A researcher is performing a gram stain on a specimen in a medical laboratory. She gets distracted by a phone call and accidentally uses water instead of alcohol to decolorize. What may happen as a result of this mistake?

Answers

Answer 1

Answer:

Explanation:

It wouldn't be able to separate negative gram from positive. it would not wash away some of the crystal violet stain effectively. Gram - Cells will appear to be the same hue. Water can also dilute cells or wash them off the slide

Answer 2

Answer:

Explanation:

Would not be able to differentiate gram - from + it would not efficiently wash some of the crystal violet stain away. gram - cells will still remain the same color. also water may dilute or wash cells off the slide


Related Questions

Match the following items. 1 . gas low energy 2 . solid matter is continuously in motion 3 . Kinetic Molecular Theory rapid, random motion 4 . Boyle's Law relates pressure and volume 5 . Charles's Law relates volume and temperature

Answers

Explanation:

As molecules in a solid substance are placed closer to each other because of existence of strong forces of attraction. So, these molecules are unable to move randomly but they are able to vibrate at their mean position.

Hence, molecules of a solid have low energy.

In gases, molecules are held by weak intermolecular forces. So, they are able to move randomly from one place to another. Hence, they have high kinetic energy.According to Kinetic Molecular Theory, molecules of a gas are always in constant motion and they tend to exhibit a perfect elastic collision.

This means that in kinetic molecular theory molecules of a gas are in rapid, random motion.

Boyle's Law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

                 [tex]P\propto \frac{1}{V}[/tex]     (at constant temperature and number of moles)

Charles' Law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.  

                 [tex]V\propto T[/tex]     (at constant pressure and number of moles)

Thus, we can conclude that the given items are matched as follows.

1.  gas - continuously in motion.

2. solid matter - low energy.

3. Kinetic Molecular Theory - rapid, random motion.

4. Boyle's Law - relates pressure and volume.

5. Charles's Law - relates volume and temperature.

A 100-W lightbulb is placed in a cylinder equipped with a moveable piston. The lightbulb is turned on for 0.020 h, and the assembly expands from an initial volume of 0.90 L to a final volume of 5.88 L against an external pressure of 1.0 atm. calculate work done

Answers

Answer: The workdone W = 505J

Explanation:

Applying the pressure-volume relationship

W= - PΔV

Where negative sign indicates the power is being delivered to the surrounding

W = - 1.0atm * ( 5.88 - 0.9)L

= - 1.0atm * (4.98)

W = -4.98 atmL

Converting to Joules

1atmL = 101.325J

-4.98atmL = x joules.

Work done in J = -4.98 * 101.325

W= -505J

Therefore the workdone is -505J

Chlorine forms from the reaction of hydrochloric acid with manganese(IV) oxide. Calculate the theoretical yield and the percent of chlorine if 86.0g of MnO2 and 50.0g of HCl react. The actual yield of Cl2 is 20.0g.

Answers

Answer:

[tex]\large \boxed {\text{24.3 g Cl}_{2}; 82.3 \%}[/tex]

Explanation:

We are given the masses of two reactants and asked to determine the mass of the product.

This looks like a limiting reactant problem.

1. Assemble the information

We will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.  

MM:          86.94    36.46                 70.91

                MnO₂ + 4HCl ⟶ MnCl₂ + Cl₂ + 2H₂O

Mass/g:     86.0      50.0                  20.00

2. Calculate the moles of each reactant

[tex]\text{Moles of MnO}_{2} = \text{86.0 g MnO}_{2} \times \dfrac{\text{1 mol MnO}_{2}}{\text{86.94 g MnO}_{2}} = \text{0.9892 mol MnO}_{2}\\\\\text{Moles of HCl} = \text{50.0 g HCl} \times \dfrac{\text{1mol HCl }}{\text{36.46 g HCl }} = \text{1.371 mol HCl}[/tex]

3. Calculate the moles of Cl₂ formed from each reactant

From MnO₂:

[tex]\text{Moles of Cl$_{2}$} = \text{0.9892 mol MnO}_{2} \times \dfrac{\text{1 mol Cl$_{2}$}}{\text{1 mol MnO}_{2}} = \text{0.9892 mol Cl}_{2}[/tex]

From HCl:

[tex]\text{Moles of Cl$_{2}$} = \text{1.371 mol HCl} \times \dfrac{\text{1 mol Cl$_{2}$}}{\text{4 mol HCl}} = \text{0.3428 mol Cl}_{2}[/tex]

4. Identify the limiting reactant

The limiting reactant is HCl, because it forms fewer moles of Cl₂.

5. Calculate the theoretical yield of Cl₂

[tex]\text{ Mass of Cl$_{2}$} = \text{0.3428 mol Cl$_{2}$} \times \dfrac{\text{70.91 g Cl$_{2}$}}{\text{1 mol Cl$_{2}$}} = \textbf{24.3 g Cl}_\mathbf{{2}}\\\\\text{The theoretical yield is $\large \boxed{\textbf{24.3 g Cl}_\mathbf{{2}}}$}[/tex]

6. Calculate the percentage yield of Cl₂

[tex]\text{Percentage yield} = \dfrac{\text{Actual yield}}{\text{Theoretical yield}} \times 100 \, \%= \dfrac{\text{20.0 g}}{\text{24.3 g}} \times 100 \, \% = 82.3 \, \%\\\text{The percentage yield is $\large \boxed{\mathbf{82.3 \, \%}}$}[/tex]

Calculate the temperature change in the water upon the complete melting of the ice. Assume that all of the energy required to melt the ice comes from the water. Express your answer in terms of the initial temperature of water, T. Calculate the temperature change in the water upon the complete melting of the ice. Assume that all of the energy required to melt the ice comes from the water. Express your answer in terms of the initial temperature of water, . -0.031 T - 2.5 ∘C -2.5 T + 0.031 ∘C 0.031 T - 2.5 ∘C 2.5 T - 0.031 ∘C

Answers

Answer:

See explanation below

Explanation:

First, you are not providing any data about the mass of ice and the innitial temperature of water, so, I'm gonna use data from a similar exercise, so in order for you to get the accurate and correct answer, just replace the data in this procedure, and you should be fine.

Now, For this exercise, I will assume we have an 8 g ice cube pounded into 230 g of water. The expression to use here is the following:

q = m*Cp*ΔT (1)

Solving for ΔT:

ΔT = q / m*Cp (2)

Where:

q: heat of the water

m: mass of water

Cp: specific heat of water which is 4.18 J /g °C

Now, we don't know the heat emmited by water, we need to calculate that. To do this, we have data for ice and water, so, let's find first the heat absorbed by the melting ice, and then, the water.

Converting the grams into moles, using the molar mass of water which is 18 g/mol rounded:

moles of ice = 8 g / 18 g/mol = 0.44 moles of water

Now, we'll use the molar heat of fusion of water to convert the moles to kJ:

qi = 0.44 mol * 6.02 kJ/mol =¨2.6488 kJ

Now, as the ice is the system and water the surroundings, the melting of ice in endothermic therefore the heat of water should be the same of ice but negative, therefore:

qi = -qw = -2.6488 kJ or -2648.8 J

Finally, replace this value in equation (2) to get the temperature change:

ΔT = -2648.8 / (230 * 4.18)

ΔT = -2.75 °C

Now, use your data of ice and water and replace them here in this procedure to get the correct and accurate answer.

A 0.158 g sample of magnesium metal reacts completely with 100.0 mL of 1.0 M hydrochloric acid in a coffee cup calorimeter. The temperature of the solution rose from 25.6°C to 32.8°C. What is ∆Hrxn? Assume the specific heat of the solution is 4.184 J/mol-K and the density is 1.0 g/mL.

Answers

Explanation:

The given data is as follows.

     mass = 0.158 g,      volume = 100 ml

     Molarity = 1.0 M,      [tex]\Delta T[/tex] = [tex](32.8 - 25.6)^{o}C = 7.2^{o}C[/tex]  

The given reaction is as follows.

         [tex]Mg(s) + 2HCl(aq) \rightarrow MgCl_{2}(aq) + H_{2}(g)[/tex]  

So, moles of magnesium will be calculated as follows.

         No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]                            

                               = [tex]\frac{0.158 g}{24.305 g/mol}[/tex]

                               = [tex]6.5 \times 10^{-3}[/tex]

                               = 0.0065 mol

Now, formula for heat released is as follows.

              Q = [tex]m \times C \times \Delta T[/tex]

                  = [tex]\text{volume} \times \text{density} \times C \times \Delta T[/tex]

                  = [tex]100 ml \times 1.0 g/ml \times 4.184 \times 7.2^{o}C[/tex]

                  = 3010.32 J

Hence, heat of reaction will be calculated as follows.

            [tex]\Delta H_{rxn} = \frac{\text{-heat released}}{\text{moles of Mg}}[/tex]

                      = [tex]\frac{3010.32 J}{0.0065 mol}[/tex]

                      = -4.63 J/mol

or,                  = [tex]-463 \times 10^{-5} kJ/mol[/tex]                (as 1 kJ = 1000 J)

Thus, we can conclude that heat of given reaction is [tex]-463 \times 10^{-5}[/tex] kJ/mol.    

how many grams of silver chromate will precipitate when 150 ml of 0.500 M silver nitrate are added to 100 mL of 0.400 M potassium chromate

Answers

Final answer:

When 150 ml of 0.500 M silver nitrate are added to 100 mL of 0.400 M potassium chromate, a silver chromate precipitate forms. Considering the stoichiometry of the reaction and the quantities of reactants, 24.88 grams of silver chromate will precipitate.

Explanation:

The subject of this question is based on precipitation reactions in Chemistry. Precipitation reactions occur when two solutions combine to form an insoluble solid known as a precipitate. The moles of silver nitrate present in a 150 mL of 0.500 M solution can be calculated using the formula Molarity = Moles ÷ Volume (in Litres).

Thus, Moles of AgNO3 = 0.500 M * 0.15 L = 0.075 mol AgNO3. According to the reaction equation 2AgNO3 + K2CrO4 → 2AgCrO4(precipitate) + 2KNO3, for every mole of K2CrO4, we have two moles of AgNO3. Thus, based on stoichiometry and the given quantities of the reactants, the limiting reactant will be AgNO3, and it will totally react and form the silver chromate precipitate. The moles of Ag2CrO4 formed would therefore also be 0.075 mol. To convert this into grams, we use the molar mass of Ag2CrO4, which is approximately 331.73 g/mol. Hence, grams of Ag2CrO4 = 0.075 mol Ag2CrO4 * 331.73 g/mol = 24.88 g Ag2CrO4.

Learn more about Precipitation Reactions here:

https://brainly.com/question/29762381

#SPJ12

Determine the bond order from the molecular electron configurations. ( σ 1 s ) 2 ( σ 1 s * ) 2 ( σ 2 s ) 2 ( σ 2 s * ) 2 ( σ 2 p ) 2 ( π 2 p ) 4 ( π 2 p * ) 2 bond order: ( σ 1 s ) 2 ( σ 1 s * ) 2 ( σ 2 s ) 2 bond order:

Answers

Explanation:

The bond order is defined as number of electron pairs present in a bond of the two atoms.

The formula of bond order is given by:

= [tex]\frac{1}{2}\times (\text{Number of bonding electrons}-\text{Number of anti-bonding electrons})[/tex]

1)  [tex](\sigma 1 s )^2 ( \sigma 1 s*)^2 (\sigma 2s )^2 ( \sigma 2 s*)^2 ( \sigma 2 p )^2 ( \pi2 p )^4 (\pi 2 p *)^2 [/tex]

Number of bonding electrons = 10

Number of anti-bonding electrons = 6

The bond order : [tex]\frac{1}{2}\times (10-6)=2[/tex]

2) [tex]( \sigma 1 s )^2 ( \sigma 1 s * )^2 ( \sigma 2 s )^2[/tex]

Number of bonding electrons = 4

Number of anti-bonding electrons = 2

The bond order : [tex]\frac{1}{2}\times (4-2)=1[/tex]

Final answer:

The bond order can be determined from the molecular electron configurations by counting the number of bonding and antibonding electrons and calculating the bond order as (number of bonding electrons - number of antibonding electrons)/2.

Explanation:

The bond order can be determined from the molecular electron configurations. In this case, the electron configuration given is ( σ 1 s ) 2 ( σ 1 s * ) 2 ( σ 2 s ) 2 ( σ 2 s * ) 2 ( σ 2 p ) 2 ( π 2 p ) 4 ( π 2 p * ) 2. We need to count the number of bonding and antibonding electrons to calculate the bond order. The number of bonding electrons is the sum of the electrons in all the bonding molecular orbitals. In contrast, the number of antibonding electrons is the sum of the electrons in all the antibonding molecular orbitals. The bond order is then calculated as (number of bonding electrons - number of antibonding electrons)/2. In this case, the bond order is (2+2+2+4-2)/2 = 4/2 = 2, indicating a double bond.

Learn more about Bond Order here:

https://brainly.com/question/12447843

#SPJ3

Brass is made from a combination of copper and zinc. The relative amounts of each element are varied by metalworkers to produce the desired properties. Is brass a compound or a mixture?

Answers

Answer:

Mixture

Explanation:

Brass is an alloy. An alloy is a combination of two or more metals that gives rise to another metal to give a more desirable end product metal.

The metals combined are only physically combined. They still retain their individual properties. Although the compositions are varied, it is only varied to produce desired properties and not to alter any chemical combination as in the case of compounds.

It is important to note that there are no chemical combinations between these metals.

Calculate the percent by mass of the solute in each of the following aqueous solutions: (a) 5.50 g of NaBr in 78.2 g of solution, (b) 31.0 g of KCl in 152 g of water, (c) 4.5 g of toluene in 29 g of benzene.

Answers

Answer:

For a: The mass percent of NaBr is 7.03 %

For b: The mass percent of KCl is 16.94 %

For c: The mass percent of toluene is 13.43 %

Explanation:

To calculate the mass percentage of solute in solution, we use the equation:

[tex]\text{Mass percent of solute}=\frac{\text{Mass of solute}}{\text{Mass of solution}}\times 100[/tex]         .......(1)

For a:

We are given:

Mass of NaBr (Solute) = 5.50 g

Mass of solution = 78.2 g

Putting values in equation 1, we get:

[tex]\text{Mass percent of NaBr}=\frac{5.50g}{78.2g}\times 100\\\\\text{Mass percent of NaBr}=7.03\%[/tex]

Hence, the mass percent of NaBr is 7.03 %

For b:

We are given:

Mass of KCl (Solute) = 31.0 g

Mass of water (solvent) = 152 g

Mass of solution = (31.0 + 152) g = 183 g

Putting values in equation 1, we get:

[tex]\text{Mass percent of KCl}=\frac{31.0g}{183g}\times 100\\\\\text{Mass percent of KCl}=16.94\%[/tex]

Hence, the mass percent of KCl is 16.94 %

For c:

We are given:

Mass of toluene (Solute) = 4.5 g

Mass of benzene (solvent) = 29 g

Mass of solution = (4.5 + 29) g = 33.5 g

Putting values in equation 1, we get:

[tex]\text{Mass percent of toluene}=\frac{4.5g}{33.5g}\times 100\\\\\text{Mass percent of toluene}=13.43\%[/tex]

Hence, the mass percent of toluene is 13.43 %

Final answer:

To calculate the percent by mass of the solute in each aqueous solution, divide the mass of the solute by the mass of the solution and multiply by 100%

Explanation:

To calculate the percent by mass of the solute in each aqueous solution, you'll need to use the formula:

Percent by mass = (mass of solute/mass of solution) x 100%

For example, in solution (a) with 5.50 g of NaBr in 78.2 g of solution, the mass of the solute is 5.50 g and the mass of the solution is 78.2 g. Plugging these values into the formula gives:

Percent by mass = (5.50 g / 78.2 g) x 100% = 7.03%

Similarly, you can calculate the percent by mass for solutions (b) and (c) using the same formula.

Learn more about Calculating the percent by mass of solute in aqueous solutions here:

https://brainly.com/question/32087803

#SPJ11

When 1 mol CS2(l) forms from its elements at 1 atm and 25°C, 89.7 kJ of heat is absorbed, and it takes 27.7 kJ to vaporize 1 mol of the liquid. How much heat is absorbed when 1 mol CS2(g) forms from its elements at these conditions

Answers

Answer:

There is 117.4 kJ of heat absorbed

Explanation:

Step 1: Data given

Number of moles CS2 = 1 mol

Temperature = 25° = 273 +25 = 298 Kelvin

Heat absorbed = 89.7 kJ

It takes 27.7 kJ to vaporize 1 mol of the liquid

Step 2: Calculate the heat that is absorbed

C(s) + 2S(s) → CS2(l)    ΔH = 89.7 kJ  (positive since heat is absorbed)

CS2(l) → CS2(g)           ΔH = 27.7 kJ  (positive since heat is absorbed)

We should balance the equations, before summing, but since they are already balanced, we don't have to change anything.

C(s) + 2S(s)---> CS2 (g)

ΔH = 89.7 + 27.7 = 117.4 kJ

There is 117.4 kJ of heat absorbed

Carbon dating requires that the object being tested contain

Answers

Answer:

Organic Material

Explanation:

Carbon Dating is the process in which the age of a piece of organic matter is determined by the proportions of carbon isotopes it contains.

Carbon dating requires that the object being tested contains carbon-14 (14C) isotopes.

Carbon-14 is a radioactive isotope of carbon that is present in the Earth's atmosphere in small amounts. Living organisms, including plants and animals, take in carbon-14 through the process of photosynthesis or by consuming other organisms.

Once an organism dies, it no longer takes in carbon-14, and the concentration of carbon-14 in its remains gradually decreases over time due to radioactive decay.

By measuring the remaining amount of carbon-14 in a sample, scientists can determine the age of an object or organism.

Learn more about Carbon dating, here:

https://brainly.com/question/32047290

#SPJ6

Calcium ions, barium ions, and magnesium ions all have two positive charges. What could explain the differences in the way each reacted with a sodium hydroxide solution?

Answers

C3.

Tes

Example 8

Name each ionic compound.

CaCl2

AlF3

Co2O3

Solution

Using the names of the ions, this ionic compound is named calcium chloride. It is not calcium(II) chloride because calcium forms only one cation when it forms an ion, and it has a characteristic charge of 2+.

The name of this ionic compound is aluminum fluoride.

We know that cobalt can have more than one possible charge; we just need to determine what it is. Oxide always has a 2− charge, so with three oxide ions, we have a total negative charge of 6−. This means that the two cobalt ions have to contribute 6+, which for two cobalt ions means that each one is 3+. Therefore, the proper name for this ionic compound is cobalt(III) oxide.

Test Yourself

Name each ionic compound.

Sc2O3

AgCl

Answers

scandium oxide

silver chloride

How do you know whether a formula—and by extension, a name—is for a molecular compound or for an ionic compound? Molecular compounds form between nonmetals and nonmetals, while ionic compounds form between metals and nonmetals. The periodic table (Figure 3.2 “A Simple Periodic Table”) can be used to determine which elements are metals and nonmetals.

There also exists a group of ions that contain more than one atom. These are called polyatomic ions. Table 3.7 “Common Polyatomic Ions” lists the formulas, charges, and names of some common polyatomic ions. Only one of them, the ammonium ion, is a cation; the rest are anions. Most of them also contain oxygen atoms, so sometimes they are referred to as oxyanions. Some of them, such as nitrate and nitrite, and sulfate and sulfite, have very similar formulas and names, so care must be taken to get the formulas and names correct. Note that the -ite polyatomic ion has one less oxygen atom in its formula than the -ate ion but with the same ionic charge.

Table 3.7 Common Polyatomic Ions

Name Formula and Charge  Name Formula and Charge

ammonium NH4+  hydroxide OH−

acetate C2H3O2−, or CH3COO− nitrate NO3−

bicarbonate (hydrogen carbonate) HCO3− nitrite NO2−

bisulfate (hydrogen sulfate) HSO4− peroxide O22−

carbonate CO32− perchlorate ClO4−

chlorate ClO3− phosphate PO43−

chromate CrO42− sulfate SO42−

cyanide CN− sulfite SO32−

dichromate Cr2O72− triiodide I3−

The naming of ionic compounds that contain polyatomic ions follows the same rules as the naming for other ionic compounds: simply combine the name of the cation and the name of the anion. Do not use numerical prefixes in the name if there is more than one polyatomic ion; the only exception to this is if the name of the ion itself contains a numerical prefix, such as dichromate or triiodide.

Writing the formulas of ionic compounds has one important difference. If more than one polyatomic ion is needed to balance the overall charge in the formula, enclose the formula of the polyatomic ion in parentheses and write the proper numerical subscript to the right and outside the parentheses. Thus, the formula between calcium ions, Ca2+, and nitrate ions, NO3−, is properly written Ca(NO3)2, not CaNO32 or CaN2O6. Use parentheses where required. The name of this ionic compound is simply calcium nitrate. Write the proper formula and give the proper name for each ionic compound formed between the two listed ions. cause the ammonium ion has a 1+ charge and the sulfide ion has a 2− charge, we need two ammonium ions to balance the charge on a single sulfide ion. Enclosing the formula for the ammonium ion in parentheses, we have (NH4)2S. The compound’s name is ammonium sulfide.

Because the ions have the same magnitude of charge, we need only one of each to balance the charges. The formula is AlPO4, and the name of the compound is aluminum phosphate.

Neither charge is an exact multiple of the other, so we have to go to the least common multiple of 6. To get 6+, we need three iron(II) ions, and to get 6−, we need two phosphate ions. The proper formula is Fe3(PO4)2, and the compound’s name is iron(II) phosphate.

Test Yourself

Write the proper formula and give the proper name for e

Answer: check explanation.

Explanation:

The three elements/metals, that is Calcium, Barium and Magnesium all belongs to group 2A on the periodic table. Other elements/metals of group 2A in the periodic table are; Beryllium, Strontium and Radium.

As one go down the group, the atomic radius increases from Magnesium to Barium(this is because of the increase in number of shells of electrons). And, as one go down the group the first ionization energy decreases.Because of this decease in ionization energy it makes it easier for the valence electrons to be removed and thus, REACTIVITY INCREASES DOWN THE GROUP.

Ca^2+ + 2OH^- --------> Ca(OH)2.

Mg^2+ + 2OH^- ---------> Mg(OH)2.

PS: The Na^+ is a spectator ion.

Acetylene gas, C2H2, can be produced by the reaction of calcium carbide and water. CaC2(s) + 2H2O(l) --> C2H2(g) + Ca(OH)2(aq) How many liters of acetylene at 742 mm Hg and 26C can be produced from 2.54 g CaC2(s)?

Answers

Answer:

1.0 L

Explanation:

Given that:-

Mass of [tex]CaC_2[/tex] = [tex]2.54\ g[/tex]

Molar mass of [tex]CaC_2[/tex] = 64.099 g/mol

The formula for the calculation of moles is shown below:

[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]

Thus,

[tex]Moles= \frac{2.54\ g}{64.099\ g/mol}[/tex]

[tex]Moles_{CaC_2}= 0.0396\ mol[/tex]

According to the given reaction:-

[tex]CaC_2_{(s)} + 2H_2O_{(l)}\rightarrow C_2H_2_{(g)} + Ca(OH)_2_{(aq)}[/tex]

1 mole of [tex]CaC_2[/tex] on reaction forms 1 mole of [tex]C_2H_2[/tex]

0.0396 mole of [tex]CaC_2[/tex] on reaction forms 0.0396 mole of [tex]C_2H_2[/tex]

Moles of [tex]C_2H_2[/tex] = 0.0396 moles

Considering ideal gas equation as:-

[tex]PV=nRT[/tex]

where,

P = pressure of the gas = 742 mmHg  

V = Volume of the gas = ?

T = Temperature of the gas = [tex]26^oC=[26+273]K=299K[/tex]

R = Gas constant = [tex]62.3637\text{ L.mmHg }mol^{-1}K^{-1}[/tex]

n = number of moles = 0.0396 moles

Putting values in above equation, we get:

[tex]742mmHg\times V=0.0396 mole\times 62.3637\text{ L.mmHg }mol^{-1}K^{-1}\times 299K\\\\V=\frac{0.0396\times 62.3637\times 299}{742}\ L=1.0\ L[/tex]

1.0 L of acetylene  can be produced from 2.54 g [tex]CaC_2[/tex].

Final answer:

About 1 liter of acetylene gas can be produced from 2.54 g of calcium carbide under the given conditions of 742 mmHg and 26C.

Explanation:

The question requires you to calculate the volume of acetylene gas produced from a known amount of calcium carbide using the given reaction under specified conditions. To answer this, we need to use the principles of stoichiometry combined with the ideal gas law. First, we need to convert the mass of CaC2 to moles because stoichiometry deals with mole ratios. The molar mass of CaC2 is around 64.1 g/mol so 2.54 g of CaC2 is around 0.04 moles. From the balanced equation, we can see that one mole of CaC2 produces one mole of C2H2. Therefore we also have 0.04 moles of acetylene gas produced.

Next, we use the ideal gas law (PV=nRT) to find the volume of acetylene gas produced. Here P is pressure, V is volume, n is the moles of gas, R is the ideal gas constant, and T is temperature. The pressure should be in atmospheres, so we convert 742 mmHg to around 0.97 atm. The temperature should be in kelvin, so we convert 26C to around 299K. The value for R is 0.0821 L·atm/mol·K.

Plugging in our values into the equation gives (0.97 atm x V) = (0.04 mol x 0.0821 L x atm/mol x K x 299K). Solving for V gives approximately 0.983 L or about 1 liter of acetylene gas under these conditions.

Learn more about Calcium carbide reaction here:

https://brainly.com/question/14499259

#SPJ11

The fundamental force underlying all chemical reactions is

Answers

Answer:

Electromagnetic Force

Explanation:

Every aspect of chemical reaction is the output of electromagnetic force though the forces can take on many forms because of the quantum wave nature of particles.

The electromagnetic force has the ability to attract opposite charges such as protons and electrons and it repels same charges such as electrons and protons.

This force is an important force in the chemical reaction as it it is responsible for bonding between atoms. Though other forces are unique in their own way but they don't affect chemical reaction. Force of gravity is not strong enough to affect chemical reactions; when nuclear forces are involved in a reaction, such reaction is a nuclear reactor; not chemical reaction.

One of the roles of the electromagnetic force in chemical reaction is that it holds the electrons that are in the outer orbit around the nucleus; this, in the long run creates bonds with other chemical elements to create a visible matter.

Final answer:

The electromagnetic force is the principal force underlying all chemical reactions. It governs the interactions between charged particles in atoms and molecules, leading to the formation and breaking of chemical bonds.

Explanation:

The fundamental force underlying all chemical reactions is the electromagnetic force. This force is responsible for the interactions between charged particles which make up atoms and molecules. For example, in a chemical reaction, atoms or molecules rearrange to create new substances. This rearrangement involves the breaking and forming of chemical bonds, which are effectively governed by electromagnetic forces. This is due to the fact that electrons (which are negatively charged) are attracted to the nuclei of atoms (which are positively charged) which encourages them to stay within certain regions of space (creating what we know as chemical bonds).

Learn more about Electromagnetic Force here:

https://brainly.com/question/10763830

#SPJ6

What is the volume of 1.56 kg of a compound whose molar mass is 81.86 g/mole and whose density is 41.2 g/ml?

Answers

Answer:

v = 37.9 ml

Explanation:

Given data:

Mass of compound = 1.56 kg

Density = 41.2 g/ml

Volume of compound = ?

Solution:

First of all we will convert the mass into g.

1.56 ×1000 = 1560 g

Formula:

D=m/v

D= density

m=mass

V=volume

v = m/d

v =  1560 g / 41.2 g/ml

v = 37.9 ml

The volume of the compound is 37.86 mL.

What is volume?

Volume is the capacity of an object.

To calculate the volume of the compound, we use the formula below.

Formula:

D = m/v............. Equation 1

Where:

D = Density of the compoundm = mass of the compoundv = Volume of the compound

make v the subject of the equation

v = m/D.............. Equation 2

From the question,

Given:

m = 1.56 kg = 1560 gD = 41.2 g/ml

Substitute these values into equation 2

v = 1560/41.2v = 37.86 mL.

Hence, the volume of the compound is 37.86 mL.

Learn more about volume here: https://brainly.com/question/1972490

#SPJ5

In a 1-L beaker, 213 mL of 0.345 M ammonium chromate was mixed with 107 mL of 0.227 M chromium(III) nitrite to produce ammonium nitrite and chromium(III) chromate. Write the balanced chemical equation for the reaction occurring here. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank.)

Answers

Answer:

3(NH₄)₂CrO₄ (aq)  +  2Cr(NO₂)₃ (aq)  →  6NH₄NO₂ (aq)+  Cr₂(CrO₄)₃ (aq)

Explanation:

The visible spectrum for a colored solution has a maximum absorbances around both 440 nm and around 600 nm and a minimum absorbance between 510 and 540 nm. What is the color of the solution?

Answers

Answer:

Green

Explanation:

In the visible spectrum, which ranges from around 400-700 nm wavelength, the lower wavelength corresponds to the violet side of rainbow spectrum and, high wavelength corresponds to red side. As our solution absorbs highly at around 440 and 600 nm, it means that violet side and red side of the spectrum should be absorbed and would not be visible. the lowest absorbance at around 520 nm corresponds to green color, and therefore, it should be the colour visible from the solution

Final answer:

The solution would appear yellow-green in color due to the maximum and minimum absorbances observed in the visible spectrum.

Explanation:

The solution would appear yellow-green in color. The visible spectrum ranges from approximately 400 nm (violet) to 750 nm (red) with different colors corresponding to specific wavelengths. In this case, the maximum absorbances around 440 nm and 600 nm, and the minimum absorbance between 510 and 540 nm would indicate that the solution primarily absorbs light in the blue and red regions, resulting in the complementary color of yellow-green being observed.

Learn more about colored solution here:

https://brainly.com/question/18958986

#SPJ11

Which tags do not depend on a silicon microchip and use plastic or conductive polymers instead of silicon-based microchips allowing them to be washed or exposed to water without damaging the chip?

Answers

Answer: Chipless RFID tags

According to Newton�s first law of motion, if there is no net force (unbalanced forces) acting on an object that is moving at a constant 30 mph, the object will:


Continue to move at 30 mph

Eventually come to a stop

Change its inertia

Accelerate

Answers

According to Newton’s first law of motion,if there is no net force acting on an object that is moving at a constant 30 mph speed, the object will continue to move at 30 mph.

Option a

Explanation:

"Newton's first law of motion" states that an object at a stationary position or an object moving at a constant velocity continues its state of rest or of motion unless it is acted upon by an "external unbalanced resisting force".

Since the net force acting on this object is zero; the absence of any kind of force (neither internal nor external) is observed and hence the motion at constant 30 mph velocity will continue until it is resisted.

Consider a reaction that has a positive ΔH and a positive ΔS. Which of the following statements is TRUE? A. This reaction will be spontaneous only at high temperatures. B. This reaction will be nonspontaneous at all temperatures. C. This reaction will be spontaneous at all temperatures. D. This reaction will be nonspontaneous only at high temperatures. E. It is not possible to determine without more information.

Answers

Because we do not know if the value of the change in free energy will be positive or negative.  It is not possible to determine without more information.

Option E

What is Heat ?

Heat Energy is simply defined as an energy that is moved from one body to another using the concept of difference temperature changes.

Generally, the equation for the change in enthalpy  is mathematically given as

ΔG = ΔH - T ΔS

In conclusion, we do not know the magnitude of positive or positive value and hence, we do not know if the value of the change in free energy will be positive or negative.

Read more about Kinetic energy

https://brainly.com/question/999862

For a sample of acetylene collected over water, total gas pressure is 760 torr and the volume is 459 mL. At the temperature of the gas (23°C), the vapor pressure of water is 21.0 torr. How many grams of acetylene are collected?

Answers

Answer:

0.52g

Explanation:

To calculate the mass of acetylene collected, we can calculate the number of moles of acetylene collected and multiply this by the molar mass of acetylene.

To calculate the number of moles of acetylene collected, we can use the ideal gas equation I.e PV = nRT

Rearranging the equation, n =PV/RT

We now identify each of the terms below before substituting and calculating.

n = number of moles, which we are calculating.

R = molar gas constant = 62.64 L.Torr. K^-1. mol^-1

V = volume = 459ml : 1000ml ÷ 1L, hence , 459ml = 459/1000 = 0.459L

T = temperature = 23 degrees Celsius = 273 + 23 = 296K

P = pressure. But since the gas was collected over water, we subtract the vapour pressure of water from the total pressure = 760 - 21 = 739torr

We substitute these values into the equation to yield the following:

n = (739 × 0.459) ÷ ( 62.64 × 300)

n = apprx 0.02 moles

To calculate the mass of acetylene collected, we need the molar mass of acetylene. The molecular formula of acetylene = C2H2, atomic mass of carbon = 12 and atomic mass of hydrogen = 1, thus , the molar mass = 2(12) + 2(1) = 26g/mol

Thus the mass of acetylene collected = 0.02 mole × 26g/mol = 0.52g

German physicist Werner Heisenberg related the uncertainty of an object's position ( Δ x ) (Δx) to the uncertainty in its velocity ( Δ v ) (Δv) Δ x ≥ h 4 π m Δ v Δx≥h4πmΔv where h h is Planck's constant and m m is the mass of the object. The mass of an electron is 9.11 × 10 − 31 kg. 9.11×10−31 kg. What is the uncertainty in the position of an electron moving at 6.00 × 10 6 m/s 6.00×106 m/s with an uncertainty of Δ v = 0.01 × 10 6 m/s ?

Answers

Answer:

[tex]5.788\times 10^{-9} m[/tex] is the uncertainty in the position of a moving electron.

Explanation:

Heisenberg's uncertainty principle is given by the equation:

[tex]\Delta x\times m\times \Delta v=\frac{h}{4\pi}[/tex]

The mass of an electron = m

Uncertainty in velocity =  Δv

Uncertainty in position =  Δx

h = Planck's constant

We are given:

The mass of an electron = m = [tex]9.11\times 10^{-31} kg[/tex]

Uncertainty in velocity =  Δv = [tex]0.01 \times 10^6 m/s[/tex]

Uncertainty in position =  Δx

[tex]\Delta x=\frac{h}{4\pi \times m\times \Delta v}[/tex]

[tex]=\frac{6.626\times 10^{-34} Js}{4\times 3.14\times 9.11\times 10^{-31} kg\times 0.01 \times 10^6 m/s}[/tex]

[tex]=5.788\times 10^{-9} m[/tex]

[tex]5.788\times 10^{-9} m[/tex] is the uncertainty in the position of a moving electron.

The uncertainty in the position of an electron is equal to [tex]5.76 \times 10^{-9}\; meters[/tex]

Given the following data:

Mass of an electron = [tex]9.11 \times 10^{-31}[/tex] kgUncertainty in velocity = [tex]0.01 \times 10^{6}[/tex] m/s

To find the uncertainty in the position of an electron, we would use Heisenberg's uncertainty principle:

Mathematically, Heisenberg's uncertainty principle of an object is given by the formula:

[tex]\Delta x \times m \times \Delta v = \frac{h}{4\pi }[/tex]

Where:

[tex]\Delta x[/tex] is the uncertainty in position.m is the mass of an object.[tex]\Delta v[/tex] is the uncertainty in velocity.h is Planck constant ([tex]6.626 \times 10^{-34}[/tex]).

Making [tex]\Delta x[/tex] the subject of formula, we have:

[tex]\Delta x = \frac{h}{4\pi \times m \times \Delta v}[/tex]

Substituting the given parameters into the formula, we have;

[tex]\Delta x = \frac{6.626 \times 10^{-34}}{4\times \;3.142 \;\times \;9.11 \times 10^{-31}\; \times \;0.01 \;\times 10^{6}}\\\\\Delta x = \frac{6.626 \times 10^{-34}}{1.15 \times 10^{-25}}\\\\\Delta x = 5.76 \times 10^{-9}\; meters[/tex]

Read more: https://brainly.com/question/16901506

How many grams of lead(II) nitrate must be dissolved in 1.00 L of water to produce a solution that is 0.300 M in total dissolved ions?

Answers

Answer:

A solution that is 0.100 M (i.e. 33,12 g of lead (II) nitrate in 1.00 L of water) yields the desired total dissolved ions concentration.

Explanation:

The molecular formula of lead (II) nitrate is Pb(NO[tex]Pb(NO_{3} )_{2}[/tex] and its molecular mass is 331,2 g/mol.

In disolution, the equilibrium will look like this:

Pb(NO[tex]Pb(NO_{3} )_{2}[/tex] -> [tex]Pb^{2+}  + 2(NO)_{3} ^{-1}[/tex]

The equation above means that, one mol of lead (II) nitrate dissolved in 1L will yield one mol of Pb ions and 2 moles of NO3 ions, i.e. 3 moles total.

If we dissolve 0.100 moles of lead (II) nitrate in 1.00 L of water, the stoichiometry of the disolution states that in turn, it will yield 0.100 of Pb ions and 0.200 moles of NO3 ions, i.e. 0.300 M in total dissolved ions.

331,2 g/mol * 0.100 mol/L * 1 L = 33,12 grams of the compound are required.

A closed 5.00 L container is filled with a mixture of 4.00 moles of hydrogen gas, 8.00 moles of oxygen, 12.0 moles of helium, and 6.00 moles of nitrogen. What is the pressure due to the oxygen in this container at a temperature of 25 °C?

Answers

Answer:

24.44 atm

Explanation:

Considering that this gas mixture behaves like an ideal gass, and that all component gases are ideal gases, we can use:

PV=nRT

Then:

P=nRT/V

Where:

n= N° of moles

R= gas constant= 0.082 Lt*atm/K*mol

T= temperature (in Kelvin)

V = volume (in Lt)

Finally, statement says:

T = 25°C = 298 K

V = 5 Lt

n = 8 moles (for O₂)

P = [8 molx(0.082 Lt*atm/K*mol)x298 K]/5 Lt

P = 24.44 atm would be the pressure due to O₂ (partial pressure of the oxygen)

what is a spelling bee​

Answers

Answer: a contest in which you are eliminated if you fail to spell a word correctly.

a contest where you attempt to spell a series of words that you are given by the judges

Indium (In) is made up of 95.7% 115In and 4.3% 113In. The atomic mass of 113In is 112.904 amu . The atomic mass of 115In is 114.904 amu . What is the average atomic mass of a sample of indium?
a. 113.909 amu
b. 114.5 amu
c. 114.818 amu
d. +666+115.00 amu

Answers

Answer:

The sample of indium, has an average atomic mass of 114.818 amu

Explanation:

Step 1: Data given

Indium is made of 95.7 % 115In and 4.3% 113In

113In has an atomic mass of 112.904 amu

115In has an atomic mass of 114.904amu

Step 2: Calculate the average atomic mass

The average atomic mass = X

0.957* 114.904 + 0.043* 112.904 = X

109.963 + 4.855 = X

X = 114.818

The sample of indium, has an average atomic mass of 114.818 amu

Rounded to the nearest tenth, the average atomic mass of indium is approximately 114.9 amu. So, the correct options provided is:C

To calculate the average atomic mass of a sample of indium, you can use the following formula:

Average Atomic Mass = (% abundance of isotope 1 × atomic mass of isotope 1) + (% abundance of isotope 2 × atomic mass of isotope 2) + ...

In this case, you have two isotopes of indium, 115In and 113In, with the following information:

- % abundance of 115In = 95.7%

- % abundance of 113In = 4.3%

- Atomic mass of 115In = 114.904 amu

- Atomic mass of 113In = 112.904 amu

Plug these values into the formula:

Average Atomic Mass = (0.957 × 114.904 amu) + (0.043 × 112.904 amu)

Calculate each part:

Average Atomic Mass = (110.009648 amu) + (4.855672 amu)

Now, add these values together:

Average Atomic Mass = 114.86532 amu

Rounded to the nearest tenth, the average atomic mass of indium is approximately 114.9 amu. So, the correct options provided is:C

To know more about atomic mass :

https://brainly.com/question/14012782

#SPJ3

By titration, it is found that 81.1 mL of 0.117 M NaOH ( aq ) is needed to neutralize 25.0 mL of HCl ( aq ) . Calculate the concentration of the HCl solution.

Answers

Explanation:

mole ratio of base to acid is 1:1 hence same moles of NaOH required to neutralize HCl

Although coal is a complex mixture of substances, its elemental composition can be approximated by the formula C135H96O9NS. Using this chemical formula, calculate the percentage, by mass, of carbon (C) in coal.

Answers

Answer:

85%

Explanation:

Firstly, we will need to calculate the molar mass of the molecule. We simply use the atomic masses of each of the elements. The atomic masses are as follows:

C = 12

H = 1

O = 16

N = 14

S = 1

All units are in a.m.u

The molecular mass is thus:

(135 × 12) + (96 × 1) + (16 × 9) + 14 + 32 = 1906g/mol

The percentage by mass of carbon = (135 × 12)/1906 × 100% = 85%

Final answer:

The percentage by mass of carbon (C) in coal, given the formula C135H96O9NS, is approximately 84.97%.

Explanation:

To calculate the percentage by mass of carbon (C) in coal using the approximate formula C135H96O9NS, we first need to determine the molar mass of the entire compound, and then compare it to the mass of just the carbon atoms within the compound. The atomic masses for C, H, O, N, and S are roughly 12.01 g/mol, 1.008 g/mol, 16.00 g/mol, 14.01 g/mol, and 32.07 g/mol, respectively.

To find the molar mass of C135H96O9NS:

C: 135 atoms × 12.01 g/mol = 1621.35 g/mol

H: 96 atoms × 1.008 g/mol = 96.768 g/mol

O: 9 atoms × 16.00 g/mol = 144.00 g/mol

N: 1 atom × 14.01 g/mol = 14.01 g/mol

S: 1 atom × 32.07 g/mol = 32.07 g/mol

The total molar mass of the coal formula is therefore 1621.35 + 96.768 + 144.00 + 14.01 + 32.07 = 1908.198 g/mol.

To calculate the percentage of carbon in the compound:

Percentage of C = (Mass of C / Molar mass of compound) × 100

Percentage of C = (1621.35 g/mol / 1908.198 g/mol) × 100 ≈ 84.97%

Therefore, the percentage by mass of carbon in coal for this given formula is approximately 84.97%.

7.66 Write balanced equations for the following reactions: (a) potassium oxide with water, (b) diphosphorus trioxide with water, (c) chromium(III) oxide with dilute hydrochloric acid, (d) selenium dioxide with aqueous potassium hydroxide

Answers

The balanced chemical equations for the reactions are

(a) K₂O + H₂O  → 2KOH

(b) P₂O₃ + 3H₂O → 2H₃PO₃

(c) Cr₂O₃ + 6HCl → 2CrCl₃ + 3H₂O

(d) SeO₂ + 2KOH → K₂SeO₃ + H₂O

From the question

We are to write a balanced equations for the given reactions

For (a)

The reaction between potassium oxide and water gives potassium hydroxide

The balanced chemical equation for the reaction between potassium oxide and water is

K₂O + H₂O  → 2KOH

For (b)

The reaction between diphosphorus trioxide with water gives phosphorous acid

The balanced chemical equation for the reaction between diphosphorus trioxide with water is

P₂O₃ + 3H₂O → 2H₃PO₃

For (c)

The reaction between chromium(III) oxide with dilute hydrochloric acid produces chromium(II) chloride and water

The balanced chemical equation for the reaction between chromium(III) oxide with dilute hydrochloric acid is

Cr₂O₃ + 6HCl → 2CrCl₃ + 3H₂O

For (d)

The reaction between selenium dioxide with aqueous potassium hydroxide gives potassium selenite and water

The balanced chemical equation for the reaction between selenium dioxide with aqueous potassium hydroxide

SeO₂ + 2KOH → K₂SeO₃ + H₂O

Hence, the balanced chemical equations for the reactions are

(a) K₂O + H₂O  → 2KOH

(b) P₂O₃ + 3H₂O → 2H₃PO₃

(c) Cr₂O₃ + 6HCl → 2CrCl₃ + 3H₂O

(d) SeO₂ + 2KOH → K₂SeO₃ + H₂O

Learn more here: https://brainly.com/question/24246394

A balanced reaction equation contains the same number of atoms of each element on both sides of the reaction equation.

To write a balanced chemical reaction equation, the number of atoms of each element on the right hand side must be the same as the number of atoms of the same element on the left hand side.

For the reaction between potassium oxide with water; K2O + H2O ----> 2KOHFor reaction between diphosphorus trioxide with water; P2O5 + 3 H2O → 2 H3PO4For the reaction between chromium(III) oxide with dilute hydrochloric acid; Cr2O3 + 6 HCl → 2 CrCl3 + 3 H2OFor the reaction between selenium dioxide with aqueous potassium hydroxide;  SeO2 + 2KOH ------>  K2SeO3 + H2O

Learn more: https://brainly.com/question/11969651

In counting the electron domains around the central atom in VSEPR theory, a ________ is not included.
A. nonbonding pair of electrons
B. Core level electron pair
C. double covalent bond
D. Single covalent bond
E. triple covalent bond

Answers

Answer:

B

Explanation:

In counting the electron domains around the central atom in VSEPR theory, a Core level electron pair is not included.

Core level electron pair are the electrons other than the electrons in the valency shell of an atom. They in the proximity of the nucleus. They do not participate in the bonding.

VSEPR is the abbreviation for Valence shell Electron Pair repulsion theory. VESPR is a model for predicting molecular geometries based on the reduction in the electrostatic repulsion of the valence electrons of a molecule around a central atom.

Other Questions
A fuzzy sticker costs $.50 and an oily sticker costs $.75.How much would k fuzzy stickers and m oily stickers cost? A closed system changes from state 1 to state 2 while 40kj of heat is added and 60kj of work is done by the system. As system is returned to state 1, 20kj of work is done on it. what is the heat transferred during process 2-1 A recipe calls for 3/4 cup of sugar per batch of cookies. If Gabe wants to make 6 batches of cookies, how many cups of sugar does he need? Write your expression and then solve it giving you the answer for how much sugar Gabe will need. Agape was asked to make a recommendation regarding short-range wireless technologies to be supported in a new conference room that was being renovated. Which of the following would she NOT consider due to its slow speed and its low deployment levels today?A. ANTB. BluetoothC. InfraredD. NFC if anna had 50 apples and jack had 75 green apples how much is all together which type of mutation results in the formation of a protein with one inccorrect amino acid The bill is $330. We want to split it but a friend gave us $50 for it. Therefore we each owe $140 after the $50. Since I have the $50 in my possession I wok give him $165 since were splitting the $50. Correct? A 3 by 3 matrix Bis known to have eigenvalues 0, 1, 2. This information is enough to find three of these (give the answers where possible) : (a) the rank of B (b) thedeterminantofBTB (c) theeigenvaluesofBTB (d) the eigenvalues of (B2 + J)-1. the factory system was dependent on all of the following except? A inexpensive labor B. Power-driven machinery C. Highly skilled craftsman Twenty-four blue socks and twenty-four red socks are lying in a drawer in a dark room. What is the minimum number of socks you need to pull out of the drawer so that you are sure to have at least two blue socks algn alguna ni ningn ninguna o tambin tampoco Question 1 with 1 blankLos turistas no estn buscando aventura. Question 2 with 1 blankLos viajeros no conocen la selva y el gua . Question 3 with 1 blankEl gua turstico no encontr las pirmides el lago. Question 4 with 1 blankDudo que turista viaje con esta agencia otra vez. Audra and Alfonso argue and Alfonso storms out of the house. Audra calls Alfonso asking for forgiveness. He returns and they reconcile. Soon they fight again with Alfonso once again leaving. This is an example of a(n)____________.a. complementary style.b. symmetrical style.c. conflict ritual.d. avoiding style.e. win-lose. The average hourly wage of workers at a fast food restaurant is $6.75 with a standard deviation of $0.25. If the distribution is normal, what is the probability that a worker selected at random earns more than $7.00 an hour? Tara and Robert formed the TR Partnership four years ago. Because they decided the company needed some expertise in multimedia presentations, they offered Katie a 1/3 interest in partnership capital if she would come to work for the partnership. On July 1 of the current year, the unrestricted partnership interest (fair market value of $25,000) was transferred to Katie. How should Katie treat the receipt of the partnership interest in the current year? A time-dependent but otherwise uniform magnetic field of magnitude B0(t) is confined in a cylindrical region of radius 6.5 cm. Initially the magnetic field in the region is pointed out of the page and has a magnitude of 3.5 T, but it is decreasing at a rate of 21 G/s. Due to the changing magnetic field, an electric field will be induced in this space which causes the acceleration of charges in the region. What is the direction of acceleration of a proton placed in at the point P1, 1.5 cm from the center? An article in Fortune (September 21, 1992) claimed that nearly one-half of all engineers continue academic studies beyond the B.S. degree, ultimately receiving either an M.S. or a Ph.D. degree. Data from an article in Engineering Horizons (Spring 1990) indicated that 117 of 484 new engineering graduates were planning graduate study. Are the data from Engineering Horizons consistent with the claim reported by Fortune? Use a = 0.10 in reaching your conclusions. Find the P-value. Give your answer. The true proportion of engineering students planning graduate studies significantly different from 0.5 at a = 0.10. The P-value is less than (choose the least possible). supervisor records the repair cost for 25 randomly selected dryers. A sample mean of $93.36 and standard deviation of $19.95 are subsequently computed. Determine the 98% confidence interval for the mean repair cost for the dryers. Assume the population is approximately normal. Find the critical value that should be used in constructing the confidence interval. A neuron in the skin detects tissue damage in the skin during a burn and informs the brain and spinal cord. This neuron is part of what pathway? Use the standard half-cell potentials listed below to calculate the standard cell potential for the following reaction occurring in an electrochemical cell at 25C. (The equation is balanced.) Pb(s) + Br2(l) Pb2+(aq) + 2Br(aq) Pb2+(aq) + 2 e Pb(s) E = -0.13 V Br2(l) + 2 e 2 Br(aq) E = +1.07 V Help !!!!!I NEEEEEEEEEDDDD HHHHHEEEEELLLLLPPPPP!!!!!!What is the focus of this cartoon?How does the artist feel about the issue based on his drawing? Use at least one piece of specific factual information (SFI) in the cartoon to prove it.Do you recognize anyone in the picture? (Hint: Who coined the term in his post-World War II speech?) Why is he important?Who is Joe? Why is he important?What is on the other side? Is it a good side or a bad side?Look at the details in the picture. What do you see? How does that relate to your point of view?