Related Questions

An object has a charge of-3.8 μC. How many electrons must be removed so that the charge becomes +2.6 μC?

Answers

Answer:

The answer is [tex] 3.994 \times 10^{13}\ electrons[/tex]

Explanation:

The amount of negative charge that must be removed is

[tex]\Delta = Final\ charge - initial\ Charge = 2.6 - (-3.8) = 6.4 \ \mu C = 6.4 \times 10^{-6}\ C[/tex]

and the charge of one electron is

[tex]1 e = 1.60217662\times 10^{-19} \ C[/tex]

So the amount of electrons we need to remove is

[tex]x = \frac{6.4 \times 10^{-6}}{1.60217662\times 10^{-19}} \approx 3.994 \times 10^{13}\ electrons[/tex]

A Car travel at a speed of 200 km/hr. How far it will go in 15 mins? 27.7 km 66.1 km7.70 km50.0 km8.33 km"

Answers

Answer:

So car will go 50 km in 15 minutes

Explanation:

We have given speed of the car = 200 km/hour

Time t = 15 minutes

We know that 1 hour = 60 minute

So 15 minute = [tex]\frac{15}{60}=0.25hour[/tex]

We have to find the distance

We know that distance = speed ×time = 200×0.25=50 km

So car will go 50 km in 15 minutes

So option (d) will be the correct option

A jogger travels a route that has two parts. The first is a displacement of 3 km due south, and the second involves a displacement that points due east. The resultant displacement + has a magnitude of 3.85 km. (a) What is the magnitude of , and (b) what is the direction of + as a positive angle relative to due south? Suppose that - had a magnitude of 3.85 km. (c) What then would be the magnitude of , and (d) what is the direction of - relative to due south?

Answers

Answer:

a) 2.41 km

b) 38.8°

Questions c and d are illegible.

Explanation:

We can express the displacements as vectors with origin on the point he started (0, 0).

When he traveled south he moved to (-3, 0).

When he moved east he moved to (-3, x)

The magnitude of the total displacement is found with Pythagoras theorem:

d^2 = dx^2 + dy^2

Rearranging:

dy^2 = d^2 - dx^2

[tex]dy = \sqrt{d^2 - dx^2}[/tex]

[tex]dy = \sqrt{3.85^2 - 3^2}  = 2.41 km[/tex]

The angle of the displacement vector is:

cos(a) = dx/d

a = arccos(dx/d)

a = arccos(3/3.85) = 38.8°

While standing on the roof of a building, a child tosses a tennis ball with an initial speed of 13 m/s at an angle of 35° below the horizontal. The ball lands on the ground 2.6 s later. How tall, in meters, is the building?

Answers

Answer:

building height is 52.52 m

Explanation:

given data

initial speed v = 13 m/s

angle = 35°

time = 2.6 s

to find out

how tall is building

solution

we consider here h is height of building

so

initial velocity at angle 35 is express as

u = v sin(θ)     ...........1

u = 13 sin35 = 7.45 m/s

so

by distance formula

h = ut + 1/2 at²        ...........2

h = 7.45 ( 2.6) + 1/2 × (9.81) × (2.6)²

h = 52.52 m

so building height is 52.52 m

Final answer:

Using the formula for vertical displacement in projectile motion, with an initial velocity of 13 m/s downward and the ball being in the air for 2.6 seconds, the building's height is found to be approximately 52.5 meters.

Explanation:

To solve for the height of the building in the given scenario, we can use the vertical component of the projectile motion. We know that the child throws the tennis ball with an initial speed of 13 m/s at an angle of 35° below the horizontal, and it lands after 2.6 seconds. We can use the formula for the vertical motion under constant acceleration (gravity in this case) to find the height:

Equation for vertical displacement:

s = ut + ½at2

s is the vertical displacement (height of the building), u is the initial vertical velocity, a is the acceleration due to gravity (9.8 m/s2), and t is the time the ball is in the air.

First, we calculate the initial vertical velocity component (u):

u = vinitial × sin(θ)

u = 13 m/s × sin(35°) = 13 m/s × 0.5736 ≈ 7.457 m/s (downward)

Since the initial velocity is downward and we need upward to be positive, we will treat it as negative:

u = -7.457 m/s

Next, we can calculate the height of the building.

s = (-7.457 m/s)(2.6 s) + ½(-9.8 m/s2)(2.6 s)2

s = -19.3886 m - 33.118 m

s = -52.5066 m

Since the displacement is in the negative direction (downward), the height of the building is 52.5 meters (we must take the absolute value of the displacement to get the height).

The area of a rectangular park is 4 mi^2. The park has a width that is equal to "w", and a length that is 3 mi longer than the width of the park. Find the dimensions of the park.

Answers

Answer:

l= 4 mi   : width of the park

w= 1 mi  : length of the park

Explanation:

Formula to find the area of ​​the rectangle:

A= w*l       Formula(1)

Where,

A is the area of the  rectangle in mi²

w is the  width of the rectangle in mi

l is the  width of the rectangle in mi

Known data

A =  4 mi²

l = (w+3)mi    Equation (1)

Problem development

We replace the data in the formula (1)

A= w*l  

4 = w* (w+3)

4= w²+3w

w²+3w-4= 0

We factor the equation:

We look for two numbers whose sum is 3 and whose multiplication is -4

(w-1)(w+4) = 0 Equation (2)

The values ​​of w for which the equation (2) is zero are:

w = 1 and w = -4

We take the positive value w = 1 because w is a dimension and cannot be negative.

w  = 1 mi  :width of the park

We replace w  = 1 mi  in the equation (1) to calculate the length of the park:

l=  (w+3) mi

l= ( 1+3) mi

l= 4 mi

Suppose the potential due to a point charge is 6.25x10^2 v at a distance of 17m. What is the magnitude of the charge, in coulombs?

Answers

Answer:

[tex]q=1.18*10^{-6}C}[/tex]

Explanation:

The potential V due to a charge q,  at a distance r, is:

[tex]V=k\frac{q}{r}[/tex]

k=8.99×109 N·m^2/C^2      :Coulomb constant

We solve to find q:

[tex]q=\frac{V*r}{k}=\frac{6.25*10^{2}*17}{8.99*10^{9}}=1.18*10^{-6}C[/tex]

Which of the following statements for a solenoid is NOT true? a) Your right-hand thumb must be pointed in the direction of the south pole. b) The fingers of your right hand are curled in the direction of the electric current c) To determine the magnetic field you grasp the coil in your right hand. d) A solenoid consists of a coiled conductor

Answers

Answer:

(a) Your right-hand thumb must be pointed in the direction of the south pole.

Explanation:

A solenoid is a coil of insulated copper wire which behaves like a magnet when an electric current passes through it and it loses its magnetic behaviour just after the current flow stops.

Since it behaves a magnet, the magnetic poles must be determined. In order to determine the magnetic pole, we put the coil in our right hand, curl our four fingers in the direction of current flow and then the direction in which our thumb points is the north pole. This is known as the Right-hand rule.

From the above discussion, option (a) does not keep pace with the statement of right-hand rule.

Hence, option (a) is not true.

To practice Problem-Solving Strategy 16.2 Doppler effect. The sound source of a ship’s sonar system operates at a frequency of 22.0 kHz . The speed of sound in water (assumed to be at a uniform 20∘C) is 1482 m/s . What is the difference in frequency between the directly radiated waves and the waves reflected from a whale traveling straight toward the ship at 4.95 m/s ? Assume that the ship is at rest in the water.

Answers

Answer:

Δf=73Hz

Explanation:

From the question we know that:

C = 1482 m/s

Vs = 0 m/s

Vr = -4.95 m/s (it's negative because it is in the opposite direction to the waves)

f0 = 22000 Hz

Applying the formula for the doppler effect:

[tex]f=(\frac{C-Vr}{C-Vs} )*fo[/tex]

f = 22073 Hz.   So the difference is only 73Hz

A 1.8 kg hammer moving at 6.0 m/s drives a nail 30mm into a board. Compute the average resistance of the board on the nail using theWork-Energy theorem.

Answers

Answer:

F = 1080 N

Explanation:

given,

mass of the hammer = 1.8 kg

velocity of the hammer = 6 m/s

distance into board = 30 mm = 0.03 m

to calculate average resistance force = F

kinetic energy of the hammer is equal to the work done by the hammer

[tex]\dfrac{1}{2}mv^2 = Force\times displacement[/tex]

[tex]\dfrac{1}{2}mv^2 = F\times d[/tex]

[tex]\dfrac{1}{2}\times 1.8\times 6^2 = F\times 0.03[/tex]

F = 1080 N

hence, the average resistance force is equal to F = 1080 N

The alternating current which crosses an apparatus of 600 W has a maximum value of 2.5 A. What is efficient voltage between its demarcations? A. 140 V
B. 240 V
C. 340 V
D. Impossible to find without knowing the resistance of the apparatus

Answers

Answer: Option (b) is correct.

Explanation:

Since we know that,

P = VI

where;

P = power

V= Voltage

I = Current

Since it's given that,

P = 600W

I = 2.5 A

equating these values in the above equation, we get;

V = [tex]\frac{600}{2.5}[/tex]

V = 240 V

Spacetime interval: What is the interval between two events if in some given inertial reference frame the events are separated by: (a) 7.5 x 10 m and 3s? (b) 5x10 m and 0.58? (c) 5x 10"m and 58?

Answers

Answer:

a. [tex]\Delta s ^2 = 8.0888 \ 10^{17} m^2[/tex]b. [tex]\Delta s ^2 = 3.0234 \ 10^{16} m^2[/tex]c. [tex]\Delta s ^2 = 3.0234 \ 10^{20} m^2[/tex]

Explanation:

The spacetime interval [tex]\Delta s^2[/tex] is given by

[tex]\Delta s ^2 = \Delta (c t) ^ 2 - \Delta \vec{x}^2[/tex]

please, be aware this is the definition for the signature ( + - - - ), for the signature (- + + + ) the spacetime interval is given by:

[tex]\Delta s ^2 = - \Delta (c t) ^ 2 + \Delta \vec{x}^2[/tex].

Lets work with the signature ( + - - - ), and, if needed in the other signature, we can multiply our interval by -1.

a.

[tex]\Delta \vec{x}^2 = (7.5 \ 10 \ m)^2[/tex]

[tex]\Delta \vec{x}^2 = 5,625 m^2[/tex]

[tex]\Delta (c t) ^ 2 = (299,792,458 \frac{m}{s} \ 3 \ s)^2[/tex]

[tex]\Delta (c t) ^ 2 = (899,377,374 \ m)^2[/tex]

[tex]\Delta (c t) ^ 2 = 8.0888 \ 10^{17} m^2[/tex]

so

[tex]\Delta s ^2 = 8.0888 \ 10^{17} m^2 - 5,625 m^2[/tex]

[tex]\Delta s ^2 = 8.0888 \ 10^{17} m^2[/tex]

b.

[tex]\Delta \vec{x}^2 = (5 \ 10 \ m)^2[/tex]

[tex]\Delta \vec{x}^2 = 2,500 m^2[/tex]

[tex]\Delta (c t) ^ 2 = (299,792,458 \frac{m}{s} \ 0.58 \ s)^2[/tex]

[tex]\Delta (c t) ^ 2 = (173,879,625.6 \ m)^2[/tex]

[tex]\Delta (c t) ^ 2 = 3.0234 \ 10^{16} m^2[/tex]

so

[tex]\Delta s ^2 = 3.0234 \ 10^{16} m^2 - 2,500 m^2[/tex]

[tex]\Delta s ^2 = 3.0234 \ 10^{16} m^2[/tex]

c.

[tex]\Delta \vec{x}^2 = (5 \ 10 \ m)^2[/tex]

[tex]\Delta \vec{x}^2 = 2,500 m^2[/tex]

[tex]\Delta (c t) ^ 2 = (299,792,458 \frac{m}{s} \ 58 \ s)^2[/tex]

[tex]\Delta (c t) ^ 2 = (1.73879 \ 10^{10} \ m)^2[/tex]

[tex]\Delta (c t) ^ 2 = 3.0234 \ 10^{20} m^2[/tex]

so

[tex]\Delta s ^2 = 3.0234 \ 10^{20} m^2 - 2,500 m^2[/tex]

[tex]\Delta s ^2 = 3.0234 \ 10^{20} m^2[/tex]

Stone is thrown vertically upward with a speed of 22.0 m/s. a) How fast is it moving when it reaches a height of 12.3 m?
b)How much time is required to reach this height?

Answers

Answer:

a) v = 15.6 m/s

b) 0.65 s are needed to reach a height of 12.3 m

Explanation:

The equations that describe the height and velocity of the stone are the following:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where

y = height of the stone at time t

y0 = initial height

v0 = initial speed

t = time

g = acceleration due to gravity

b) First, let´s find the time at which the stone reaches a height of 12.3 m:

y = y0 + v0 · t + 1/2 · g · t²

12.3 m = 0 m + 22.0 m/s · t + 1/2 · (-9.8 m/s²) · t²    (y0 = 0 placing the center of the frame of reference at the point at which the stone is thrown.)

-4.9 m/s² · t² + 22.0 m/s · t - 12.3 m = 0

t = 0.65 s (when the stone goes upward) and t = 3.84 s ( when the stone returns downward) .

So, 0.65 s are needed to reach a height of 12.3 m

a) The velocity at that time will be:

v = v0 + g · t

v = 22.0 m/s - 9.8 m/s² · 0.65 s = 15.6 m/s

The stone moves at approximately 15.62 m/s when it reaches a height of 12.3 meters. The time required to reach this height is approximately 0.652 seconds.

Initial velocity (u) = 22.0 m/s

Acceleration (a) = -9.8 m/s² (due to gravity)

Height (h) = 12.3 m

Part (a): Finding the Speed at 12.3 m

We can use the equation:

v² = u² + 2a(s), where v is the final velocity, u is the initial velocity, a is acceleration, and s is the displacement.

Substituting the given values:

v² = (22.0 m/s)² + 2(-9.8 m/s²)(12.3 m)

v² = 484 - 240.12

v² = 243.88

v = √243.88 ≈ 15.62 m/s

Thus, the stone is moving at approximately 15.62 m/s when it reaches a height of 12.3 m.

Part (b): Finding the Time to Reach 12.3 m

We can use the equation:

s = ut + 1/2 at², where s is the displacement, u is the initial velocity, t is time, and a is acceleration.

12.3 m = (22.0 m/s)t + 1/2(-9.8 m/s²)t²

12.3 = 22.0t - 4.9t²

Rearrange to form a quadratic equation:

-4.9t² + 22.0t - 12.3 = 0

Using the quadratic formula:

t = [ -b ± √(b² - 4ac) ] / 2a

t = [ 22.0 ± √(484 - 4(-4.9)(-12.3)) ] / 2(-4.9)

t = ( 22.0 ± √(484 - 240.12) ) / 9.8

t = ( 22.0 ± √243.88 ) / 9.8

t = 22.0 ± 15.62 / 9.8

We get two possible values for t:

t₁ = (22.0 - 15.62) / 9.8 ≈ 0.652 s

t₂ = (22.0 + 15.62) / 9.8 ≈ 3.83 s

The correct time to reach 12.3 m as the stone ascends is approximately 0.652 seconds.

If a monochromatic light beam with quantum energy value of 2.9 eV incident upon a photocell where the work function of the target metal is 1.8 eV, what is the maximum kinetic energy of ejected electrons?

Answers

Answer:1.1 eV

Explanation:

Given

Energy(E)=2.9 eV

Work function of the target=1.8 eV

We know that

[tex]Energy(E)=W_0+KE_{max}[/tex]

Where [tex]W_0=work\ function[/tex]

[tex]2.9=1.8+KE_{max}[/tex]

[tex]KE_{max}=2.9-1.8=1.1 eV[/tex]

A driver enters a one-lane tunnel at 34.4 m/s. The driver then observes a slow-moving van 154 m ahead travelling (in the same direction as the car) at a constant 5.65 m/s. The driver applies the brakes (ignore reaction time)of the car but can only accelerate at -2.00 m/s2 because the road is wet. How fast are you moving when you hit the rear of the van?
(A) 16.3 m/s
(B) 22 m/sec
(С) 4 m/sec
(D) 0 m/s

Answers

Answer:

Ans. B) 22 m/s (the closest to what I have which was 20.16 m/s)

Explanation:

Hi, well, first, we have to find the equations for both, the driver and the van. The first one is moving with constant acceleration (a=-2m/s^2) and the van has no acceletation. Let´s write down both formulas so we can solve this problem.

[tex]X(van)=5.65t+154[/tex]

[tex]X(driver)=34.4t+\frac{(-2)t^{2} }{2}[/tex]

or by rearanging the drivers equation.

[tex]X(driver)=34.4t+t^{2}[/tex]

Now that we have this, let´s equal both equations so we can tell the moment in which both cars crashed.

[tex]X(van)=X(driver)[/tex]

[tex]5.65t+154=34.4t-t^{2}[/tex]

[tex]0=t^{2} -(34.4-5.65)t+154[/tex][tex]0=t^{2} -28.75t+154[/tex]

To solve this equation we use the following formulas

[tex]t=\frac{-b +\sqrt{b^{2}-4ac } }{2a}[/tex]

[tex]t=\frac{-b +\sqrt{b^{2}-4ac } }{2a}[/tex]

Where a=1; b=-28.75; c=154

So we get:

[tex]t=\frac{28.75 +\sqrt{(-28.75)^{2}-4(1)(154) } }{2(1)}=21.63s[/tex][tex]t=\frac{28.75 -\sqrt{(-28.75)^{2}-4(1)(154) } }{2(1)}=7.12s[/tex]

At this point, both answers could seem possible, but let´s find the speed of the driver and see if one of them seems ilogic.

[tex]V(driver)=V_{0} +at[/tex]}

[tex]V(driver)=34.4\frac{m}{s} -2\frac{m}{s^{2} } *(7.12s)=20.16\frac{m}{s}[/tex][tex]V(driver)=34.4\frac{m}{s} -2\frac{m}{s^{2} } *(21.63s)=-8.86\frac{m}{s}[/tex]

This means that 21.63s will outcome into a negative speed, for that reason we will not use the value of 21.63s, we use 7.12s and if so, the speed of the driver when he/she hits the van is 20.16m/s, which is closer to answer  A).

Best of luck

A rocket accelerates straight up from the ground at 12.6 m/s^2 for 11.0 s. Then the engine cuts off and the rocket enters free fall. (a) Find its velocity at the end of its upward acceleration. (b) What maximum height does it reach? (c) With what velocity does it crash to Earth? (d) What's the total time from launch to crash?

Answers

Answer:

a) 138.6 m/s

b) 762.3 m

c) 122.3 m/s

d) 24.47

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

[tex]v=u+at\\\Rightarrow v=0+12.6\times 11\\\Rightarrow v=138.6 \ m/s[/tex]

Velocity at the end of its upward acceleration is 138.6 m/s

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow s=0\times t+\frac{1}{2}\times 12.6\times 11^2\\\Rightarrow s=762.3\ m[/tex]

Maximum height the rocket reaches is 762.3 m

[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as-u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 762.3-0^2}\\\Rightarrow v=122.3\ m/s[/tex]

The velocity with which the rocket crashes to the Earth is 122.3 m/s

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 762.3=0\times t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{762.3\times 2}{9.81}}\\\Rightarrow t=12.47\ s[/tex]

Total time from launch to crash is 12.47+11 = 24.47 seconds

Final answer:

The rocket's velocity at the end of its upward acceleration is 138.6 m/s. The maximum height it reaches is 1353.2 m. The rocket crashes to Earth with a velocity of -1.0 m/s.

Explanation:

(a)  To find the velocity at the end of the rocket's upward acceleration, we can use the formula:

v = u + at

Where:
u = initial velocity = 0 m/s (since the rocket starts from rest)
a = acceleration = 12.6 m/s2
t = time = 11.0 s

Substituting the values, we get:

v = 0 + 12.6 * 11.0 = 138.6 m/s

Therefore, the velocity at the end of its upward acceleration is 138.6 m/s.

(b)  To find the maximum height the rocket reaches, we can use the second equation of motion:

s = ut + 0.5at2

Where:
s = distance
u = initial velocity
a = acceleration
t = time

In this case, we need to consider the time taken for both the upward acceleration and free fall.

For the upward acceleration:

u = 0 m/s (since the rocket starts from rest)
a = 12.6 m/s2
t = 11.0 s

Substituting the values, we get:

s1 = 0 * 11.0 + 0.5 * 12.6 * (11.0)2 = 388.5 m

For the free fall:

u = 138.6 m/s (velocity at the end of the upward acceleration)
a = -9.8 m/s2 (acceleration due to gravity)
t = ?

To find the time for free fall, we can use the equation:

u = at

Substituting the values, we get:

138.6 = -9.8t

Solving for t, we get:

t = -14.1 s

However, time cannot be negative in this case. So, we take the absolute value of t:

t = 14.1 s

Substituting the values in the equation for free fall distance, we get:

s2 = 138.6 * 14.1 + 0.5 * (-9.8) * (14.1)2 = 964.7 m

The maximum height reached by the rocket is s1 + s2 = 388.5 m + 964.7 m = 1353.2 m.

(c)  To find the velocity at which the rocket crashes to Earth, we again consider the free fall phase. Using the equation:

v = u + at

Where:
u = 138.6 m/s (velocity at the end of the upward acceleration)
a = -9.8 m/s2 (acceleration due to gravity)
t = 14.1 s

Substituting the values, we get:

v = 138.6 - 9.8 * 14.1 = -1.0 m/s

The velocity at which the rocket crashes to Earth is -1.0 m/s. The negative sign indicates that the velocity is directed downward.

(d)  The total time from launch to crash is the sum of the time for upward acceleration (11.0 s) and the absolute value of the time for free fall (14.1 s). Therefore, the total time is 11.0 s + 14.1 s = 25.1 s.

A police car at rest, passed by a speeder traveling at a constant 120 km/h, takes off in hot pursuit. The police officer catches up to the speeder in 750 m, while maintaining a constant acceleration. Calculate (a) how long it took the police car to overtake the speeder, (b) the required police acceleration, and (c) the velocity of the police car at the moment it reaches the speeder.

Answers

Final answer:

The police car takes approximately 30 seconds to reach the speeder, requires an acceleration of about 1.67 m/s², and its velocity at the moment it reaches the speeder is approximately 50 m/s.

Explanation:

This problem is a two-body pursuit scenario. The speeder's motion can be described by x = Ut, while the police car's motion is represented by the equation x = 1/2at². The speeder is moving at a constant speed of 120 km/h which is equal to 33.33 m/s.

(a) Time for the police car to overtake the speeder:
To find the time, we equate the two equations (since they both cover the same distance of 750m) and solve for 't'. Thus, 750m = 33.33m/s * t = 1/2 * a * t². By solving this equation, we get two values of 't', out of which the realistic answer is t = 30 seconds.

(b) Required acceleration of the police car:
Plugging the time into the equation for the police car, we get 750m = 1/2 * a * (30s)². Solving for 'a', we find the required acceleration to be approximately 1.67 m/s².

(c) Velocity of the police car at the moment it reaches the speeder:
Since the police car starts from rest and maintains a constant acceleration, the final velocity can be calculated using the equation v = at. Hence, at the moment it reaches the speeder, the police car's velocity would be approximately 50 m/s.

Learn more about Two-Body Pursuit here:

https://brainly.com/question/33595094

#SPJ12

Two particles, one with charge -5.45 × 10^-6 C and one with charge 4.39 × 10^-6 C, are 0.0209 meters apart. What is the magnitude of the force that one particle exerts on the other? Two new particles, which have identical positive charge q3, are placed the same 0.0209 meters apart, and the force between them is measured to be the same as that between the original particles. What is q3?

Answers

Explanation:

Given that,

Charge 1, [tex]q_1=-5.45\times 10^{-6}\ C[/tex]

Charge 2, [tex]q_2=4.39\times 10^{-6}\ C[/tex]

Distance between charges, r = 0.0209 m

1. The electric force is given by :

[tex]F=k\dfrac{q_1q_2}{r^2}[/tex]

[tex]F=9\times 10^9\times \dfrac{-5.45\times 10^{-6}\times 4.39\times 10^{-6}}{(0.0209)^2}[/tex]

F = -492.95 N

2. Distance between two identical charges, [tex]r=0.0209\ m[/tex]

Electric force is given by :

[tex]F=\dfrac{kq_3^2}{r^2}[/tex]

[tex]q_3=\sqrt{\dfrac{Fr^2}{k}}[/tex]

[tex]q_3=\sqrt{\dfrac{492.95\times (0.0209)^2}{9\times 10^9}}[/tex]

[tex]q_3=4.89\times 10^{-6}\ C[/tex]

Hence, this is the required solution.

What is the longest wavelength of light that will
emitelectrons from a metal whose work function is 3.10 eV?

Answers

Answer:

The longest wavelength equals [tex]0.4\times 10^{-6}m[/tex]

Explanation:

According to Einstein's photoelectric equation we have

[tex]E_{incident}\geq \phi [/tex]

where

[tex]E_{incident}[/tex] is the energy of the incident light

[tex]\phi [/tex] is the work function of the metal

The incident energy of the light with wavelength [tex]\lambda [/tex] is given by

[tex]E_{incident}=h\cdot \frac{c}{\lambda}[/tex]

Thus the photoelectric equation reduces to

[tex]h\cdot \frac{c}{\lambda}\geq \phi\\\\h\cdot c\geq \lambda \times \phi\\\\\therefore \lambda\leq \frac{h\cdot c}{\phi}[/tex]

Thus applying values we get

[tex]\lambda\leq \frac{6.62\times 10^{-34}\times 3\times 10^{8}}{3.10\times 1.602\times 10^{-19}}\\\\\therefore \lambda\leq 0.4\times 10^{-6}m[/tex]

Hence The longest wavelength equals [tex]0.4\times 10^{-6}m[/tex]

Two cars drive on a straight highway. At time t=0, car 1 passes mile marker 0 traveling due east with a speed of 20.0 m/s. At the same time, car 2 is 1.2 km east of mile marker 0 traveling at 30.0 m/s due west. Car 1 is speeding up with an acceleration of magnitude 0.10 m/s^2 , and car 2 is slowing down with an acceleration of magnitude 0.30 m/s^2. At what time do the cars pass next to one another?

Answers

Answer:

The cars pass next to one another after 25.28 s.

Explanation:

When the cars pass next to one another, the position of both cars is the same relative to the center of the system of reference (marker 0 in this case). Then:

Position of car 1 = position of car 2

The position of an accelerating object moving in a straight line is given by this equation:

x = x0 +v0 t +1/2 a t²

where

x = position at time t

x0 = initial position

v0 = initial speed

t = time

a = acceleration

If the position of car 1 = position of car 2 then:

0 km + 20.0 m/s * t + 1/2 * 0.10 m/s² * t² = 1.2 km - 30.0 m/s * t + 1/2 * 0.30 m/s² * t²

Note that the acceleration of car 2 has to be positive because the car is slowing down and, in consequence, the acceleration has to be opposite to the velocity. The velocity is negative because the direction of car 2 is towards the origin of our system of reference. Let´s continue:

0 km + 20.0 m/s * t + 1/2 * 0.10 m/s² * t² = 1.2 km - 30.0 m/s * t + 1/2 * 0.30 m/s² * t²

1200 m - 50.0 m/s * t + 0.10 m/s² * t² = 0

Solving the quadratic equation:

t = 25.28 s

t = 474. 72 s We discard this value because, if we replace it in the equation of the position of car 2, we will get a position of 20762 m, which is impossible because the position of car 2 can´t be greater than 1200 m.

Then, the cars pass next to one another after 25.28 s  

"A problem involves a car of mass m going down a track from a height H, and round a loop of radius r. The loop is frictionless.

It asks for the minimum cut-off speed required, at the highest point in the loop (call it point D), such that the car makes it round the loop without falling. I know the solution; I should set the centripetal accleration equal to 9.81. In other words, contact force with the track at point D is equal to zero.

But I tried solving it by conservation of energy. At point D, the car is at a height 2r from ground level. Therefore, in order for the car to reach that height at point D, it must initially have a potential energy of mg(2r). Meaning, it should be released from a height H = 2r.

I got the wrong answer and I'm confused why that happened. Isn't that how conservation of energy work? Please clarify, where's the error in my solution?"

Answers

Answer:

Explanation:

At the topmost position,  the car does not have zero velocity but it has velocity of v so that

v² /r = g or centripetal acceleration should be equal to g ( 9.8 )

Considering that,  the car must fall from a height of 2r + h where

mgh = 1/2 mv²

= 1/2 m gr

So h = r/2

Hence the ball must fall from a height of

2r + r /2

= 2.5 r . So that it can provide velocity of v  at the top where

v² / r = g .

Calculate the acceleration of a car (in m/s^2) that accelerates from 0 to 30 m/s in 6 s along a straight road.

Answers

Answer: 5 m/s^2

Explanation: In order to solve this question we have to use the kinematic equation given by:

Vf= Vo+a*t  where V0 is zero.

we know that it takes Vf( 30 m/s) in 6 seconds

so

a=(30 m/s)/6 s= 5 m/s^2

Suppose the electrons and protons in 1g of hydrogen could be separated and placed on the earth and the moon, respectively. Compare the electrostatic attraction with the gravitational force between the earth and the moon. ( the number of atoms in 1g of hydrogen is Avogadro's number Na. There is one electron and one proton in a hydrogen atom. ) Please explain step by step

Answers

Answer:

The gravitational force is 3.509*10^17 times larger than the electrostatic force.

Explanation:

The Newton's law of universal gravitation and Coulombs law are:

[tex]F_{N}=G m_{1}m_{2}/r^{2}\\F_{C}=k q_{1}q_{2}/r^{2}[/tex]

Where:

G= 6.674×10^−11 N · (m/kg)2

k =  8.987×10^9 N·m2/C2

We can obtain the ratio of these forces dividing them:

[tex]\frac{F_{N}}{F_{C}}=\frac{Gm_{1}m_{2}}{kq_{1}q_{2}}=0.742\times10^{-20}\frac{C^{2}}{kg^{2}}\frac{m_{1}m_{2}}{q_{1}q_{2}}[/tex]   --- (1)

The mass of the moon is 7.347 × 10^22 kilograms

The mass of the earth is  5.972 × 10^24 kg

And q1=q2=Na*e=(6.022*10^23)*(1.6*10^-19)C=9.635*10^4 C

Replacing these values in eq1:

[tex]\frac{F_{N}}{F_{C}}}}=0.742\times10^{-20}\frac{C^{2}}{kg^{2}}\frac{7.347\times5.972\times10^{46}kg^{2}}{(9.635\times10^{4})^{2}}[/tex]

Therefore

[tex]\frac{F_{N}}{F_{C}}}}=3.509\times10^{17}[/tex]

This means that the gravitational force is 3.509*10^17 times larger than the electrostatic force, when comparing the earth-moon gravitational field vs 1mol electrons - 1mol protons electrostatic field

A cube with sides of area 18 cm^2 contains a 6.0 nanoCoulomb charge. Find the flux of the electric field through the surface of the cube in unis of Nm^2/C. Enter a number with one digit behind the decimal point.

Answers

Answer:

The flux of the electric field  is 677.6 Nm²/C

Explanation:

Given that,

Area = 18 cm²

Charge = 6.0 nC

We need to calculate the flux of the electric field

Using Gauss's law

[tex]\phi=\dfrac{q}{\epsilon_{0}}[/tex]

Where, q = charge

[tex]\epsilon_{0}[/tex] =permittivity of free space

Put the value into the formula

[tex]\phi=\dfrac{6.0\times10^{-9}}{8.854\times10^{-12}}[/tex]

[tex]\phi=677.6\ Nm^2/C[/tex]

Hence, The flux of the electric field  is 677.6 Nm²/C.

An electron is moving through a magnetic field whose magnitude is 9.21 × 10^-4 T. The electron experiences only a magnetic force and has an acceleration of magnitude 2.30 × 10^14 m/s^2. At a certain instant, it has a speed of 7.69 × 10^6 m/s. Determine the angle (less than 90°) between the electron's velocity and the magnetic field.

Answers

The electron can make angles of 118° and 62° with the magnetic field.

An electron moving at a speed of 4.00 × 10³ m/s in a 1.25-T magnetic field experiences a magnetic force of 1.40 × 10-16 N. What angle does the velocity of the electron make with the magnetic field?

One possible angle is 118°, and the other possible angle is 62° with the magnetic field.

The correct answer is [tex]\(\boxed{89.9999999999999\°}\).[/tex]

To determine the angle between the electron's velocity and the magnetic field, we can use the formula for the magnitude of the magnetic force on a moving charge, which is given by the Lorentz force law:

[tex]\[ F = qvB \sin(\theta) \][/tex]

where:

- [tex]\( F \)[/tex] is the magnitude of the magnetic force,

- [tex]\( q \)[/tex] is the charge of the electron,

- [tex]\( v \)[/tex] is the speed of the electron,

- [tex]\( B \)[/tex] is the magnitude of the magnetic field, and

- [tex]\( \theta \)[/tex] is the angle between the electron's velocity and the magnetic field.

The charge of an electron is [tex]\( 1.60 \times 10^{-19} \)[/tex] Coulombs (C), and the mass of an electron is approximately [tex]\( 9.11 \times 10^{-31} \)[/tex] kilograms (kg). Using Newton's second law, [tex]\( F = ma \)[/tex], where [tex]\( m \)[/tex] is the mass of the electron and [tex]\( a \)[/tex] is its acceleration, we can equate the magnetic force to the mass times acceleration:

[tex]\[ qvB \sin(\theta) = ma \][/tex]

Given that the electron experiences only a magnetic force, we can solve for [tex]\( \sin(\theta) \)[/tex]:

[tex]\[ \sin(\theta) = \frac{ma}{qvB} \][/tex]

Plugging in the given values:

[tex]\[ \sin(\theta) = \frac{(9.11 \times 10^{-31} \text{ kg})(2.30 \times 10^{14} \text{ m/s}^2)}{(1.60 \times 10^{-19} \text{ C})(7.69 \times 10^{6} \text{ m/s})(9.21 \times 10^{-4} \text{ T})} \][/tex]

[tex]\[ \sin(\theta) = \frac{(9.11 \times 2.30)}{(1.60 \times 7.69 \times 9.21)} \times 10^{-31 + 14 - (-19) - 6 - (-4)} \][/tex]

[tex]\[ \sin(\theta) = \frac{(20.953)}{(119.9424)} \times 10^{-31 + 14 + 19 - 6 + 4} \][/tex]

[tex]\[ \sin(\theta) = 0.1747 \times 10^{-31 + 14 + 19 - 6 + 4} \][/tex]

[tex]\[ \sin(\theta) = 0.1747 \times 10^{-10} \][/tex]

[tex]\[ \sin(\theta) = 1.747 \times 10^{-11} \][/tex]

Now, we can find the angle [tex]\( \theta \)[/tex] by taking the inverse sine (arcsin) of [tex]\( \sin(\theta) \)[/tex]:

[tex]\[ \theta = \arcsin(1.747 \times 10^{-11}) \][/tex]

Since the value of [tex]\( \sin(\theta) \)[/tex] is extremely small, the angle [tex]\( \theta \)[/tex] will be very close to 0 degrees. However, because the electron is experiencing an acceleration, [tex]\( \theta \)[/tex] must be slightly greater than 0 degrees. Using a calculator, we find:

[tex]\[ \theta \approx \boxed{89.9999999999999\°} \][/tex]

This result indicates that the electron's velocity is nearly parallel to the magnetic field, with an angle that is almost 90 degrees but infinitesimally less.

If the mass of an object is measured to be 53.5 ± 0.1 g and its volume is measured to be 22.30 ± 0.05 cm^3 , what is the density? Report the density uncertainty in both forms: as a percentage and as an absolute number with units.

Answers

Final answer:

The density of the object is 2.40 g/cm³ with an absolute uncertainty of 0.01 g/cm³, which corresponds to a relative uncertainty of approximately 0.411%.

Explanation:

To calculate the density of an object, you divide the mass by the volume. Given that the mass is 53.5 ± 0.1 g and the volume is 22.30 ± 0.05 cm³, the density can be computed as follows:

Density = Mass/Volume = 53.5 g / 22.30 cm³ = 2.3991 g/cm³
However, when it comes to reporting this value, we need to match the significant figures to the least number in any of the measurements used, which in this case would be three significant figures. Thus, the density is reported as 2.40 g/cm³.

To calculate the uncertainty in density, you combine the relative uncertainties of mass and volume by simply adding them because we're dividing the two quantities. The relative uncertainty of mass is (0.1 g / 53.5 g) * 100% ≈ 0.187%, and the relative uncertainty of volume is (0.05 cm³ / 22.30 cm³) * 100% ≈ 0.224%. Adding these gives us the total uncertainty:

Total relative uncertainty = 0.187% + 0.224% ≈ 0.411%

To find the absolute uncertainty in density, you multiply the total relative uncertainty by the calculated density:

Absolute uncertainty = 0.411% * 2.3991 g/cm³ ≈ 0.00986 g/cm³

Rounded to match the significant figures of the calculated density, this would be 0.01 g/cm³. So, the density reported with its absolute uncertainty is 2.40 ± 0.01 g/cm³.

A chamber of volume 51 cm^3 is filled with 32.4 mol of Helium. It is intially at 459.38°C. (a) The gas undergoes isobaric heating to a temperature of 855.6°C. What is the final volume of the gas? (b) After (a) the chamber is isothermally compressed to a volume 25.3cm^3. Compute the final pressure of the Helium.

Answers

Answer:

Explanation:

The pressure of the gas can be found out as follows

Gas law formula is as follows

PV = nRT

P = nRT / V

= 32.4 X 8.31 X ( 273 + 459.38 ) / 51 X 10⁻⁶

3866.45 X 10⁶ Pa.

The first change is isobaric therefore

V₁ / T₁ = V₂ / T₂

V₂ = V₁ X T₂/ T₁

= 51 X 10⁻⁶ X ( 855.6 +273) / (459.38 +273)

= 78 X 10⁻⁶

78 cm³

After the first operation , the pressure of the gas remains at

= 3866.45 X 10⁶ Pa.

Now volume of the gas changes from 78 cm³ to 25.3 cm³ isothermally so

P₁V₁ = P₂V₂

P₂ = P₁V₁ / V₂

= 3866.45 X 10⁶ X 78 / 25.3

= 11920 X 10⁶ . Pa

In searching the bottom of a pool at night, a watchman shinesa
narrow beam of light from his flashlight, 1.3 m above the
waterlevel, onto the surface of the water at a point 2.7 m from the
edgeof the pool (Figure 23-50). Where does the spot of light hit
thebottom of the pool, measured from the wall beneath his foot, if
thepool is 2.1 m deep?

Answers

Answer:

The spot of light hits the bottom of the pool at 4.634 m from the wall beneath the watchman's feet.

Explanation:

Use the diagram attached below this answer to see the notation we will use.

For this case, we're trying to find x and we have:

h=1.3 m

b=2.1 m

a=2.7 m

We also know Snell's law for refraction:

[tex]n_{1} sin\theta_{1}=n_{2}sin\theta_{2}[/tex]

n is the refractive index of each substance (in this case, air and water), which are:

[tex]n_{air}=1[/tex]

[tex]n_{water}=1.33[/tex]

Triangle theory says that [tex]\theta_{1}=\beta[/tex] and:

[tex]tan\beta=\frac{a}{h}[/tex]

[tex]\beta=arc tan(\frac{a}{h})=arctan(\frac{2.7m}{1.3m})=64.29[/tex]

Using Snell's law:

[tex]\theta_{2}=arcsin(\frac{n_{1}sin\theta{1}}{n_{2}})=arcsin(\frac{1sin(64.29)}{1.33})=42.644[/tex]

Using triangle theory:

[tex]tan\theta_{2}=\frac{(x-a)}{b}[/tex]

[tex]x=b*tan\theta_{2}+a=2.1m*tan(42.644)+2.7m=4.634m[/tex]

Answer:

The distance of spot of light from his feet equals 3.425 meters.

Explanation:

The situation is represented in the attached figure below

The angle of incidence is computed as

[tex]\theta _i=tan^{-1}(\frac{1.3}{2.7})\\\\\therefore \theta _i=25.71^{o}[/tex]

Now by Snell's law we have

[tex]n_{i}sin(\theta _i)=n_{r}sin(\theta _r)[/tex]

where

[tex]n_{i},n_{r}[/tex] are the refractive indices of the incident and the refracting medium respectively

[tex]\theta _i,\theta _r[/tex] are the angle of incidence and the angle of refraction respectively

Thus using the Snell's relation we have

[tex]1.0\times sin(25.71)=1.33\times sin(\theta _r)\\\\\therefore sin(\theta _r)=\frac{sin(25.71}{1.33}=0.326\\\\\therefore \theta _r=sin^{-1}(0.326)=19.04^{o}[/tex]

from the attached figure we can see

[tex]tan(\theta _r)=\frac{L_{2}}{H}=\frac{L_{2}}{2.1}\\\\\therefore L_{2}=2.1\times tan(19.04)=0.725m[/tex]

Thus distance of spot on the pool bed from his feet equals [tex]2.7+0.725=3.425m[/tex]

In a compression test, a steel test specimen (modulus of elasticity = 30 x 106lb/in2) has a starting height= 2.0 in and diameter = 1.5 in. The metal yields (0.2% offset) at a load = 140,000 lb. At a load of 260,000 lb, the height has been reduced to 1.6 in. Determine (a)yield strength and (b) flow curve parameters (strength coefficient and strain-hardening exponent). Assume that the cross-sectional area increases uniformly during the test.

Answers

Answer:

Explanation:

A) we know that volume is given as V

[tex]V  =\frac{\pi}{4} D^2 h[/tex]

where D = 1.5 in , h = 2.0 in

so [tex]V = \frac{\pi}{4} 1.5^2\times 2 = 3.53in^3[/tex]

[tex]Area =\frac{\pi}{4} D^2 = \frac{\pi}{4} \times 1.5^2 = 1.76 in^4[/tex]

yield strenth is given as[tex] \sigma_y = \frac{force}{area} = \frac{140,000}{1.76}[/tex]

[tex]\sigma_y = 79.224 ksi[/tex]

b)

elastic strain[tex] \epsilon = \frac{\sima_y}{E} = \frac{79.224}{30\times 10^3} = 0.00264[/tex]

strain offsets  = 0.00264 + 0.002 = 0.00464     [where 0.002 is offset given]

[tex]\frac{\delta}{h} = 0.00464[/tex]

[tex]\frac{h_i -h_o}{h_o} = 0.00464[/tex]

[tex]h_i = 2\times(1-0.00464) = 1.99 inch[/tex]

area [tex]A = \frac{volume}{height} = \frac{3.534}{1.9907} = 1.775 in^2[/tex]

True strain[tex] \sigma = \frac{force}{area} = \frac{140,000}{1.775 in^2} = 78,862 psi[/tex]

At P= 260,000 lb ,[tex] A = \frac{3.534}{1.6} = 2.209 inc^2[/tex]

true stress [tex]\sigma  = \frac{260,000}{2.209} = 117,714 psi[/tex]

true strain [tex]\epsilon = ln\frac{2}{1.6} = 0.223[/tex]

flow curve is given as \sigma = k\epsilon^n

[tex]\sigma_1 = 78,862 psi[/tex]

[tex]\epsilon_1 = 0.00464[/tex]

[tex]\sigma_2 = 117,714 psi[/tex]  

[tex]\epsilon_2 = 0.223[/tex]

so flow curve is

[tex]78,868 = K 0.00464^n[/tex] .........1

[tex]117,714 = K 0.223^n[/tex]   .........2

Solving 1 and 2

we get

n = 0.103

and K =137,389 psi

Strength coffecient = K = 137.389ksi

strain hardening exponent = n = 0.103

What is the x-component of a vector that makes an angle of 45° with the positive x-axis and whose y-component is 7cm?

Answers

Answer:

Ax  =7 cm

Explanation:

Analysis:

Let A be the vector of rectangular components Ax and Ay:

Where:

Ay=7 cm  : The The y-component of  vector A-component of  vector A

α =45       : Angle of A with the positive x-axis

Ax           : The x-component of  vector A

Because Ax and Ay are the components of a right triangle we apply the following formula:

[tex]tan\alpha =\frac{A_{y} }{A_{x} }[/tex]

[tex]tan45=\frac{7}{A_{x} }[/tex]

[tex]A_{x} =\frac{7}{tan45}[/tex]

Ax  =7 cm

Clouds can weigh thousands of pounds due to their liquid water content. Often this content is measured in grams per cubic meter (g/m3). Assume that a cumulus cloud occupies a volume of one cubic kilometer, and its liquid water content is 0.2 g/m3. (a) What is the volume of this cloud in cubic miles? (b) How much does the water in the cloud weigh in pounds?

Answers

Answer:

a) 0.2399 mi³

b) 440.8 × 10³ Pounds

Explanation:

Given:

Volume of cumulus cloud, V = 1 km³

Liquid water content = 0.2 g/m³

Now,

a) 1 km = [tex]\frac{\textup{1 miles}}{\textup{1.6093}}[/tex]

thus,

1 km³ = [tex](\frac{\textup{1 miles}}{\textup{1.6093}})^3[/tex]

1 km³ =  0.2399 mi³

Hence, volume of cloud in cubic miles is 0.2399 mi³

b)

Liquid water content = 0.2 g/m³

Now,

1 Km = 1000 m

thus,

1 km³ = 1000³ m³

Therefore,

Liquid water content in 1 Km³ of cloud = 0.2 g/m³ × 1000³ m³

= 200 × 10⁶ gram

or

= 200 × 10³ Kg

also,

1 kilogram =  2.204 pounds

Therefore,

200 × 10³ Kg = 200 × 10³ × 2.204 pounds = 440.8 × 10³ Pounds

Final answer:

The volume of a cumulus cloud occupying one cubic kilometer is equal to 0.386102 cubic miles. The water inside this cloud, with a liquid water content of 0.2 g/m³, weighs approximately 441 pounds.

Explanation:

The subject of this problem is to find the volume of a cloud in a different unit of measure and the weight of the water within it. Volume conversion from cubic kilometers to cubic miles and weight calculation of water in pounds are required.

To find the volume of the cloud in cubic miles, we use the conversion factor that 1 cubic kilometer is equal to about 0.386102 cubic miles. Hence, the volume of 1 cubic kilometer in cubic miles is:

1 cubic kilometer * 0.386102 cubic miles/cubic kilometer = 0.386102 cubic miles.

Next, we calculate the weight of the water in pounds, considering that the liquid water content is 0.2 grams per cubic meter and there are 1,000,000 cubic meters in a cubic kilometer:

0.2 g/m³ * 1,000,000 m³/km³ = 200,000 grams of water in the cloud.

Now, convert grams to pounds using the conversion factor 453.59237 grams per pound:

200,000 grams * (1 pound / 453.59237 grams) = 441 pounds.

Therefore, the water weight in the cloud is 441 pounds.

Other Questions
How does a stream typically change as it flows from its headwaters to its mouth? A. discharge decreases, channel shape widens B. gradient increases, channel shape narrows C. gradient decreases, discharge remains the same D. gradient decreases, discharge increases In studying problems of the homeless, ________ would focus on the face-to-face micro level interactions among the homeless, such as how they approach strangers to ask for money or help. On the other hand, a _________________ would be more concerned with possible anomie within the society and how it led an individual into homelessness. A. symbolic interactionist theorist; conflict theorist. B. conflict theorist; functionalism theorist. C. symbolic interactionist theorist; functionalism theorist. D. functionalism theorist; conflict theorist. Why is it difficult to tell whether a program is correct? How do you go about finding bugs in your code? What kinds of bugs are revealed by testing? What kinds of bugs are not? As captain of the soccer team, your primary concern is winning games and maintaining the strength of the team. Your players couldnt care less about teamwork and just want to win. Which component of leadership would you recommend the leader focus on? Right Answers Only!In a bag full of small balls, 1/4 of these balls are green, 1/8 are blue, 1/12 are yellow and the remaining 26 white. How many balls are blue? The P53 protein normally promotes A) DNA repair. B) tumor formation. C) cell division. D) apoptosis. An electron enters a region of uniform electric field with an initial velocity of 50 km/s in the same direction as the electric field, which has magnitude E = 50 N/C, (a) what is the speed of the electron 1.5 ns after entering this region? (b) How far does the electron travel during the 1.5 ns interval? what is 10.2719 rounded to the nearest hundreth? Which of these is associated with bulimia nervosa? Earth's surface area is 5.10 108 km2, and its crust has a mean thickness of 35 km and mean density of 2.8 g/cm3. The two most abundant elements in the crust are oxygen (4.55 105 g/t) and silicon (2.72 105 g/t), and the two rarest non-radioactive elements are ruthenium and rhodium, each with an abundance of 1 104 g/t. What is the total mass of each of these elements in Earth's crust? 1 metric ton (t) = 1,000 kg. If the code in a method can potentially throw a checked exception, then that method must:a.)handle the exceptionb.)have a throws clause listed in the method headerc.)neither handle the exception nor have a throws clause listed in the method headerd.)either handle the exception or have a throws clause listed in the method header How did the constitution created during the revolutionary war attempt to limit the power of citizens Sperm is stored and matures in the epididymis. a. Trueb. False ________ rely on sophisticated computer programs called spiders or crawlers that surf webpages, links, and other online content that are then stored in the search engines page repository 2 thousands 7 tens dividido en 10 Which city is located at 15 degrees south, 50 degrees east which of the following is a minor character usually classified as?A. roundB. dynamicC. static Given right triangle PQR, which represents the value of sin(P)? StartFraction R P Over R Q EndFraction StartFraction R P Over P Q EndFraction StartFraction R Q Over P Q EndFraction StartFraction R Q Over P R EndFraction Malik stops at the grocery store to buy a bag of diapers and 2 cans of formula. He spends a total of $37. The next week he stops and buys 2 bags of diapers and 5 cans of formula for a total of $87. How much does a bag of diapers cost? How much is one can of formula? Because those with "blindsight" report that they can see nothing but still do better than chance on tests of visual stimuli detection, some theorized that there was a paranormal explanation for their test results. Another hypothesis is that some blind people may use a form of echolocation to "see" what is in front of them. This alternate hypothesis best demonstrates which principle of critical thinking?