A slug is the mass of an object that will accelerate at a rate of 1 ft/s^2 when subjected to 1 lbf (pound force). 1 lb, f = 1 slug*ft/(s^2) Calculate the mass in slugs of an 246 lb,m object

Answers

Answer 1

Answer:

Mass of 246 lb object is 7.646 slugs.

Explanation:

Mass of the object = m

Weight of the object = W = 246 lb

Acceleration due to gravity= g = [tex]32.174 ft/s^2[/tex]

[tex] Weight=mass \times g[/tex]

[tex]W=mg[/tex]

[tex]1 lb=slugs\times 1 ft/s^2[/tex]

[tex]1 slugs=\frac{lb\times s^2}{ft}[/tex]

[tex]m=\frac{W}{g}=\frac{246 lb}{32.174 ft/s^2}=7.646 lb s^2/ft=7.646 slugs[/tex]

Mass of 246 lb object is 7.646 slugs.


Related Questions

Calculate the freezing point of a solution made from 220g of octane (C Hua), molar mass = 114,0 gmol dissolved in 1480 g of benzene. Benzene freezes at 5.50"C and its Kvalue is 5.12C/m. -1.16°C 0.98°C 666"C 12 2°C 5.49°C 10 12 AM A A 2019 Backspace yuo Pill но кL

Answers

Answer: Freezing point of a solution will be [tex]-1.16^0C[/tex]

Explanation:

Depression in freezing point is given by:

[tex]\Delta T_f=i\times K_f\times m[/tex]

[tex]\Delta T_f=T_f^0-T_f=(5.50-T_f)^0C[/tex] = Depression in freezing point

i= vant hoff factor = 1 (for non electrolyte)

[tex]K_f[/tex] = freezing point constant = [tex]5.12^0C/m[/tex]

m= molality

[tex]\Delta T_f=i\times K_f\times \frac{\text{mass of solute}}{\text{molar mass of solute}\times \text{weight of solvent in kg}}[/tex]

Weight of solvent (benzene)= 1480 g =1.48 kg

Molar mass of solute (octane) = 114.0 g/mol

Mass of solute (octane) = 220 g

[tex](5.50-T_f)^0C=1\times 5.12\times \frac{220g}{114.0 g/mol\times 1.48kg}[/tex]

[tex](5.50-T_f)^0C=6.68[/tex]

[tex]T_f=-1.16^0C[/tex]

Thus the freezing point of a solution will be [tex]-1.16^0C[/tex]

Trinitrotoluene (C-H5N306, 227.1 g/mol) is easily detonated. How many grams of carbon are in 57.6 grams of TNT? Avogadro's Number: 1 mole = 6.02 x 1023 species A. 403 g B. 57.6 g C. 21.3 g D. 1.78 g E. None of the above

Answers

Answer: The correct answer is Option C.

Explanation:

The chemical formula for trinitrotoluene is [tex]C_7H_5N_3O_6[/tex]

In 1 mole of TNT, 7 moles of carbon atom, 5 moles of hydrogen atom, 3 moles of nitrogen atom and 6 moles of oxygen atom are present.

We know that:

Mass of trinitrotoluene = 227.1 g/mol

Mass of carbon = 12.01 g/mol

We are given:

Mass of TNT = 57.6 grams

To calculate the mass of carbon in given amount of TNT, we apply unitary method:

In 227.1 grams of TNT, amount of carbon present is = [tex](7\times 12.01)=84.07g[/tex]

So, in 57.6 grams of TNT, the amount of carbon present is = [tex]\frac{84.07g}{227.1g}\times 57.6g=21.3g[/tex]

Hence, the correct answer is Option C.

Question 10 0 / 3.5 points Many high temperature studies have been carried out on the equilibrium of the reaction: 2SO2(g) + O2(g) = 2 SO3(g) In one study the reaction vessel initially contained (5.000x10^-3) M SO2, (2.50x10^-3) MO2, and no SO3. If it was determined that at equilibrium the SO2 concentration was (2.8x10^-3) M, determine Kc at this temperature for the reaction as written. • Answers must be written in scientific notation • Write your answer using ONE decimal place (TWO significant figures), even if this is not the correct number of significant figures (e.g., 3.4E-6 or 3.4 x 10-6). • Do NOT use spaces. • Do NOT include units.

Answers

Answer: [tex]4.4\times 10^{2}[/tex]

Explanation:

The chemical reaction follows the equation:

     [tex]2SO_2(g)+O_2(g)\rightleftharpoons 2SO_3(g)[/tex]

t = 0 [tex]5.000\times 10^{-3}[/tex] [tex]2.50\times 10^{-3}[/tex]    0

At eqm [tex](5.000\times 10^{-3}-2x)[/tex] [tex](2.50\times 10^{-3}-x)[/tex]   (2x)      

The expression for [tex]K_c[/tex] for the given reaction follows:

[tex]K_c=\frac{[SO_3]^2}{[SO_2]^2[O_2]}[/tex]

[tex]K_c=\frac{[2x]^2}{[5.000\times 10^{-3}-2x]^2[2.50\times 10^{-3}-x]}[/tex]

Given : [tex][SO_2]_{eqm}=2.80\times 10^{-3}[/tex]

[tex]5.000\times 10^{-3}-2x=2.80\times 10^{-3}[/tex]

[tex]x=1.1\times 10^{-3}[/tex]

Putting the values we get:

[tex]K_c=\frac{[2\times 1.1\times 10^{-3}]^2}{[5.000\times 10^{-3}-2\times 1.1\times 10^{-3}]^2[2.50\times 10^{-3}-1.1\times 10^{-3}]}[/tex]

[tex]K_c=4.4\times 10^2[/tex]

Therefore, the equilibrium concentration [tex]4.4\times 10^{2}[/tex]

A temperature difference of 15°C is impressed across a brick wall of a house which is 15 cm in thickness. The thermal conductivity of the brick is 1.0 W/m °C. The face of the wall is 6 meters high and 12 meters long. Compute both the heat flux and the heat transfer rate through the wall. Why aren't these numerical values the same?

Answers

Answer:

Q=7200 W

q=7200/72=100 [tex]W/m^2[/tex]

Explanation:

Given that

ΔT=15° C

Thickness ,t=15 cm

Thermal conductivity ,K=1 W/m.°C

Height,h=6 m

Length ,L=12 m

As we know that heat conduction through wall given as

[tex]Q=\dfrac{KA}{t}\Delta T[/tex]

Now by putting the values

A= 6 x 12 =72 [tex]m^2[/tex]

[tex]Q=\dfrac{KA}{t}\Delta T[/tex]

[tex]Q=\dfrac{1\times 72}{0.15}\times 15\ W[/tex]

Q=7200 W

Q is the total heat transfer.

Heat flux q

 q=Q/A [tex]W/m^2[/tex]

q=7200/72=100 [tex]W/m^2[/tex]

q is the heat flux.

As w know that heat flux(q) is the heat transfer rate from per unit area and on the other hand heat transfer(Q) is the total heat transfer from the surface.

Heat flux q=Q/A

That is why these both are different.

Why are the electronegativities of the 5d elements so high?

Answers

Explanation:

The electronegativity values of the 5d series are very high because the size of the 5d orbitals are much larger as compared to the size of the 3d and 4d orbitals. As a consequence of this, the shielding capacity of 5d elements are low or these elements are not effective at shielding the nuclear charge . Thus, this causes the increase in the effective nuclear charge which makes the electronegativity values to increase steeply from the Lutetium (1.27) to the Gold (2.54).

What is the pH of a 0.18 M CH3NH3+Cl– aqueous solution? The pKb ofCH3NH2 is 3.44

Answers

Answer:

5.65

Explanation:

Given that:

[tex]pK_{b}\ of\ CH_3NH_2=3.44[/tex]

[tex]K_{b}\ of\ CH_3NH_2=10^{-3.44}=3.6308\times 10^{-4}[/tex]

[tex]K_a\ of\ CH_3NH_3^+Cl^-=\frac {K_w}{K_b}=\frac {10^{-14}}{3.6308\times 10^{-4}}=2.7542\times 10^{-11}[/tex]

Concentration = 0.18 M

Consider the ICE take for the dissociation as:

                              [tex]CH_3NH_3^+[/tex]   ⇄     H⁺ +  [tex]CH_3NH_2[/tex]

At t=0                           0.18                 -                            -

At t =equilibrium        (0.18-x)                x                         x            

The expression for dissociation constant of acetic acid is:

[tex]K_{a}=\frac {\left [ H^{+} \right ]\left [CH_3NH_2 \right ]}{[CH_3NH_3^+]}[/tex]

[tex]2.7542\times 10^{-11}=\frac {x^2}{0.18-x}[/tex]

x is very small, so (0.18 - x) ≅ 0.18

Solving for x, we get:

x = 0.2227×10⁻⁵  M

pH = -log[H⁺] = -log(0.2227×10⁻⁵) = 5.65

Calculate the terminal velocity of a droplet (radius =R, density=\rho_d) when its settling in a stagnant fluid (density=\rho_f).

Answers

Answer:

[tex]V=\dfrac{2}{9\ \mu}R^2g(\rho_d-\rho_f)[/tex]

Explanation:

Given that

Radius =R

[tex]Density\ of\ droplet=\rho_d[/tex]

[tex]Density\ of\ fluid=\rho_f[/tex]

When drop let will move downward then so

[tex]F_{net}=F_{weight}-F_{b}-F_d[/tex]

Fb = Bouncy force

Fd = Drag force

We know that

[tex]F_b=\dfrac{4\pi }{3}R^3\ \times \rho_f\times g[/tex]

[tex]F_{weight}=\dfrac{4\pi }{3}R^3\ \times \rho_d\times g[/tex]

[tex]F_{d}=6\pi \mu\ R\ V[/tex]

μ=Dynamic viscosity of fluid

V= Terminal velocity

So at the equilibrium condition

[tex]F_{net}=F_{weight}-F_{b}-F_d[/tex]

[tex]0=F_{weight}-F_{b}-F_d[/tex]

[tex]F_{weight}=F_{b}+F_d[/tex]

[tex]\dfrac{4\pi }{3}R^3\ \times \rho_d\times g=\dfrac{4\pi }{3}R^3\ \times \rho_f\times g+6\pi \mu\ R\ V[/tex]

So

[tex]V=\dfrac{2}{9\ \mu}R^2g(\rho_d-\rho_f)[/tex]

This is the terminal velocity of droplet.

Which of the following regions of the periodic table tends to prefer a –1 charge and occupies Group 17?

a. Alkaline earth metals.
b. Halogens.
c. Noble gases.

Answers

Answer:

b. halogens

Explanation:

The elements of group 17 are called halogens. These are six elements Fluorine, Chlorine, Bromine, Iodine, Astatine. Halogens are very reactive these elements cannot be found free in nature. Their chemical properties are resemble greatly with each other. As we move down the group in periodic table size of halogens increases that's way fluorine is smaller in size as compared to other halogens elements. Their boiling points also increases down the group which changes their physical states.  

What should be done in case of acid spills and mercury spills? Explain

Answers

Explanation:

Acid spills

These types of spills should be neutralized with base like sodium bicarbonate and then must be cleaned up by using paper towel or  sponge. Strong base like sodium hydroxide must not be used to neutralize. Best base to use is sodium bicarbonate which has much less chance of the injury.

Mercury spills

Mercury is found commonly in  the thermometers. If one have mercury spill, it must be cleaned up immediately with  either commercial product like Hg Aborb ™ or by using elemental sulfur. Mercury sponges  can also be purchased that form amalgam with liquid mercury and thus trapping it on surface of sponge.

A gaseous mixture composed of 20% CH4, 30% C2H4, 35% C2H2, and 15% C2H20. What is the average molecular weight of the mixture? a) 20 b) 9.25 c) 25 d) 6.75

Answers

Answer: The correct answer is Option d.

Explanation:

We are given:

Mass percentage of [tex]CH_4[/tex] = 20 %

So, mole fraction of [tex]CH_4[/tex] = 0.2

Mass percentage of [tex]C_2H_4[/tex] = 30 %

So, mole fraction of [tex]C_2H_4[/tex] = 0.3

Mass percentage of [tex]C_2H_2[/tex] = 35 %

So, mole fraction of [tex]C_2H_2[/tex] = 0.35

Mass percentage of [tex]C_2H_2O[/tex] = 15 %

So, mole fraction of [tex]C_2H_2O[/tex] = 0.15

We know that:

Molar mass of [tex]CH_4[/tex] = 16 g/mol

Molar mass of [tex]C_2H_4[/tex] = 28 g/mol

Molar mass of [tex]C_2H_2[/tex] = 26 g/mol

Molar mass of [tex]C_2H_2O[/tex] = 48 g/mol

To calculate the average molecular mass of the mixture, we use the equation:

[tex]\text{Average molecular weight of mixture}=\frac{_{i=1}^n\sum{\chi_im_i}}{n_i}[/tex]

where,

[tex]\chi_i[/tex] = mole fractions of i-th species

[tex]m_i[/tex] = molar masses of i-th species

[tex]n_i[/tex] = number of observations

Putting values in above equation:

[tex]\text{Average molecular weight}=\frac{(\chi_{CH_4}\times M_{CH_4})+(\chi_{C_2H_4}\times M_{C_2H_4})+(\chi_{C_2H_2}\times M_{C_2H_2})+(\chi_{C_2H_2O}\times M_{C_2H_2O})}{4}[/tex]

[tex]\text{Average molecular weight of mixture}=\frac{(0.20\times 16)+(0.30\times 28)+(0.35\times 26)+(0.15\times 42)}{4}\\\\\text{Average molecular weight of mixture}=6.75[/tex]

Hence, the correct answer is Option d.

The average molecular weight of the gaseous mixture is approximately 27 g/mol, which is not one of the provided options.

The average molecular weight (MW) of a mixture can be calculated as the sum of the weight percentages of each component multiplied by its respective molecular weight divided by 100. For the given mixture, the molecular weights of the components are:
CH4 = 16 g/mol
C2H4 = 28 g/mol
C2H2 = 26 g/mol
C2H2O = 42 g/mol.

We multiply the weight percentages with the molecular weights of each component and then sum them up:

(20% x 16 g/mol) + (30% x 28 g/mol) + (35% x 26 g/mol) + (15% x 42 g/mol)=(0.20 x 16) + (0.30 x 28) + (0.35 x 26) + (0.15 x 42)=3.2 + 8.4 + 9.1 + 6.3=27 g/mol

Hence, the average molecular weight of the mixture is 27 g/mol. Thus, none of the options provided (a-d) is correct.

Be sure to answer all parts. The thermal decomposition of phosphine (PH3) into phosphorus and molecular hydrogen is a first-order reaction: 4PH3(g) → P4(g) + 6H2(g) The half-life of the reaction is 35.0 s at 680°C. Calculate the first-order rate constant for the reaction: s−1 Calculate the time required for 77.0 percent of the phosphine to decompose: s

Answers

Answer:

k = 0.0198 s⁻¹

t = 74.25 seconds

Explanation:

Given that:

Half life = 35.0 s

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac {ln\ 2}{35.0}\ s^{-1}[/tex]

The rate constant, k = 0.0198 s⁻¹

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

Given:

77.0 % is decomposed which means that 0.77 of [tex][A_0][/tex] is decomposed. So,

[tex]\frac {[A_t]}{[A_0]}[/tex] = 1 - 0.77 = 0.23

t = ?

[tex]\frac {[A_t]}{[A_0]}=e^{-k\times t}[/tex]

[tex]0.23=e^{-0.0198\times t}[/tex]

t = 74.25 seconds

When in a reaction heat is a reactant then the reaction is called thermal decomposition reaction. The first-order rate constant is 0.0198 per second and the time required is 74.25 seconds.

What is a rate constant?

The rate constant is the specific rate that is the proportionality constant in a reaction and depicts the relation between the chemical reaction rate and the concentration of the reactants.

Rate constant can be given as,

[tex]\rm t\dfrac{1}{2} = \dfrac{ln 2}{k}[/tex]

The half-life of the reaction is 35 seconds.

Substituting values in the above equation:

[tex]\begin{aligned}\rm k &= \rm \dfrac{ln\;2}{t\frac{1}{2}}\\\\&= \dfrac{\rm ln\2}{35}\\\\&= 0.0198 \;\rm s^{-1}\end{aligned}[/tex]

The time taken can be calculated by the rate law for first order:

[tex]\rm [A_{t}] = [A_{o}]e^{-kt}[/tex]

Here,

Concentration at time t = [tex]\rm [A_{t}][/tex]The initial concentration = [tex]\rm [A_{o}][/tex]

Solving for time (t):

[tex]\begin{aligned}\rm \dfrac {[A_{t}]}{[A_{o}]} &= 1 - 0.77\\\\0.23 &= \rm e ^{-0.0198 \times t}\\\\\rm t &= 74.25\;\rm seconds\end{aligned}[/tex]

Therefore, the rate constant is 0.0198 per second and the time taken is 74.25 seconds.

Learn more about rate constant here:

https://brainly.com/question/16611725

A gram of gasoline produces 45.0kJ of energy when burned. Gasoline has a density of 0.77/gmL. How would you calculate the amount of energy produced by burning 5.2L of gasoline? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols.

Answers

Answer:

Math expression: [tex]=\frac{0.77\ g/ml*5200\ ml}{1\ g} *45.0\ kJ[/tex]

Explanation:

Given:

Energy produced per gram of gasoline = 45.0 kJ

Density of gasoline = 0.77 g/ml

Volume of gasoline = 5.2  L=5200 ml

To determine:

The amount of energy produced by burning 5.2 L gasoline

Calculation set-up:

1. Calculate the mass (m) of gasoline given the density (d) and volume (v)

[tex]m = d*v\\\\m = 0.77 g/ml*5200 ml[/tex]

2. Calculate the amount of energy produced

[tex]=\frac{0.77\ g/ml*5200\ ml}{1\ g} *45.0\ kJ=180180 kJ[/tex]

If a chemical reaction consumes reactants at a steady rate of 7.64 x 10^19 molecules per second, how long will it take for the reaction to consume 6.02 x 1017 molecules of reactant?

Answers

Answer:

time = Molecules/Rate => 0.0079 segs

Explanation:

Rate = 7.64 * 10^19 molecules/segs

Molecules = 6.02 * 10^17 molecules

time = #?

time = Molecules/Rate => 0.0079 segs

The dimensional analysis calculates the variable from the given data. A chemical reaction with a reaction rate of 7.64 X 10¹⁹ will take 0.0079 seconds to consume 6.02 x 10¹⁷ molecules of reactant.

What is the reaction rate?

The reaction rate has been defined by the speed or the time taken for the product to get produced by the reactant undergoing the chemical reaction. The rate of reaction depends on the concentration of the reactants.

Given,

Rate of reaction = 7.64 x 10¹⁹ molecules per second

Molecules = 6.02 × 10¹⁷ molecules

Time is calculated by the dimensional analysis as,

Time = Molecules ÷ Rate

= 6.02 × 10¹⁷ molecules ÷ 7.64 x 10¹⁹ molecules per second

= 0.0079 seconds

Therefore, it will take 0.0079 seconds for 6.02 x 10¹⁷ molecules of reactant to yield the product.

Learn more about reaction rate here:

https://brainly.com/question/13693578

#SPJ2

Define ""point source pollution"" and ""non-point pollution"".

Answers

Answer:

Point source pollution:

 If pollution comes from a fix source then is called point source pollution.It have a specific location where pollution comes.

Ex: Air pollution ,water pollution.

Non point source pollution:

 If pollution comes from number of sources then is called point source pollution.This pollution does not have a specific point of source.

Ex: Spills ,leaks ,Sewage over flow etc.

Answer:

Defined as under.

Explanation:

A point source pollution is a single identifiable source of pollutants like air, water, thermal and light. And has a negligible extent, distinguishes from other geometric or area sources of nonpoint, etc. While nonpoint source pollution is derived from various sources. Such as results of land runoff. atmospheric drainage and seepage they may affect a body of water such as from the agricultural areas draining to a river. Various pathogens and viruses found in the body of water, also the presence of poorly managed livestock, pets, and other these problems is also elated to the urban and rural asphalt and concrete, highway runoff and mining activities.

How many atoms are found in 3.45g of CO2?

Answers

Answer: The number of carbon and oxygen atoms in the given amount of carbon dioxide is [tex]4.72\times 10^{22}[/tex] and [tex]9.44\times 10^{22}[/tex] respectively

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Given mass of carbon dioxide gas = 3.45 g

Molar mass of carbon dioxide gas = 44 g/mol

Putting values in above equation, we get:

[tex]\text{Moles of carbon dioxide gas}=\frac{3.45g}{44g/mol}=0.0784mol[/tex]

1 mole of carbon dioxide gas contains 1 mole of carbon and 2 moles of oxygen atoms.

According to mole concept:

1 mole of a compound contains [tex]6.022\time 10^{23}[/tex] number of molecules

So, 0.0784 moles of carbon dioxide gas will contain [tex]1\times 0.0784\times 6.022\times 10^{23}=4.72\times 10^{22}[/tex] number of carbon atoms and [tex]2\times 0.0784\times 6.022\times 10^{23}=9.44\times 10^{22}[/tex] number of oxygen atoms

Hence, the number of carbon and oxygen atoms in the given amount of carbon dioxide is [tex]4.72\times 10^{22}[/tex] and [tex]9.44\times 10^{22}[/tex] respectively

A chemist measures the amount of hydrogen gas produced during an experiment. She finds that 264. g of hydrogen gas is produced. Calculate the number of moles of hydrogen gas produced. Round your answer to 3 significant digits. W mol x 6 ?

Answers

Answer:

The answer is 130.953 g of hydrogen gas.

Explanation:

Hydrogen gas is formed by two atoms of hydrogen (H), so its molecular formula is H₂. We can calculate is molecular weight as the product of the molar mass of H (1.008 g/mol):

Molecular weight H₂= molar mass of H x 2= 1.008 g/mol x 2= 2.01568 g

Finally, we obtain the number of mol of H₂ there is in the produced gas mass (264 g) by using the molecular weight as follows:

mass= 264 g x 1 mol H₂/2.01568 g= 130.9731703 g

The final mass rounded to 3 significant digits is 130.973 g

Final answer:

To find the number of moles of hydrogen gas produced from 264 grams, divide the mass by the molar mass of hydrogen (2.02 g/mol), resulting in approximately 130.7 moles of hydrogen gas to three significant digits.

Explanation:

To calculate the number of moles of hydrogen gas (H₂) produced from 264 grams of hydrogen gas, you would use the molar mass of H₂ which is approximately 2.02 g/mol (1 mole of H₂ = 2.02 grams). Using the formula:



number of moles = mass of substance (g) / molar mass (g/mol)



We find the number of moles of hydrogen gas to be:



number of moles = 264 g / 2.02 g/mol



After performing the division, this gives us approximately 130.7 moles of H₂.



This result is to three significant digits, aligned with the precision provided by the initial mass of the hydrogen gas.

7. For the system PCls(g) → PC13(g) + Cl2(g) Kis 26 at 300°C. In a 5.0-L flask, a gaseous mixture consists of all three gases with partial pressure as follows: Ppcis = 0.012 atm, Pc2=0.45 atm, Ppci3 -0.90 atm. a) Is the mixture at equilibrium? Explain. b) If it is not at equilibrium, which way will the system shift to establish equilibrium?

Answers

Answer:

a) Reaction is not at equilibrium

b) Reaction will move towards backward direction

Explanation:

[tex]PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)[/tex]

Equilibrium constant = 26

[tex]Reaction\ quotient (Q) = \frac{[p_{PCl_3}]\times [p_{Cl_2}]}{[p_{PCl_5}]}[/tex]

[tex][p_{PCl_5}] = 0.012 atm[/tex]

[tex][p_{PCl_3}]= 0.90 atm[/tex]

[tex][p_{Cl_2}]= 0.45 atm[/tex]

[tex]Reaction\ quotient (Q) = \frac{[p_{PCl_3}]\times [p_{Cl_2}]}{[p_{PCl_5}]}[/tex]

[tex]Reaction quotient (Q) =\frac{0.90\times 0.45} {0.012} = 33.75[/tex]

As reaction quotient (Q) is more than equilibrium constant, so reaction is not at equilibrium and reaction will move towards backward direction.

Blood substitute. As noted in this chapter, blood contains a total concentration of phosphate of approximately 1 mM and typically has a pH of 7.4. You wish to make 100 liters of phosphate buffer with a pH of 7.4 from NaH 2 PO 4 (molecular weight, 119. 98 g mol 1) and Na 2 HPO 4 (molecular weight, 141. 96 g mol 1). How much of each (in grams) do you need? Berg, Jeremy M.. Biochemistry (p. 25). W. H. Freeman. Kindle Edition.

Answers

Answer:

Mass of NaH₂PO₄ = 4.707 gMass of Na₂HPO₄ = 8.627 g

Explanation:

The equilibrium relevant for this problem is:

H₂PO₄⁻ ↔ HPO₄⁻² + H⁺

The Henderson–Hasselbalch (H-H) equation is needed to solve this problem:

pH= pka + [tex]log\frac{[A^{-} ]}{[HA]}[/tex]

In this case, [A⁻] = [HPO₄⁻²], [HA] = [H₂PO₄⁻], pH = 7.4; from literature we know that pka=7.21.

We use the H-H equation to describe [HPO₄⁻²] in terms of  [H₂PO₄⁻]:

[tex]7.4=7.21+log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]} \\0.19=log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]} \\10^{0.19}= \frac{[HPO4^{-2} ]}{[H2PO4^{-} ]} \\1.549*[H2PO4^{-} ]=[HPO4^{-2} ][/tex]

The problem tells us that the concentration of phosphate is 1 mM, which means:

[HPO₄⁻²] + [H₂PO₄⁻] = 1 mM = 0.001 M

In this equation we can replace [HPO₄⁻²] with the term expressed in the H-H eq:

1.549 * [H₂PO₄⁻] + [H₂PO₄⁻] = 0.001 M

2.549 * [H₂PO₄⁻] = 0.001 M

[H₂PO₄⁻] = 3.923 * 10⁻⁴ M

With the value of [H₂PO₄⁻] we can calculate [HPO₄⁻²]:

[HPO₄⁻²] + 3.923 * 10⁻⁴ M = 0.001 M

[HPO₄⁻²] = 6.077 * 10⁻⁴ M

With the concentrations, the molecular weight, and the volume, we calculate the mass of each reagent:

Mass of NaH₂PO₄ = 3.923 * 10⁻⁴ M * 100 L * 119.98 g/mol = 4.707 gMass of Na₂HPO₄ = 6.077 * 10⁻⁴ M * 100 L * 141.96 g/mol = 8.627 g

a sample of an oxide of antimony (sb) contain 19.75 g of antimony combine with 6.5 g of oxygen . what is the simplest formula for the oxide

Answers

Explanation:

The given data is as follows.

      Mass of antimony = 19.75 g

      Molar mass of Sb = 121.76 g/mol

Therefore, calculate number of moles of Sb as follows.

                    Moles of Sb = [tex]\frac{mass}{\text{molar mass}}[/tex]

                                         = [tex]\frac{19.75 g}{121.76 g/mol}[/tex]

                                         = 0.162 mol

Mass of oxygen given is 6.5 g and molar mass of oxygen is 16 g/mol. Hence, moles of oxygen will be calculated as follows.

           Moles of oxygen = [tex]\frac{mass}{\text{molar mass}}[/tex]

                                         = [tex]\frac{6.5 g}{16 g/mol}[/tex]

                                         = 0.406 mol

Hence, ratio of moles of Sb and O will be as follows

                          Sb : O

                      [tex]\frac{0.162}{0.162} : \frac{0.406}{0.162}[/tex]

                           1 : 2.5

We multiply both the ratio by 2 in order to get a whole number. Therefore, the ratio will be 2 : 5.

Thus, we can conclude that the empirical formula of the given oxide is [tex]Sb_{2}O_{5}[/tex].

Which of the following gives the net ionic reaction for the reaction used in this experiment?

H+(aq) + OH-(aq) → H2O(l)

no net reaction

Ba2+(aq) + SO42-(aq) → BaSO4(s)

Ba2+(aq) + 2 OH-(aq) + 2 H+(aq) + SO42-(aq) → BaSO4(s) + 2 H2O(l)

Answers

Answer: Option (d) is the correct answer.

Explanation:

The given reaction will be as follows.

       [tex]Ba(OH)_{2}(aq) + H_{2}SO_{4}(aq) \rightarrow BaSO_{4}(s) + 2H_{2}O(l)[/tex]

In the ionic form, the equation will be as follows.

           [tex]Ba^{2+}(aq) + SO^{2-}_{4}(aq) \rightarrow BaSO_{4}(s)[/tex] ........ (1)

           [tex]H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(l)[/tex] ............ (2)

Hence, for the net ionic equation we need to add both equation (1) and (2). Therefore, the net ionic equation will be as follows.

     [tex]Ba^{2+}(aq) + SO^{2-}_{4}(aq) + H^{+}(aq) + OH^{-}(aq) \rightarrow BaSO_{4}(s) + H_{2}O(l)[/tex]        

Now, balancing the atoms on both the sides we get the net ionic equation as follows.

         [tex]Ba^{2+}(aq) + SO^{2-}_{4}(aq) + 2H^{+}(aq) + 2OH^{-}(aq) \rightarrow BaSO_{4}(s) + 2H_{2}O(l)[/tex]          

Final answer:

The correct net ionic reaction for the experiment is H+(aq) + OH-(aq) → H2O(l), an example of an acid-base neutralization reaction. The other options included the formation of a precipitate, which is not part of the net ionic reaction.

Explanation:

Based on the provided options, the correct net ionic reaction for the experiment seems to be H+(aq) + OH-(aq) → H2O(l). This reaction is a classic example of an acid-base neutralization reaction, where an acid (H+) and a base (OH-) react to form water. The other two reactions involve the formation of a precipitate (BaSO4), but the full reaction is simplified to leave out the precipitate ions on either side. This does not occur in the first reaction. Hence, the first reaction is the correct net ionic reaction for this experiment.

Learn more about Net Ionic Reaction here:

https://brainly.com/question/29656025

#SPJ3

which higher heat transfer ?

a)Fan with air

b)boiling water

c)cooled liquid

Answers

Answer:

b)boiling water

Explanation:

High heat is transferred with the thermal conduction process, also called diffusion. Always occurs from a region of higher temperatures to a region of lower temperatures. The flow of fluid may be forced into external processes. As the particles rapidly move and vibrate and the transfer of heat from one state to the other by the interaction of particles and rate of heat lost has to be the same as absorbed heat during vaporization at the same fluid pressure. A component of heat transfer can be seen as a heat sink in which transfers the heat generated within any medium. Thus evaporative cooling happens after the vapor is added to the surrounding air.

How do you know when the central atom in a lewis structure will have more than 8 electrons?

One particular example in mind is BrO3F. The structure should have 32 electrons, and it does when Br has a single bond with the other atoms and their formal charge cancels out to have a formal charge of zero.

Answers

Answer:

To know when a central atom in a lewis structure will have more than 8 electrons it is important to know where is the element at the periodic table and the orbital configuration of the atom.

Explanation:

The octet rule establishes that an atom could win, lose, or share electrons with other atoms till every atom have eight valence electrons. However exist exceptions to the octet rule. Some elements like Be, B and Al are stable with only six valence electrons because these three elements are small and with low electronegativity. On the other hand, some elements from the 3d orbital could expand their octet and still be stable, like S in SF6. This happens because elements from 3d orbital have enough space to suit more electrons.

Not only due trees "fix" carbon but so do green vegetables. Photosynthesis in spinach leaves produces glucose via the Calvin cycle which involves the fixation of CO2 with ribulose 1-5 bisphosphate to form 3-phosphoglycerate via C3H8P2011(aq) + H2O(aq) + CO2(g) → 2 CzH4PO3(aq) + 2 H+(aq) If 15.0 g of 3-phosphoglycerate is formed by this reaction at T = 298 K and P = 1.00 atm what volume of CO2 is fixed? [1.00 L]

Answers

Answer : The volume of [tex]CO_2[/tex] gas is 1.00 L

Explanation :

First we have to determine the moles of [tex]C_3H_4PO_7^{3-}[/tex].

Molar mass of [tex]C_3H_4PO_7^{3-}[/tex] = 182.9 g/mole

[tex]\text{ Moles of }C_3H_4PO_7^{3-}=\frac{\text{ Mass of }C_3H_4PO_7^{3-}}{\text{ Molar mass of }C_3H_4PO_7^{3-}}=\frac{15.0g}{182.9g/mole}=0.0820moles[/tex]

Now we have to calculate the moles of [tex]CO_2[/tex].

The given balanced chemical reaction is:

[tex]C_5H_8P_2O_{11}^{4-}(aq)+H_2O(aq)+CO_2(g)\rightarrow 2C_3H_4PO_7^{3-}(aq)+2H^+(aq)[/tex]

From the reaction we conclude that,

As, 2 moles of [tex]C_3H_4PO_7^{3-}[/tex] produce from 1 mole of [tex]CO_2[/tex]

So, 0.0820 moles of [tex]C_3H_4PO_7^{3-}[/tex] produce from [tex]\frac{0.0820}{2}=0.041moles[/tex] of [tex]CO_2[/tex]

Now we have to calculate the volume of [tex]CO_2[/tex] gas.

Using ideal gas equation:

[tex]PV=nRT[/tex]

where,

P = pressure of gas = 1.00 atm

V = volume of gas = ?

T = temperature of gas = 298 K

n = number of moles of gas = 0.041 mole

R = gas constant = 0.0821 L.atm/mole.K

Now put all the given values in the ideal gas equation, we get:

[tex](1.00atm)\times V=(0.041mole)\times (0.0821L.atmK^{-1}mol^{-1})\times (298K)[/tex]

[tex]V=1.00L[/tex]

Therefore, the volume of [tex]CO_2[/tex] gas is 1.00 L

For which of these is there an increase in entropy? KCI(aq)+AgNO3(aq)KNO3(aq)+AgCI(s) NaCl(s)NaCl(aq) 2NaOH(aq)+CO2(g)Na2CO3(aq)+H20(1) C2H5OH(g)C2H5OH(I)

Answers

Answer: NaCl (s) → NaCl (aq)

Explanation:

Entropy is often associated with the disorder or randomness of a system. Therefore, in each reaction, it is necessary to evaluate if the disorder increases or decreases to understand what happens to the entropy:

1) KCl (aq) + AgNO₃ (aq) → KNO₃ (aq) + AgCl (s) - In this reaction, we have only aqueous reactants in the beginning and in the product we have a precipitate. The solid state is more organised than the liquid, consequently, the entropy decreases.

2) NaCl (s) → NaCl (aq) - In this case, oposite to the first one, we go from a solid state to an aqueous state. The solvation of the ions Na⁺ and Cl⁻ is random while the solid state is very organised. Therefore, in this reaction the entropy increases.

3) 2NaOH (aq) + CO₂ (g) → Na₂CO₃ (aq) + H₂O (l) - In this reaction, the reactants have higher entropy because of the gas CO₂. Therefore, the entropy decreases.

4) C₂H₅OH (g) → C₂H₅OH (l) -  In this reaction, the reactant is a gas and the product a liquid. Therefore, the entropy decreases.

QUESTION 1 1.041 points If a 50.00 ml aliquot of a 0.12 M NaCl solution is added to 30.00 mL of a 0.18 M CaCl solution, what is the concentration of calcium ion in the mixture? 0.10M 0.086 M 0,068 M 0.36 M 0.090 M

Answers

Answer:

[Ca²⁺] = 0.068 M

Explanation:

The concentration of the calcium ion will be equal to the amount of calcium in CaCl₂, divided by the total volume:

C = n/V

When CaCl₂ dissociates in water, one mole of calcium ion is produced for every mole of CaCl₂, so the molar ratio of CaCl₂ to Ca²⁺ is 1:1. The moles of Ca²⁺ are calculated as follows:

(0.18 mol/L)(30.00 mL) = 5.4 mmol CaCl₂ = 5.4 mmol Ca²⁺

The total volume is (50.00 mL + 30.00 mL) = 80.00 mL

Thus, the concentration of Ca²⁺ is:

C = n/V = (5.4 mmol)/(80.00 mL) = 0.068 M

You make 1 Liter of an aqueous solution containing 9.20 ml of 57.8 mM acetic acid and 56.2 mg of sodium acetate (MW = 82.0 g/mole). a. How many moles of acetic acid did you add? b. How many moles of sodium acetate did you add? c. What is the appropriate formula for calculating the pH of the above solution? d. What is the pH of the above solution? Is it acidic or basic? Slightly or strongly so? (Use the same scale as on HW 1)

Answers

Answer:

a) 5,3176x10⁻⁴ moles

b) 6,85x10⁻⁴ moles

c) The appropriate formula to calculate is Henderson-Hasselbalch.

d) pH = 4,86. Acidic solution but slighty

Explanation:

a) moles of acetic acid:

9,20x10⁻³L × 57,8x10⁻³M = 5,3176x10⁻⁴ moles

b) moles of sodium acetate:

56,2x10⁻³g ÷ 82,0 g/mole = 6,85x10⁻⁴ moles

c) The appropriate formula to calculate is Henderson-Hasselbalch:

pH= pka + log₁₀ [tex]\frac{[A^-]}{[HA]}[/tex]

d) pH= 4,75 + log₁₀ [tex]\frac{[6,85x10_{-4}]}{[5,3176x10_{-4}]}[/tex]

pH = 4,86

3 < pH < 7→ Acidic solution but slighty

I hope it helps!

The weight of the body in the air is .... the weight of the submerged body
a) equal
b) more than
c) lower than
d) Not related

Answers

Answer:

the correct answer is option 'b': More than

Explanation:

The 2 situations are represented in the attached figures below

When an object is placed in air it is acted upon by force of gravity of earth which is measured as weight of the object.

While as when any object is submerged partially or completely in any fluid the fluid exerts a force in upward direction and this force is known as force of buoyancy and it's magnitude is given by Archimedes law as equal to the weight of the fluid that the body displaces, hence the effective force in the downward direction direction thus the apparent weight of the object in water decreases.

Various members of a class of compounds, alkenes, react with hydrogen to produce a corresponding alkane. Termed hydrogenation, this type of reaction is used to produce products such as margarine. A typical hydrogenation reaction is C10H20() + H2(g) → C10H22(5) Decene Decane How much decane can be produced in a reaction of excess decene with 2.45 g hydrogen? Give your answer in scientific notation. O *10 g decane

Answers

Answer: The mass of decane produced is [tex]1.743\times 10^2g[/tex]

Explanation:

To calculate the number of moles, we use the equation:  

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]       ......(1)

Mass of hydrogen gas = 2.45 g

Molar mass of hydrogen gas = 2 g/mol

Putting values in equation 1:, we get:

[tex]\text{Moles of }H_2=\frac{2.45g}{2g/mol}=1.225mol[/tex]

The chemical equation for the hydrogenation of decene follows:

[tex]C_{10}H_{20}(l)+H_2(g)\rightarrow C_{10}H_{22}(s)[/tex]

As, decene is present in excess. So, it is considered as an excess reagent.

Thus, hydrogen gas is a limiting reagent because it limits the formation of products.

By Stoichiometry of the reaction:

1 mole of hydrogen gas produces 1 mole of decane.

So, 1.225 moles of hydrogen gas will produce = [tex]\frac{1}{1}\times 1.225=1.225mol[/tex] of decane

Now, calculating the mass of decane by using equation 1, we get:

Moles of decane = 1.225 mol

Molar mass of decane = 142.30 g/mol

Putting values in equation 1, we get:

[tex]1.225mol=\frac{\text{Mass of decane}}{142.30g/mol}\\\\\text{Mass of carbon dioxide}=(1.225mol\times 142.30g/mol)=174.3g=1.743\times 10^2g[/tex]

Hence, the mass of decane produced is [tex]1.743\times 10^2g[/tex]

What is the pH of a solution containing 0.049 M of formic acid and 0.055 M of sodium formate?

Answers

Answer:

pH of solution is 3.80

Explanation:

Formic acid an weak acid and formate is conjugate base of formic acidHence solution containing formic acid and formate acts as a buffer.According to Henderson-Hasselbalch equation for a buffer consist of an weak acid (formic acid) and it's conjugate base (formate)-

[tex]pH=pK_{a}(formic acid)+log(\frac{C_{formate}}{C_{formic acid}})[/tex]

where, C stands for concentration

[tex]pK_{a}[/tex] of formic acid 3.75

So, [tex]pH=3.75+log(\frac{0.055}{0.049})=3.80[/tex]

Use the References to access important values if needed for this question. The radius of a potassium atom is 231 pm. How many potassium atoms would have to be laid side by side to span a distance of 2.91 mm? atoms Submit Answer Try Another Version 1 item attempt remaining

Answers

Answer:

6298702 potassium atoms would have to be laid side by side to span a distance of 2,91 mm

Explanation:

If the radius of a potassium atom is 231 pm, then the diameter would be:

d = 2r = 2*(231) = 462 pm

So each potassium atom occupies a space of 462 pm, we can express this relationship as follows:

[tex]\frac{1 potassium atom}{462 pm}[/tex]

To solve this problem, we'll use the following conversion factors:

1 pm = 1×E−12 m

1000 mm = 1 m

We begin to accommodate all our relationships starting from that numerical expression that is not written as a relationship (usually the one in the question), and in such a way that the units are eliminated between them.

[tex]2, 91 mm * \frac{1 m}{1000 mm}*\frac{ 1 pm}{1*10^{-12}m }*\frac{1 potassium atom}{462 pm}= 6298701.3[/tex] potassium atoms

So, we'll need 6298702 potassium atoms to span a distance of 2,91 mm

Other Questions
79 plus what equals 90 Mei and Anju are sitting next to each other on different horses on a carousel. Mei's horse is 3 meters from the center of thecarousel. Anju's horse is 2 meters from the center. After one rotation of the carousel, how many more meters has Meitraveled than Anju? Bowyer Driving Schools 2014 balance sheet showed net fixed assets of $3 million, and the 2015 balance sheet showed net fixed assets of $3.7 million. The companys 2015 income statement showed a depreciation expense of $200,000. What was net capital spending for 2015? (Do not round intermediate calculations. Enter your answer in dollars, not millions of dollars, e.g., 1,234,567.) PLEASE HELP!!! -x/4 - 2 = x + 1 The following information relates to Carried Away Hot Air Balloons, Inc.:Advertising Costs $16,800Sales Salary 15,200Sales Revenue 570,000President's Salary 51,000Office Rent 55,000Manufacturing Equipment Depreciation 1,500Indirect Materials Used 5,700Indirect Labor 10,300Factory Repair and Maintenance 860Direct Materials Used 23,710Direct Labor 34,600Delivery Vehicle Depreciation 930Administrative Salaries 22,400How much was Carried Away's manufacturing overhead? Antiport carrier proteins a. Allow 2 molecules to be transported in the same direction at the same time b. Allow 2 molecules to be transported in opposite direction at the same time c. Allow 1 molecules to be transported d. Allow 6 molecules to be transported in opposite directions at the same time Find the next three terms of each sequence 60,52,44 Nosotros somos muy aficionados a (fond of) la msica y siempre (1) hablamos sobre ella. El problema es que no nos gusta el mismo tipo de msica y (2) discutimos todo el tiempo. Wilma dissolves 10,00 grams of glucose with water and the final volume of solute and solvent is 66.67 mL. What is the concentration of glucose in her solution? a. 10% (m/v) O b.15.% (mv) O c.25 % (m/v) d. 30.% (m/v) e. None of the above. How do human activities have damaged the greenhouse effect? Indicate whether each of the following would be added to or deducted from net income in determining cash flow from operating activities by the indirect method:a) Increase in prepaid expensesb) Amortization of intangible assetsc) Increase in salaries payabled) Gain on sale of fixed assetse) Decrease in accounts receivablef) Decrease in merchandise inventoryg) Depreciation of fixed assetsh) Decrease in accounts The graph of an equation is shown below:Based on the graph, which of the following represents a solution to the equation?A) (2,3)B) (3, 1)C) (1, 3)D) (3, 2) A baseball leaves the bat with a speed of 40 m/s at an angle of 35 degrees. A 12m tall fence is placed 130 m from the point the ball was struck. Assuming the batter hit the ball 1m above ground level, does the ball go over the fence? If not, how does the ball hit the fence? If yes, how far beyond the fence does the ball land? We wanted to raise money, our class needed a new computer. Is this a run on sentence or a compound sentence Look at the table.Migrations of Homo sapiens200,000 years agoappear in Africa40,000 years agoarrive in Europe20,00060,000 years ago ?15,000 years ago?Beginning with the earlier development, which events will replace the question marks in the table?A.arrive in Asia; arrive in Australia and Pacific islandsB.arrive in Asia; arrive in the AmericasC.arrive in Australia and Pacific islands; arrive in the AmericasD.arrive in Australia and Pacific islands; arrive in AsiaPLS I NEED THIS NOW An individual who meets the threshold criteria for the risk factor of prediabetes should be considered to have a metabolic disease.a. Trueb. False A ________ is a document manufacturing production personnel use to request that the itemized materials be sent from the storeroom into the factory. A. cost ticket B. materials requisition C. manufacturing ticket D. job cost record During pyrosequencing, how are the nucleotides that bind to template DNA identified?a. pyrophosphate is converted to ADP that binds to the nucleotides to be attached to the template DNAb. apyrase uses ATP to generate lightc. ATP is broken down by sulfurylase so that luciferin generates lightd. pyrophosphate is converted to luciferine. pyrophosphate is converted to ATP so that luciferase is activated. People hoping to travel to other worlds are faced with huge challenges. One of the biggest is the time required for a journey. The nearest star is 4.11016m away. Suppose you had a spacecraft that could accelerate at 1.3 g for half a year, then continue at a constant speed. (This is far beyond what can be achieved with any known technology.) Part A How long would it take you to reach the nearest star to earth? Please help me with this question Will mark brainliest Thanks so much