a steam coil is immersed in a stirred heating tank. Saturated steam at 7.50 bar condenses within the coil , and the condensate emerges at at its saturation temperature. A solvent with a heat capacity of 2.30 kJ is fed to the tank at a steady rate of 12.0 kg/min and a temperature of 25°C, and the heated solvent is discharged at the same flow rate. The tank is initially filled with 760 kg of solvent at 25°C, at which point the flows of both steam and solvent are commenced. The rate at which heat is transferred from the steam coil to the solvent is given by the expression where UA (the product of a heat transfer coefficient and the area through which the heat is transferred) equals 11.5 kJ/min·°C. The tank is well stirred, so that the temperature of the contents is spatially uniform and equals the outlet temperature.


Write a differential energy balance on the tank contents.

Answers

Answer 1

Answer:

d/dt[mCp(Ts-Ti)] =  FCp(Ts-Ti) -  FoCp(Ts-Ti) + uA(Ts-Ti)

Explanation:

Differential balance equation on the tank is given as;

Accumulation = energy of inlet steam - energy of outlet steam+                                 heat transfer from the steamwhere;

Accumulation = d/dt[mcp(Ts-Ti)]

Energy of inlet steam = FCp(Ts-Ti)

Energy of outlet steam =  FoCp(Ts-Ti)

Heat transfer from the steam = uA(Ts-Ti)

Substituting into the formula, we have;

Accumulation = energy of inlet steam - energy of outlet steam+                                 heat transfer from the steamd/dt[mCp(Ts-Ti)] =  FCp(Ts-Ti) -  FoCp(Ts-Ti) + uA(Ts-Ti)
Answer 2

The differential energy balance is [tex]\(\frac{dT}{dt} = \frac{11.5 T_s + 690 - 39.1 T}{1748}\).[/tex]

To write a differential energy balance on the tank contents, we need to consider the energy entering and leaving the system. The system in question is the well-stirred heating tank. Here are the steps to formulate the energy balance:

1. Define the system and parameters:

  - The solvent enters the tank at a flow rate of 12.0 kg/min and at a temperature of 25°C.

  - The solvent has a heat capacity  [tex]\( C_p = 2.30 \text{ kJ/kg°C} \).[/tex]

  - The tank is initially filled with 760 kg of solvent at 25°C.

  - Heat transfer rate from the steam coil to the solvent is given by

[tex]\( UA(T_s - T) \)[/tex]  where  [tex]\( UA = 11.5 \text{ kJ/min·°C} \), \( T_s \)[/tex]   is the steam temperature, and ( T ) is the solvent temperature.

  - The tank is well-stirred, ensuring uniform temperature throughout, and the outlet temperature equals the tank temperature.

2. Energy balance:

  The energy balance for a well-stirred tank in differential form is given by:

[tex]\[ \frac{d(U)}{dt} = \dot{Q}_{\text{in}} + \dot{m} C_p T_{\text{in}} - \dot{m} C_p T_{\text{out}} \][/tex]

  Where:

  - ( U ) is the internal energy of the tank contents.

[tex]- \( \dot{Q}_{\text{in}} \)[/tex]  is the heat transfer rate from the steam coil.

[tex]- \( \dot{m} \)[/tex]  is the mass flow rate of the solvent.

[tex]- \( T_{\text{in}} \)[/tex] is the inlet temperature of the solvent.

[tex]- \( T_{\text{out}} \)[/tex] of the solvent (equal to tank temperature ( T ).

  Since  [tex]\( \dot{m}_{\text{in}} = \dot{m}_{\text{out}} = \dot{m} \) and \( T_{\text{out}} = T \):[/tex]

 [tex]\[ \frac{d(U)}{dt} = UA(T_s - T) + \dot{m} C_p (T_{\text{in}} - T) \][/tex]

3. Internal energy change:

  The internal energy change of the tank contents can be expressed as:

  [tex]\[ \frac{d(U)}{dt} = m C_p \frac{dT}{dt} \][/tex]

  Where ( m ) is the mass of the solvent in the tank (760 kg) and ( T ) is the solvent temperature in the tank.

4. Combine the equations:

  Substituting  [tex]\( \frac{d(U)}{dt} = m C_p \frac{dT}{dt} \)[/tex] into the energy balance:

[tex]\[ m C_p \frac{dT}{dt} = UA(T_s - T) + \dot{m} C_p (T_{\text{in}} - T) \][/tex]

5. Simplify the equation:

  Substitute the given values:

[tex]- \( m = 760 \text{ kg} \)\\ - \( C_p = 2.30 \text{ kJ/kg°C} \)\\ - \( \dot{m} = 12.0 \text{ kg/min} \) - \( UA = 11.5 \text{ kJ/min·°C} \)\\ - \( T_{\text{in}} = 25 \text{ °C} \)[/tex]

[tex]\[ 760 \cdot 2.30 \frac{dT}{dt} = 11.5 (T_s - T) + 12.0 \cdot 2.30 (25 - T) \][/tex]

  Simplify to:

  [tex]\frac{dT}{dt} = 11.5 (T_s - T) + 27.6 (25 - T) \]\[ 1748[/tex]

  Further simplify:

[tex]\[ 1748 \frac{dT}{dt} = 11.5 T_s - 11.5 T + 690 - 27.6 T \][/tex]

  Combine like terms:

 [tex]\[ 1748 \frac{dT}{dt} = 11.5 T_s + 690 - 39.1 T \][/tex]

  Finally:

[tex]\[ \frac{dT}{dt} = \frac{11.5 T_s + 690 - 39.1 T}{1748} \][/tex]

This is the differential energy balance equation for the tank contents.


Related Questions

A 2-kg sphere A strikes the frictionless inclined surface of a 6-kg wedge B at a 90 degree angle with a velocity of magnitude 4 m/s. The wedge can roll freely on the ground and is initially at rest. Knowing that the coefficient of restitution between the wedge and the sphere is 0.5 and that the inclined surface of the wedge forms an angle θ=40 degrees with the horizontal, determine the velocities of the sphere and the wedge immediately after impact.

Answers

Answer:

Final velocities are:

Wedge B: v = 2.334 m/s

Sphere A: v = 5.386 m/s

Explanation:

Given:-

- The mass of sphere A,  mA = 2-kg

- The mass of the wedge B,  mB = 6-kg

- The sphere collides with " normal " to the wedge face.

- The coefficient of restitution , e = 0.5

- The wedge inclination angle, θ=40 degrees with the horizontal.

- The initial speed of sphere A, vA = 4m/s

- The initial speed of wedge B, vB = 0 m/s ... ( rest )

Find:-

- First step would be to sketch a system of sphere A and wedge B as ( FBD ).

- We will add a sketch of "two" coordinate axes on the ( FBD ).

   First coordinate system ( normal ( n ) - tangent ( t ) )

Normal axis at 90 degrees directed towards the wedge in direction of sphere motion - denote as ( n ).Tangent axis along ( parallel ) to the wedge surface directed up the wedge - denote as ( t )

    Second coordinate system ( horizontal ( x ) - vertical ( y ) )

Horizontal axis parallel to ground directed towards the right in assumed direction of wedge motion after impact - denote as ( x ).Vertical axis normal to the ground directed upwards -denote ( y ).

Note:- All the above directions of coordinate axes denote the positive direction of vectors.

- Resolve the angle ( α ) between the normal - ( n ) or velocity vector vA and the horizontal - ( x ) axis.

                               

                            α = 90° - θ = 90° - 40°

                            α = 50°  

- We will denote the final velocity components of sphere A as ( v'An , v'At ):

And, final velocity components of wedge B as ( v'B ).

- Transform the the final velocity of wedge ( vB' ) in the (n-t) coordinate axis using the resolved coordinate transformation angle ( α ). The normal  ( n ) and tangential components of the velocity vector ( vB' ) are: ( vB'n , vB't ).

                     vB'n = vB'*cos ( α )             vB't = vB'*sin ( α° )

                    vB'n = vB'*cos ( 50° )         vB't = vB'*sin ( 50° )

- Note: There is no y-component of velocity of wedge. This is because the motion of wedge in the vertical direction is restricted by the ground - equilibrium conditions. Hence, v'By = 0.

- Consider the system of sphere A and wedge B to be isolated with no external forces acting on the system. For such conditions the principle of conservation of momentum ( P ) is valid. Which states:

                        PA,i + PBi = PA,f + PB,f

Where,

           PA,i : The initial momentum of the sphere A

           PB,i : The initial momentum of wedge B

           PA,f : The final momentum of the sphere A

           PB,f : The final momentum of wedge B.

- Using the data given and relations computed in the ( n-t ) coordinate system. We will use the principle of conservation of linear momentum in both axis ( n and t ) combined in vector momentum of system.

Conservation of linear momentum:

                       

                      [tex]m_A*v_A + m_B*v_B = m_A*v_A' + m_B*v_B'[/tex]

- Using vector notations we have, Taking ( i unit vector in tangential direction and j unit vector in the normal direction ):

                       [tex]m_A*v_A_n j = m_A*( v_A'_t i + v_A'_n j )+ m_B* ( v_B'_n j + v_B'_t i )\\\\2*4 j = 2*( v_A'_t i + v_A'_n j )+ 6* ( v_B'_n j + v_B'_t i )\\\\0 i + 8 j = ( 2*v_A'_t + 6*v_B'*sin ( 50 ) ) i + ( 2*v_A'_n + 6*v_B'* cos (50 ) ) j[/tex]

- Equate all the ( i - j ) vectors on left and right hand side of the equation respectively,

               [tex]0 = 2*v_A'_t + 6*v_B'*sin ( 50 )\\\\\\ 8 = 2*v_A'_n + 6*v_B'* cos(50 )[/tex]         .... Eq 1

       

- The coefficient of restitution ( e ) is a squared loss of kinetic energy of the system that can be expressed in terms of velocities of two objects as relative change in velocity of two objects after and before impact.:

                             [tex]e = \frac{v_B'_n - v_A'_n}{v_A_n - v_B_n}[/tex]

Note: We have only used the velocities normal to the surface of wedge. This is because the kinetic loss is a scalar dimension; hence, the normal direction to the surface of impact is assumed to cater all the loss in kinetic energy.

We have,

                            [tex]0.5 = \frac{v_B'*cos ( 50 ) - v_A'_n}{ 4 - 0}\\\\2 = v_B'*cos ( 50 ) - v_A'_n \\\\v_B'*cos ( 50 ) = v_A'_n + 2[/tex]       ..... Eq 2

- Now substitute equation 2 into equation 1:

                             [tex]8 = 2*v_A'_n + 6*( v_A'_n + 2 )\\\\-4 = 8*v_A'_n\\\\v_A'_n = -0.5 \frac{m}{s}[/tex]

- Using Equation 2 compute v'B:

                 

                             [tex]v_B'*cos ( 50 ) = -0.5 + 2\\\\v_B'= \frac{1.5}{cos ( 50 ) } \\\\v_B'= 2.334 \frac{m}{s}[/tex]

- Using Equation 1 compute v'At:

                             [tex]0 = 2*v_A'_t + 6*2.334*sin ( 50 )\\\\v_A'_t = - \frac{6*2.334*sin ( 50 )}{2} \\\\v_A'_t = - 5.363 \frac{m}{s}[/tex]

- The final velocity of wedge B along the horizontal direction ( x ) is:

                          vB' = 2.334 m/s   .... x-direction

- The velocity of sphere A after impact is given by:

                             

                          [tex]v_A' = \sqrt{v_A't^2 + v_A'n^2}\\\\v_A' = \sqrt{5.363^2 + 0.5^2}\\\\v_A' = \sqrt{29.011769}\\\\v_A' = 5.386 \frac{m}{s}[/tex]

                         

                             

                   

                   

                           

     

An air-standard cycle with constant specific heats at room temperature is executed in a closed system with 0.003 kg of air and consists of the following three processes:

1–2 v = Constant heat addition from 95 kPa and 17°C to 380 kPa
2–3 Isentropic expansion to 95 kPa
3–1 P = Constant heat rejection to initial state

The properties of air at room temperature are cp = 1.005 kJ/kg·K, cv = 0.718 kJ/kg·K, and k = 1.4

a) Show cycle on P-v and T-s diagrams
b) Calculate net work per cycle in kJ
c) Determine thermal efficiency

Answers

Answer:

A) I attached the diagrams

B)W_net = 0.5434 KJ

C) η_th = 0.262

Explanation:

A) I've attached the P-v and T-s diagrams

B) The temperature at state 2 can be calculated from ideal gas equation at constant specific volume;

So; P2/P1 = T2/T1

Thus, T2 = P2•T1/P1

We are given that;

P2 = 380 KPa

P1 = 95 KPa

T1 = 17 °C = 17 + 273K = 290K

Thus,

T2 = (380 x 290)/95

T2 = 1160 K

While the temperature at state 3 will be gotten from;

T3 = T2 x (P3/P2)^((γ - 1)/γ)

Where γ = cp/cv = 1.005/0.718 = 1.4

Thus;

T3 = 1160 (95/380)^((1.4 - 1)/1.4)

T3 = 780.6 K

Now, net work done is given by the formula;

W_net = Q_in - Q_out

W_net = Q_1-2 - Q_3-1

W_net = m(u2 - u1) - m(h3 - h1)

W_net = m(u2 - u1 - h3 + h1)

From the first table i attached,

At T1 = 290K, u1 = 206.91 KJ/Kg and h1 = 290.16 KJ/Kg

At T2 = 1160K,u2 = 897.91 KJ/Kg

At T3 = 780K, h3 = 800.03 KJ/Kg

We are also given that m = 0.003 kg

Thus;

W_net = 0.003(897.91 - 206.91 - 800.03 + 290.16)

W_net = 0.5434 KJ

C) The thermal efficiency is given by the formula ;

η_th = W_net/Q_in

η_th = 0.5434/(m(u2 - u1))

η_th = 0.5434/(0.003(897.91 - 206.91))

η_th = 0.262

Problem 1: Energy from Flow. Before the advent of the steam-powered engine, most mechanical processes were driven by extracting power from a nearby river using a water wheel. A miller wants to construct a water wheel to grind grain into an hour. He needs a total power output of 0.5 kW to meet the demand of his mill. If a nearby waterfall will flow at a rate of 400 liters/minute onto the top of the wheel, what is the required diameter of the water wheel to achieve the desired power output?

Answers

Answer:

Diameter will be 27394.76 m

Explanation:

Power P = 0.5 kW = 500 W

Time t required for grinding = 1 hr = 3600 sec

Energy required E = P x t

E = 500 x 3600 = 1800000 J

Flow rate of water Q = 400 ltr/min

We convert to m3/sec

400 ltr/min = 400/(1000 x 60) m3/ses

Q = 0.0067 m3/sec

Energy provided by flow will be

E = pgQd

Where p = density of water = 1000 kg/m3

g = acceleration due to gravity 9.81 m/s2

d = diameter of wheel.

Equating both energy, we have,

1800000 = 1000 x 9.81 x 0.0067 x d

1800000 = 65.73d

d = 1800000/65.73

d = 27394.76 m

The diffusion of a molecule in a tissue is studied by measuring the uptake of labeled protein into the tissue of thickness L =8 um. Initially, there is no labeled protein in the tissue. At t=0, the tissue is placed in a solution with a molecular concentration of C1=9.4 uM, so the surface concentration at x=0 is maintained at C1. Assume the tissue can be treated as a semi-infinite medium. Surface area of the tissue is A = 4.2 cm2. Calculate the flux into the tissue at x=0 and t=5 s.Please give your answer with a unit of umol/cm2 s. Assuming the diffusion coefficient is known of D=1*10-9 cm2/s

Answers

Answer:

The flux into the tissue at x=0 and t=5 s is 0.4476 uM/cm²s

Explanation:

Flux = [tex]\frac{Quantity}{Area * Time}[/tex]

given:

Area = 4.2 cm²

Time = 5 sec

Quantity ( concentration) = 9.4 uM

∴ Flux = Quantity / (Area × Time)

Flux = 9.4 uM / (4.2 cm² × 5 s)

Flux = 9.4 uM / 21 cm²s

Flux = 0.4476 uM/cm²s

5.3-16 A professor recently received an unexpected $10 (a futile bribe attached to a test). Being the savvy investor that she is, the professor decides to invest the $10 into a savings account that earns 0.5% interest compounded monthly (6.17% APY). Furthermore, she decides to supplement this initial investment with an additional $5 deposit made every month, beginning the month immediately following her initial investment.
(a) Model the professor's savings account as a constant coefficient linear difference equation. Designate yln] as the account balance at month n, where n corresponds to the first month that interest is awarded (and that her $5 deposits begin).
(b) Determine a closed-form solution for y[n] That is, you should express yIn] as a function only of n.
(c) If we consider the professor's bank account as a system, what is the system impulse response h[n]? What is the system transfer function Hz]?
(d) Explain this fact: if the input to the professor's bank account is the everlasting exponential xn] 1 is not y[n] I"H[I]-HII]. 1, then the output

Answers

Answer:

a) y (n + 1) = 1.005 y(n) + 5U n

y (n + 1) - 1.005 y(n) = 5U (n)

b) Z^-1(Z(y0)=y(n) = [1010(1.005)^n - 1000(1)^n] U(n)

c) h(n) = (1.005)^n U(n - 1) + 10(1.005)^n U(n)

Explanation:

Her bank account can be modeled as:

y (n + 1) = y (n) + 0.5% y(n) + $5

y (n + 1) = 1.005 y(n) + 5U n

Given that y (0) = $10

y (n + 1) - 1.005 y(n) = 5U (n)

Apply Z transform on both sides

= ZY ((Z) - Z(y0) - 1.005) Z = 5 U (Z)

U(Z) = Z {U(n)} = Z/ Z - 1

Y(Z) [Z- 1.005] = Z y(0) + 5Z/ Z - 1

= 10Z/ Z - 1.005 + 5Z/(Z - 1) (Z - 1.005)

Y(Z) = 10Z/ Z - 1.005 + 1000Z/ Z - 1.005 + 1000Z/ Z - 1

= 1010Z/Z- 1.005 - 1000Z/Z-1

Apply inverse Z transform

Z^-1(Z(y0)) = y(n) = [1010(1.005)^n - 1000(1)^n] U(n)

Impulse response in output when input f(n) = S(n)

That is,

y(n + 1)= 1. 005y (n) + 8n

y(n + 1) - 1.005y (n) = 8n

Apply Z transform

ZY (Z) - Z(y0) - 1.005y(Z) = 1

HZ (Z - 1.005) = 1 + 10Z [Therefore y(Z) = H(Z)]

H(Z) = 1/ Z - 1.005 + 10Z/Z - 1. 005

Apply inverse laplace transform

= h(n) = (1.005)^n U(n - 1) + 10(1.005)^n U(n)

The spacing of rafters in a roof is 48-in o.c. Roof dead load = 5 psf. Snow load=30 psf. Roof sheathing is to be a sheathing grade of plywood, and panels are oriented in the strong direction. Deflection limits are L/240 for snow load and L/180 for total load. Find: The minimum span rating, thickness, and edge support requirements for the roof sheathing using ASD procedures.

Answers

Answer:

Explanation:

Step by step solution is found in the attachment.

Consider a drainage basin having 60% soil group A and 40% soil group B. Five years ago the land use pattern in the basin was ½ wooded area with poor cover and ½ cultivated land (row crops/contoured and terraces) with good conservation treatment. Now the land use has been changed to 1/3 wooded area with poor cover, 1/3 cultivated land (row crops/contoured and terraces) with good conservation treatment, and 1/3 commercial and business area.

(a) Estimate the increased runoff volume during the dormant season due to the land use change over the past 5-year period for a storm of 35 cm total depth under the dry antecedent moisture condition (AMC I). This storm depth corresponds to a duration of 6-hr and 100-year return period. The total 5-day antecedent rainfall amount is 30 mm. (Note: 1 in = 25.4 mm.)
(b) Under the present watershed land use pattern, find the effective rainfall hyetograph (in cm/hr) for the following storm event using SCS method under the dry antecedent moisture condition (AMC I).

Answers

Answer:

Please see the attached file for the complete answer.

Explanation:

For the first option your program should then ask the user for which row and column in the array to replace, and what value will it be replaced with. For the second option your program should run through all values held in the 2D array and calculate their summation. For the third option your program should print out the contents of the 2D array one row at a time. When given the fourth option your program should simply exit.

Answers

Answer:

#Data section

.data

#Set align

.align 2

#Declare row 1

M1: .word 1, 2, 3

#Declare row 2 elements

M2: .word 4, 5, 6

#Declare row 3 elements

M3: .word 7, 8, 9

#Declare row 4 elements

M4: .word 10, 11, 12

#Declare row 5 elements

M5: .word 13, 14, 15

#Create 5x3 array

M: .word M1, M2, M3, M4, M5

#Set number of rows

nRows: .word 5

#Set number of columns

nCols: .word 3

#Declare string menu

menu: .asciiz "\n The following are the choices:\n"

#Declare string for option 1

op1: .asciiz "1. Replace a value:\n"

#Define string for option 2

op2: .asciiz "2. Calculate the sum of all values\n"

#Define string for option 3

op3: .asciiz "3. Print out the 2D array \n"

#Define string for option 4

op4: .asciiz "4. Exit\n"

#Define string for prompt

urOpt: .asciiz "Enter your option:"

#Define string for row

prompt1: .asciiz "Enter row (1-5):"

#Define string for column input

prompt2: .asciiz "Enter column (1-3):"

#Define string to get the replace value

getVal: .asciiz "Enter the new value:"

#Define strinct to display sum

sumStr: .asciiz "\nThe sum is :"

#Define string

dispStr: .asciiz "The 2D array is:\n"

#Define string to print new line

newLine: .asciiz "\n"

#Define string to put comma

comma: .asciiz ","

#text section

.text

#Main

main:

#Block prints the 2D array

#label

print2DArray:

#Load integer to print string in $v0

li $v0, 4

#Load the address of string to display

la $a0, dispStr

#Display the string

syscall

#Load the base address of the row 1

la $s0, M1

#Load the nRows

lw $t0, nRows

#Initialize the counter for outer loop

li $t7, 0

#Outer loop begins

outLoop1:

#Check condition

beq $t7, $t0, displayMenu

#Load the integer to print string

li $v0, 4

#Load the base address of newLine

la $a0, newLine

#Display newLine

syscall

#Initialize counter for inner loop

li $t2, 0

#Set the limit

lw $t3, nCols

#Decrement value

addi $t3, $t3, -1

#inner loop starts

inLoop1:

#Check condition

beq $t2, $t3, exitInLoop1

#Load the integer to print number

li $v0, 1

#Load the value

lw $a0, ($s0)

#Display the integer

syscall

#Load the integer to print string

li $v0, 4

#Load the base address of the string comma to display

la $a0, comma

#Display comma

syscall

#Increment inner loop counter value

addi $t2, $t2, 1

#Move to next element

addi $s0, $s0, 4

#jump to inner loop

j inLoop1

#Exit from inner loop

exitInLoop1:

#Load integer to print last column value

li $v0, 1

#Load the load column value

lw $a0, ($s0)

#Print value

syscall

#Move to next element

addi $s0, $s0, 4

#Increment outer loop counter

addi $t7, $t7, 1

#Jump to start of the outer loop

j outLoop1

#Prints the menus to the user

displayMenu:

#Load integer value to print string

li $v0, 4

#Load the address of the string "menu"

la $a0, menu

#Print the string

syscall

#Load the integer value to print string

li $v0, 4

#Load the address

la $a0, op1

#Print the string

syscall

#Load the integer value to print string

li $v0, 4

#Load the address

la $a0, op2

#Print string

syscall

#Load integer value to print string

li $v0, 4

#Load address of op3

la $a0, op3

#Print string

syscall

#Load integer value to print string

li $v0, 4

#Load the address

la $a0, op4

#Print string

syscall

#Load integer value to print sting

li $v0, 4

#Load address

la $a0, urOpt

#Print string

syscall

#Load the integer to read int value

li $v0, 5

#Read value

syscall

#Move value

move $t0, $v0

#Initialize values

li $t1, 1

li $t2, 2

li $t3, 3

li $t4, 4

#Check user wishes option 1

beq $t0, $t1, replaceBlock

#Check user wishes option 2

beq $t0, $t2, sumBlock

#Check user wishes option 3

beq $t0, $t3, print2DArray

#Check user wishes to exit

beq $t0, $t4, EndProgram

#Jump to start of the menu

j displayMenu

#Block to replace a value in the 2d array

replaceBlock:

#Load integer

li $v0, 4

#load address

la $a0, prompt1

#Print string

syscall

#Read row value

li $v0, 5

syscall

#Store the row value in $t6

move $t6, $v0

#Get the index

addi $t6, $t6, -1

#Load integer

li $v0, 4

#Load address

la $a0, prompt2

#Print string

syscall

#Read column value

li $v0, 5

syscall

#Store the column value in $t7

move $t7, $v0

#Get the index for the column

addi $t7, $t7, -1

#Load integer

li $v0, 4

#Load address

la $a0, getVal

#Print string

syscall

#Read the new value

li $v0, 5

syscall

#Store the new value in $t5

move $t5, $v0

#Load the base address of M

la $s0, M

#Get M[i]

#two times left shift

sll $t1, $t6, 2

#address of pointer M[i]

add $t1, $t1, $s0

#Get address of M[i]

lw $t3, ($t1)

#Get M[i][j]

#two times left shift

sll $t4, $t7, 2

#Get address of M[i][j]

add $t4, $t3, $t4

Explanation:

See continuation of the code attached

also, See output attached

A pump is used to deliver water from a lake to an elevated storage tank. The pipe network consists of 1,800 ft (equivalent length) of 8-in. pipe (Hazen-Williams roughness coefficient = 120). Ignore minor losses. The pump discharge rate is 600 gpm. The friction loss (ft) is most nearly Group of answer choicesA. 15
B. 33
C. 106
D. 135

Answers

Answer:

h_f = 15 ft, so option A is correct

Explanation:

The formula for head loss is given by;

h_f = [10.44•L•Q^(1.85)]/(C^(1.85))•D^(4.8655))

Where;

h_f is head loss due to friction in ft

L is length of pipe in ft

Q is flow rate of water in gpm

C is hazen Williams constant

D is diameter of pipe in inches

We are given;

L = 1,800 ft

Q = 600 gpm

C = 120

D = 8 inches

So, plugging in these values into the equation, we have;

h_f = [10.44*1800*600^(1.85)]/(120^(1.85))*8^(4.8655))

h_f = 14.896 ft.

So, h_f is approximately 15 ft

Consider a venture with a small hole drilled in the side of the throat. This hole is connected via a tube to a closed reservoir. The purpose of the venture is to create vacuum in the reservoir when the venture is placed in an airstream. (The vacuum is defined as the pressure difference below the outside ambient pressure.) The venture has a throat to inlet area ratio of 0.85. Calculate the maximum vacuum obtainable in the reservoir when the venturi is placed in an airstream of 90 m/s at standard sea level conditions.

Answers

Answer:

1913meter per second square.

Explanation:

From the Context the vacuum can be said be the presence of 5e difference below the outside ambient temperature.

For the Venturi.

Please go through the attached file for the rest of the solutions and the answer.

More discussion about seriesConnect(Ohm) function In your main(), first, construct the first circuit object, called ckt1, using the class defined above. Use a loop to call setOneResistance() function to populate several resistors. Repeat the process for another circuit called ckt2. Develop a member function called seriesConnect() such that ckt2 can be connected to ckt1 using instruction ckt1.seriesConnect(ckt2).

Answers

Answer:

resistor.h

//circuit class template

#ifndef TEST_H

#define TEST_H

#include<iostream>

#include<string>

#include<vector>

#include<cstdlib>

#include<ctime>

#include<cmath>

using namespace std;

//Node for a resistor

struct node {

  string name;

  double resistance;

  double voltage_across;

  double power_across;

};

//Create a class Ohms

class Ohms {

//Attributes of class

private:

  vector<node> resistors;

  double voltage;

  double current;

//Member functions

public:

  //Default constructor

  Ohms();

  //Parameterized constructor

  Ohms(double);

  //Mutator for volatage

  void setVoltage(double);

  //Set a resistance

  bool setOneResistance(string, double);

  //Accessor for voltage

  double getVoltage();

  //Accessor for current

  double getCurrent();

  //Accessor for a resistor

  vector<node> getNode();

  //Sum of resistance

  double sumResist();

  //Calculate current

  bool calcCurrent();

  //Calculate voltage across

  bool calcVoltageAcross();

  //Calculate power across

  bool calcPowerAcross();

  //Calculate total power

  double calcTotalPower();

  //Display total

  void displayTotal();

  //Series connect check

  bool seriesConnect(Ohms);

  //Series connect check

  bool seriesConnect(vector<Ohms>&);

  //Overload operator

  bool operator<(Ohms);

};

#endif // !TEST_H

resistor.cpp

//Implementation of resistor.h

#include "resistor.h"

//Default constructor,set voltage 0

Ohms::Ohms() {

  voltage = 0;

}

//Parameterized constructor, set voltage as passed voltage

Ohms::Ohms(double volt) {

  voltage = volt;

}

//Mutator for volatage,set voltage as passed voltage

void Ohms::setVoltage(double volt) {

  voltage = volt;

}

//Set a resistance

bool Ohms::setOneResistance(string name, double resistance) {

  if (resistance <= 0){

      return false;

  }

  node n;

  n.name = name;

  n.resistance = resistance;

  resistors.push_back(n);

  return true;

}

//Accessor for voltage

double Ohms::getVoltage() {

  return voltage;

}

//Accessor for current

double Ohms::getCurrent() {

  return current;

}

//Accessor for a resistor

vector<node> Ohms::getNode() {

  return resistors;

}

//Sum of resistance

double Ohms::sumResist() {

  double total = 0;

  for (int i = 0; i < resistors.size(); i++) {

      total += resistors[i].resistance;

  }

  return total;

}

//Calculate current

bool Ohms::calcCurrent() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  current = voltage / sumResist();

  return true;

}

//Calculate voltage across

bool Ohms::calcVoltageAcross() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  double voltAcross = 0;

  for (int i = 0; i < resistors.size(); i++) {

      voltAcross += resistors[i].voltage_across;

  }

  return true;

}

//Calculate power across

bool Ohms::calcPowerAcross() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  double powerAcross = 0;

  for (int i = 0; i < resistors.size(); i++) {

      powerAcross += resistors[i].power_across;

  }

  return true;

}

//Calculate total power

double Ohms::calcTotalPower() {

  calcCurrent();

  return voltage * current;

}

//Display total

void Ohms::displayTotal() {

  for (int i = 0; i < resistors.size(); i++) {

      cout << "ResistorName: " << resistors[i].name << ", Resistance: " << resistors[i].resistance

          << ", Voltage_Across: " << resistors[i].voltage_across << ", Power_Across: " << resistors[i].power_across << endl;

  }

}

//Series connect check

bool Ohms::seriesConnect(Ohms ohms) {

  if (ohms.getNode().size() == 0) {

      return false;

  }

  vector<node> temp = ohms.getNode();

  for (int i = 0; i < temp.size(); i++) {

      this->resistors.push_back(temp[i]);

  }

  return true;

}

//Series connect check

bool Ohms::seriesConnect(vector<Ohms>&ohms) {

  if (ohms.size() == 0) {

      return false;

  }

  for (int i = 0; i < ohms.size(); i++) {

      this->seriesConnect(ohms[i]);

  }

  return true;

}

//Overload operator

bool Ohms::operator<(Ohms ohms) {

  if (ohms.getNode().size() == 0) {

      return false;

  }

  if (this->sumResist() < ohms.sumResist()) {

      return true;

  }

  return false;

}

main.cpp

#include "resistor.h"

int main()

{

   //Set circuit voltage

  Ohms ckt1(100);

  //Loop to set resistors in circuit

  int i = 0;

  string name;

  double resistance;

  while (i < 3) {

      cout << "Enter resistor name: ";

      cin >> name;

      cout << "Enter resistance of circuit: ";

      cin >> resistance;

      //Set one resistance

      ckt1.setOneResistance(name, resistance);

      cin.ignore();

      i++;

  }

  //calculate totalpower and power consumption

  cout << "Total power consumption = " << ckt1.calcTotalPower() << endl;

  return 0;

}

Output

Enter resistor name: R1

Enter resistance of circuit: 2.5

Enter resistor name: R2

Enter resistance of circuit: 1.6

Enter resistor name: R3

Enter resistance of circuit: 1.2

Total power consumption = 1886.79

Explanation:

Note

Please add all member function details.Its difficult to figure out what each function meant to be.

Air is compressed from 100 kPa, 300 K to 1000 kPa in a two-stage compressor with intercooling between stages. The intercooler pressure is 300 kPa. The air is cooled back to 300 K in the intercooler before entering the second compressor stage. Each compressor stage is isentropic. Please calculate the total compressor work per unit of mass flow (kJ/kg). Repeat for a single stage of isentropic compression from the given inlet to the final pressure.

Answers

Answer:

The total compressor work is 234.8 kJ/kg for a isentropic compression

Explanation:

Please look at the solution in the attached Word file

Final answer:

The total compressor work per unit of mass flow in a two-stage compressor with intercooling can be calculated by summing the compressor work in each stage and the work done in the intercooler.

Explanation:

The total compressor work per unit of mass flow in a two-stage compressor with intercooling can be calculated by summing the compressor work in each stage and the work done in the intercooler.

In the first stage, the air is compressed from 100 kPa to 300 kPa. The work done in this stage can be calculated using the isentropic compression process. In the second stage, the air is further compressed from 300 kPa to 1000 kPa. The work done in this stage can also be calculated using the isentropic compression process.

To calculate the total compressor work per unit of mass flow, you need to sum the work done in each stage and the work done in the intercooler.

Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.5 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30°C and exits at 60°C. The ideal gas model with 1.005 kJ/kg · K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of the entering steam, in °C, and for the overall heat exchanger as the control volume, what is the rate of heat transfer, in kW.

Answers

Answer:

1.12kw is the heat transfer

Explanation:

Kinetic energy is the energy an object has because of its motion. If we want to accelerate an object, then we must apply a force.

Potential energy, stored energy that depends upon the relative position of various parts of a system.

See attachment for the step by step solution.

A preheater involves the use of condensing steam at 100o C on the inside of a bank of tubes to heat air that enters at I atm and 25o C. The air moves at 5 m/s in cross flow over the tubes. Each tube is 1 m long and has an outside diameter of 10 mm. The bank consists of 196 tubes in a square, aligned array for which ST = SL = 15 mm. What is the total rate of heat transfer to the air? What is the pressure drop associated with the airflow?

(b) Repeat the analysis of part (a), but assume that the tubes have a staggered arrangement with ST = 15 mm and SL = 10 mm.

Answers

Answer:

Please see the attached file for the complete answer.

Explanation:

a pressure vessel of 250-mm inner diameter and 6-mm wall thickness is fabricated from a 1.2-m section of spirally welded pipe AB and is equipped with two rigid end plates. the gage pressure inside the vessel is 2 MPa, and 45-kN centric axial forces P and P' are applied to the end plates. Determine a) the normal stress perpendicular to the weld b) the shearing stress parallel to the weld.

Answers

Final answer:

The calculation of normal and shearing stress on a welded pipe requires applying the principles of stress analysis involving internal pressure and axial forces. Specific formulas are used to determine hoop and longitudinal stresses in relation to the pipe's dimensions and applied loads.

Explanation:

The question pertains to the calculation of normal stress and shearing stress on a spirally welded pipe subject to internal pressure and axial forces. To find the normal stress perpendicular to the weld, one would consider the internal pressure exerted on the cross-section of the vessel and the area of the cross-section. The shearing stress parallel to the weld can be found by applying the principles of equilibrium and mechanics of materials, potentially involving the computation of forces along the spiral path of the weld.

To adequately address the question, we would need additional information, particularly regarding the location and orientation of the weld in relation to the applied forces. Without this, it is not possible to provide a detailed solution. However, such calculations would typically involve using the formulas for hoop stress ( extit{ extsigma_h = p  imes r / t}) and longitudinal stress ( extit{ extsigma_l = p  imes r / (2t)}), where p is the internal pressure, r is the radius, and t is the thickness of the pipe wall.

Five Kilograms of continuous boron fibers are introduced in a unidirectional orientation into of an 8kg aluminum matrix. Calculate:

a. the density of the composite.
b. the modulus of elasticity parallel to the fibers.
c. the modulus of elasticity perpendicular to the fibers.

Answers

Answer:

Explanation:

Given that,

Mass of boron fiber in unidirectional orientation

Mb = 5kg = 5000g

Mass of aluminum fiber in unidirectional orientation

Ma = 8kg = 8000g

A. Density of the composite

Applying rule of mixing

ρc = 1•ρ1 + 2•ρ2

Where

ρc = density of composite

1 = Volume fraction of Boron

ρ1 = density composite of Boron

2 = Volume fraction of Aluminum

ρ2 = density composite of Aluminum

ρ1 = 2.36 g/cm³ constant

ρ2 = 2.7 g/cm³ constant

To Calculate fractional volume of Boron

1 = Vb / ( Vb + Va)

Vb = Volume of boron

Va = Volume of aluminium

Also

To Calculate fraction volume of aluminum

2= Va / ( Vb + Va)

So, we need to get Va and Vb

From density formula

density = mass / Volume

ρ1 = Mb / Vb

Vb = Mb / ρ1

Vb = 5000 / 2.36

Vb = 2118.64 cm³

Also ρ2 = Ma / Va

Va = Ma / ρ2

Va = 8000 / 2.7

Va = 2962.96 cm³

So,

1 = Vb / ( Vb + Va)

1 = 2118.64 / ( 2118.64 + 2962.96)

1 = 0.417

Also,

2= Va / ( Vb + Va)

2 = 2962.96 / ( 2118.64 + 2962.96)

2 = 0.583

Then, we have all the data needed

ρc = 1•ρ1 + 2•ρ2

ρc = 0.417 × 2.36 + 0.583 × 2.7

ρc = 2.56 g/cm³

The density of the composite is 2.56g/cm³

B. Modulus of elasticity parallel to the fibers

Modulus of elasticity is defined at the ratio of shear stress to shear strain

The relation for modulus of elasticity is given as

Ec = = 1•Eb+ 2•Ea

Ea = Elasticity of aluminium

Eb = Elasticity of Boron

Ec = Modulus of elasticity parallel to the fiber

Where modulus of elastic of aluminum is

Ea = 69 × 10³ MPa

Modulus of elastic of boron is

Eb = 450 × 10³ Mpa

Then,

Ec = = 1•Eb+ 2•Ea

Ec = 0.417 × 450 × 10³ + 0.583 × 69 × 10³

Ec = 227.877 × 10³ MPa

Ec ≈ 228 × 10³ MPa

The Modulus of elasticity parallel to the fiber is 227.877 × 10³MPa

OR Ec = 227.877 GPa

Ec ≈ 228GPa

C. modulus of elasticity perpendicular to the fibers?

The relation of modulus of elasticity perpendicular to the fibers is

1 / Ec = 1 / Eb+ 2 / Ea

1 / Ec = 0.417 / 450 × 10³ + 0.583 / 69 × 10³

1 / Ec = 9.267 × 10^-7 + 8.449 ×10^-6

1 / Ec = 9.376 × 10^-6

Taking reciprocal

Ec = 106.66 × 10^3 Mpa

Ec ≈ 107 × 10^3 MPa

Note that the unit of Modulus has been in MPa,

A 35 ft simply supported beam is loaded with concentrated loads 15 ft in from each support. On one end, the dead load is 8.0 kips and the live load is 18.0 kips. At the other end, the dead load is 4.0 kips and the live load is 9.0 kips. Include the self-weight of the beam in the design. Lateral supports are provided at the supports and the load points. Determine the least-weight W-shape to carry the load. Use A992 steel and Cb

Answers

Answer:

From the load equation

F=stress*Area

Given stresses are 8 kips and 9 kips.

Hence the minimum weight supported=6.695 lbs.

Answer:

ASD = 306 kips-feet

LRSD = 1387.5 kips-feet

Explanation:

a step by step process to solving this problem.

ΣM at A = 0

where;

RB * 35 - (8+18)15 - (4+9)20 = 0

RB = 18.57k

also E y = 0;

RA + RB = 18 + 8 + 9 +4 = 20.43 k

taking the maximum moment at mid point;

Mc = RA * 35/2 - (8 +18) (35/2 -15)

Mc = 292.525

therefore, MD = RA * 15 = 20.43 * 15 = 306.45 kips-feet

MD = 306.45 kip-feet

ME = 279 kip-feet .IE 18.57 * 15

considering the unsupported  length; 35 - (15*2 = 5ft )

now we have that;

L b = L p = 5ft

where L p = 1.76 r y(√e/f y)

L p = 1.76 r y √29000/50

r y = 1.4 inch

so we have that M r = M p  for L b = L p where

M p = 2 F y ≤ 1.5 s x   F y

Recall from the expression,

RA + RB = (8+4) * 1.2 + (18+9) * 1.6 = 57.6

RA * 35 = 4 * 1.2 * 15 + 9 *1.6 * 15 + 8 * 1.2 * 20 + 18 * 1.6 * 20

RA = 30.17 k

the maximum moment at D = 30.17 * 15 = 452.55 kips-feet

Z required = MD / F y = 452.55 * 12 / 50 = 108.61 inch³

so we have S x = 452.55 * 12 / 1.5 * 50 = 72.4 inch³

also r = 1.41 in

Taking LRFD solution:

where the design strength ∅ M n = 0.9 * Z x * F y

given r = 2.97

Z x = 370 and S x = 81.5, we have

∅ M n = 0.9 * 370 * 50 = 16650 k-inch = 1387.5 kips-feet

this tells us it is safe.

ASD solution:

for L b = L p, and where M n = M p = F c r    S x

we already have value for S x as 81.5 so

F c r = Z x times F y divide by  S x

F c r = 370 * 50 / 81.5 = 227 kips per sq.in

considering the strength;

Strength = M n / Ωb = (0.6 * 81.5 * 50) * (1.5) / 12 = 306 kips-feet  

This justifies that it is safe because is less than 306

The fully corrected endurance strength for a steel rotating shaft is 42 kpsi, the ultimate tensile strength is 120 kpsi, the yield strength Sy=65 kpsi, and the fatigue stress correction factor Kf = 1.96. The maximum bending stress is 43 kpsi and the minimum stress is 0 kpsi. What is the factor of safety against first-cycle-yielding?

Answers

Answer:

The factor of safety is 1.186

Explanation:

Find the attachment

Water containing a solute is flowing through a 1cm diameter tube, which is 50 cm in length, at an average velocity of 1 cm/s. The temperature of water is 37 C. The walls of the tube are coated with an enzyme that makes the solute disappear instantly. The solute enters the tube at a concentration of 0.1 M and the solute has a MW of 300 g/mol. Estimate the fraction of the solute that leaves the tube. Assume that the viscosity and density of water at these conditions are 0.76 cP and 1g/cm^3, respectively.

Answers

Answer:

Explanation:

See the attachment for a step by step solution to the question.

Consider the adiabatic compressor from a refrigerator that uses refrigerant R-134a as the working fluid, flowing at 0.05 kg/s. The refrigerant enters the compressor as a saturated vapor at a pressure of 0.14 MPa. The pressure of the refrigerant at the exit of the compressor is 0.8 MPa. Please interpolate for this problem where needed.

a. If the compressor is isentropic, what is the exit temperature?
b. What is the minimum amount of power (work) that this compressor might theoretically use?
c. If the isentropic efficiency of the actual, non-ideal, compressor is 0.85, what is the actual amount of power (work) that this compressor requires?
d. What is the entropy generated by this device? Assume that the compressor is adiabatic.

Answers

Answer:

Please see the attached file for the complete answer.

Explanation:

Calculate the diffusion current density for the following carrier distributions. For electrons, use Dn = 35 cm2/s and for holes, use Dp = 10 cm2/s. a. ; Jn = ______________________________________________ b. , at x = 0: Jp (0) = __________________________________ c. , at x = 2.5 µm: Jp (2.5 µm) = _______________________________________ d. , at x = 20 µm: Jp (20 µm) = _______________________________________________ e. , at x = 5 µm: Jn (5 µm) = _______________________________________________ n (x) = (1010 cm−3 ) 5 μm − x 5 μm

Answers

Answer:

(a) Jn = 64.08 μA/m²

(b) Jp = 80.1 μA/m²

(c) Jp = 22.94 μA/m²

(d) Jp = 3.6357 пA/m²

(e) Jn = 22.63 μA/m²

Explanation:

See the attached file for the explanation.

A solid circular shaft has a uniform diameter of 5 cm and is 4 m long. At its midpoint 65 hp is delivered to the shaft by means of a belt passing over a pulley. This power is used to drive two machines, one at the left end of the shaft consuming 25 hp and one at the right end consuming the remaining 40 hp. Determine:

a) The maximum shearing stress in the shaft.
b) The relative angle of twist between the two extreme ends of the shaft. The shaft turns at 200 rpm and the material is steel for which G = 80 GPa.

Answers

Answer:

A) τ_max = 59.139 x 10^(6) Pa

B) θ = 0.0228 rad.

Explanation:

A) In the left half of the shaft we have 25 hp which corresponds to a torque T1 given by;

P = Tω

Where P is power and ω is angular speed.

Power = 25 HP = 25 x 746 W = 18650W

ω = 200 rev/min = 200 x 0.10472 rad/s = 20.944 rad/s

P = T1•ω

T1 = P/ω = 18650/20.944

T1 = 890.47 N.m

Similarly, in the right half we have 40 hp corresponding to a torque T2

given by;

P = T2•ω

T2 = P/ω

Where P = 40 x 760 = 30,400W

T2 = 30400/20.944 = 1451.49 N.m

The maximum shearing stress consequently occurs in the outer fibers in the right half and is given by;

τ_max = Tρ/J

Where J is polar moment of inertia and has the formula ;J = πd⁴/32

d = 5cm = 0.05m

J = π(0.05)⁴/32 = 6.136 x 10^(-7) m⁴

ρ = 0.05/2 = 0.025m

T will be T2 = 1451.49 N.m

Thus,

τ_max = Tρ/J

τ_max = 1451.49 x 0.025/6.136 x 10^(-7)

τ_max = 59139022.94 N/m² = 59.139 x 10^(6) Pa

B) The angles of twist of the left and right ends relative to the center are, respectively, using θ = TL/GJ

G = 80 Gpa = 80 x 10^(9) Pa

θ1 = (890.47 x 2)/(80 x 10^(9) x 6.136 x 10^(-7)) = 0.0363 rad

Similarly;

θ2 = (1451.49 x 2)/(80 x 10^(9) x 6.136 x 10^(-7)) = 0.0591 rad

Since θ1 and θ2 are in the same direction, the relative angle of twist between the two ends of the shaft is

θ = θ2 – θ1

θ = 0.0591 - 0.0363

θ = 0.0228 rad.

I have a signal that is experiencing 60 Hz line noise from a nearby piece of equipment, and I want to make sure that the noise is filtered out. I expect that there might be useful information at frequencies higher and lower than 60 Hz. Which would be the best type of filter for this purpose?

a. BandStop filter
b. Low-pass filter
c. Bandpass filter
d. High-pass filter

Answers

Answer:

a. BandStop filter

Explanation:

A band-stop filter or band-rejection filter is a filter that eliminates at its output all the signals that have a frequency between a lower cutoff frequency and a higher cutoff frequency. They can be implemented in various ways.  One of them is to implement a notch filter, which is characterized by rejecting a certain frequency that is interfering with a circuit. The transfer function of this filter is given by:

[tex]H(s)=\frac{s^2+\omega_o^2}{s^2+\omega_cs+\omega_o^2} \\\\Where:\\\\\omega_o=Central\hspace{3} rejected\hspace{3} frequency\\\omega_c=Width\hspace{3} of\hspace{3} the\hspace{3} rejected\hspace{3} band[/tex]

I attached you a graph in which you can see how the filter works.

16.44 Lab 13D: Student Scores with Files and Functions Overview Create a program that reads from multiple input files and calls a user-defined function. Objectives Gain familiarity with CSV files Perform calculations with data from CSV files Create a user-defined function Read from multiple files in the same program

Answers

Answer:

See Explaination

Explanation:

# copy the function you have this is just for my convenniece

def finalGrade(scoresList):

weights = [0.05, 0.05, 0.40, 0.50]

grade = 0

for i in range(len(scoresList)):

grade += float(scoresList[i]) * weights[i]

return grade

import csv

def main():

with open('something.csv', newline='') as csvfile:

spamreader = csv.reader(csvfile, delimiter=',', quotechar='|')

file = open('something.txt')

for row in spamreader:

student = file.readline().strip()

scores = row

print(student, finalGrade(scores))

if __name__ == "__main__":

main()

Number pattern Write a recursive method called print Pattern() to output the following number pattern. Given a positive integer as input (Ex: 12), subtract another positive integer (Ex: 3) continually until 0 or a negative value is reached, and then continually add the second integer until the first integer is again reached.

Answers

Answer:

See explaination

Explanation:

Code;

import java.util.Scanner;

public class NumberPattern {

public static int x, count;

public static void printNumPattern(int num1, int num2) {

if (num1 > 0 && x == 0) {

System.out.print(num1 + " ");

count++;

printNumPattern(num1 - num2, num2);

} else {

x = 1;

if (count >= 0) {

System.out.print(num1 + " ");

count--;

if (count < 0) {

System.exit(0);

}

printNumPattern(num1 + num2, num2);

}

}

}

public static void main(String[] args) {

Scanner scnr = new Scanner(System.in);

int num1;

int num2;

num1 = scnr.nextInt();

num2 = scnr.nextInt();

printNumPattern(num1, num2);

}

}

See attachment for sample output

A recursive method in Python to output the following number pattern:

def printPattern(n, m):

 # Base case: if n is 0 or negative, return

 if n <= 0:

   return

 # Print the current number

 print(n)

 # Recursively call the function with n subtracted by m

 printPattern(n - m, m)

 # Recursively call the function with n added by m

 printPattern(n + m, m)

# Example usage:

printPattern(12, 3)

Output:

12

9

12

15

12

...

The method works by recursively calling itself twice, once with n subtracted by m and once with n added by m. This process continues until n reaches 0 or a negative value. At that point, the base case is reached and the function returns.

The following is a breakdown of the recursive calls for the example input of 12 and 3:

printPattern(12, 3)

 printPattern(9, 3)

   printPattern(6, 3)

     printPattern(3, 3)

       printPattern(0, 3)

         # Base case reached, return

       printPattern(3, 3)

     printPattern(6, 3)

   printPattern(9, 3)

 printPattern(15, 3)

   printPattern(12, 3)

The output of the method is the sequence of numbers that are printed in the recursive calls.

For such more question on Python

https://brainly.com/question/29563545

#SPJ3

Consider a C.T. system in s-plane below. Draw DF1 (Direct Form 1) realization. (by hand) Perform system realization using MATLAB Simulink. (Use same parameters as [Q 11] for "Step Function" and "Delay Block".) Use the "step function", "delay", and "summer" to build the input, X(s). Use a "scope" as the output, Y(s). Include screen shot of the SIMULINK schematic model page, input scope trace, output scope trace in report.Discuss the results in your own words. s +5 H(S) = 52 + 11s + 10

Answers

Answer:

See the attached file for the answer.

Explanation:

See the attached file for the explanation

- Consider a 2024-T4 aluminum material with ultimate tensile strength of 70 ksi. In a given application, a component of this material is to experience ‘released tension’ stress cycling between minimum and maximum stress level of 0 and σmax ksi. As an engineer, you want to have 99.9% chance that the component does not fail before 1,000,000 cycles. What should be the value of σmax?

Answers

To have a 99.9% chance that the component does not fail before 1,000,000 cycles, the maximum stress level (σmax) should be set to 17.15 ksi or lower.

Given:

- Material: 2024-T4 aluminum

- Ultimate tensile strength: 70 ksi

- Minimum stress level: 0 ksi

- Desired reliability: 99.9% for 1,000,000 cycles

Step 1: Determine the endurance limit (σe) for the material.

For aluminum alloys, the endurance limit is typically taken as the stress level at which the S-N curve (stress vs. number of cycles to failure) becomes horizontal.

A common approximation for the endurance limit of aluminum alloys is:

σe ≈ 0.35 × Ultimate tensile strength

σe ≈ 0.35 × 70 ksi = 24.5 ksi

Step 2: Adjust the endurance limit for the desired reliability.

The endurance limit is typically determined for a reliability of 50%. To achieve a higher reliability, we need to apply a correction factor.

For a reliability of 99.9%, the correction factor is approximately 0.7.

Adjusted endurance limit = σe × 0.7 = 24.5 ksi × 0.7 = 17.15 ksi

Step 3: Determine the maximum stress level (σmax) based on the adjusted endurance limit.

For a fully reversed stress cycle (minimum stress = 0), the maximum stress level should not exceed the adjusted endurance limit.

σmax ≤ 17.15 ksi

Therefore, to have a 99.9% chance that the component does not fail before 1,000,000 cycles, the maximum stress level (σmax) should be set to 17.15 ksi or lower.

A relatively nonvolatile hydrocarbon oil contains 4.0 mol % propane and is being stripped by direct superheated steam in a stripping tray tower to reduce the propane content to 0.2%. The temperature is held constant at 422 K by internal heating in the tower at 2.026 × 105 Pa pressure. A total of 11.42 kg mol of direct steam is used for 300 kg mol of total entering liquid. The vapor–liquid equilibria can be represented by y = 25x, where y is mole fraction propane in the steam and x is mole fraction propane in the oil. Steam can be considered as an inert gas and will not condense. Plot the operating and equilibrium lines and determine the number of theoretical trays needed.

Answers

Answer:

Number of Trays = Six (6)

Explanation:

Given that: y' = 25x' , in terms of molecular ratio, we can write it as

[tex]\frac{Y'}{1 + Y'} =25 \frac{X'}{1 + X'}[/tex]  ......... 1

after plotting this we get equilibrium curve as shown in the attached picture.

inlet concentration and outlet concentration of liquid phase is

x₂ = 4% = 0.04 (inlet)

so that can be converted into molar

[tex]X_2 = \frac{x_2}{1-x_2} = \frac{0.04}{1-0.04} = 0.04167[/tex]

and

x₁ = 0.2% = 0.002

[tex]X_1 = \frac{x_1}{1-x_1} = \frac{0.002}{1-0.002} = 2.004*10^{-3}[/tex]

Now we have to use the balance equation a

[tex]\frac{G_s}{L_s} = \frac{X_2-X_1}{Y_2-Y_1}[/tex] .............. a

here amount of solute is comparably lower than

Here we have

L = 300 kmol (total)

[tex]L_s[/tex] = 300(1 - 0.04) = 288 kmol pure oil

G = [tex]G_s[/tex] = 11.42 kmol

[tex]Y_1[/tex] = 0 , solvent free steam

substitute into the equation a

[tex]\frac{11.42}{288} = \frac{0.04167 - 2*10^{-3}}{Y_2 - 0}[/tex]

Y₂ = 1.0003

Now plot the point A(X₁ , Y₁) and B(X₂ , Y₂) and join them to construct operating line AB.

Starting from point B, stretch horizontal line up to equilibrium curve and from there again go down to operating line as shown in the picture attached. This procedure give one count of tray and continue the same procedure up to end of operating.

at last count, the number of stage, gives 6.

Number of trays = 6

The number of theoretical trays needed is 20.

From the given data,

Equilibrium relation

y = 25x

[tex]L_s=L_2(1-x_2)\\L_s=300(1-0.04)= 288Kmol[/tex]

Applying total balance equation

[tex]G_sy_1+L_sx_2=G_sy_2+L_sx_1\\G_s(y_1-y_2)=L_s(x_1-x_2)\\x_1=\frac{0.002}{1-0.002}\\x_1=0.002\\y_1=0, y_2=?\\x_2=\frac{0.04}{1-0.04}; x_2=0.0417[/tex]

substituting the values into the equation;

[tex]11.42(0-y_2)=288(0.002-0.0417)\\0-11.42y_2=-11.4048\\y_2=0.998[/tex]

The numbers of trays

[tex]N=\frac{In[(\frac{(x_2-y_1)/m}{(x_1-y_1)/m}(1-A)+A }{In(1/A)}\\[/tex]

But [tex]A=\frac{L_s}{mGs}[/tex]

[tex]N=\frac{x_2-x_1}{(x_1-y_1)/m}=\frac{0.0417-0.002}{0.002}\\N=19.85[/tex]

The numbers of tray is approximately 20.

learn more about steam stripping and numbers of tray here

https://brainly.com/question/9349349

Consider a turbojet mounted on a stationary test stand at sea level. The inlet and exit areas are the same, both equal to 0.45 m^2. The velocity, pressure and temperature of the exhaust gas are 400 m/s, 1.0 ATM and 750K, respectively. Calculate the static thrust of the engine. (Note: Static thrust of a jet engine is the thrust produced when the engine has no forward motion.

Answers

Answer:

The static thrust of the engine is 20,856.44N

Explanation:

In this question, we are asked to calculate the static thrust of the turbojet.

Please check attachment for complete solution and step by step explanation

Consider an aluminum step shaft. The area of section AB and BC as well as CD are 0.1 inch2 , 0.15 inch 2 and 0.20 inch2. The length of section AB, BC and CD are 10 inch, 12 inch and 16 inch. A force F=1000 lbf is applied to B. The initial gap between D and rigid wall is 0.002. Using analytical approach, determine the wall reactions, the internal forces in members, and the displacement of B and C. Find the strain in AB, BC and CD.

Answers

Answer:

Explanation:

Find attach the solution

Other Questions
Suppose that the production function is qequalsUpper L Superscript 0.50Upper K Superscript 0.50. What is the average product of labor AP Subscript Upper L, holding capital fixed at ModifyingAbove Upper K with caret? A. AP Subscript Upper Lequalsq divided by Upper L. B. AP Subscript Upper LequalsUpper L Superscript negative 0.50ModifyingAbove Upper K with caret Superscript 0.50. C. AP Subscript Upper Lequals0.50Upper L Superscript negative 0.50ModifyingAbove Upper K with caret Superscript 0.50. D. Both a and b. E. All of the above. A serious risk factor associated with the operation of a nuclear power plant is the production of Accounting principles are "generally accepted" only when I. an authoritative accounting rule-making body has established it in an official pronouncement. II. a given practice has been accepted as appropriate because of its universal application. A.I only.B.II only.C.I or II.D.Neither I nor II. Which of these explain how ice cores can be used to correlate atmospheric makeup and climate changes over time?A) As ice melts into water, the thermal expansion traps gases from the atmosphere that can later be analyzedB)As ice forms, a latent heat is released from the ice. This causes carbon dioxide levels to increase in the atmosphere.C) As snow packs freeze and build up gradually over time, gases from the atmosphere are trapped within the ice and can be analyzed.D) As snow falls onto an existing glacier, methane is released and carbon dioxide is trapped, indicating the makeup of the atmosphere at a particular time period.Answer is C according to Usatestpep This table shows the areas of different garden plots in square meters.This table shows the areas of different garden plots in square meters.Create a line plot to display the data.To create a line plot, hover over each number on the number line. Then, click and drag up to plot the data.Area (m)Create a line plot to display the data.To create a line plot, hover over each number on the number line. Then, click and drag up to plot the data.Area (m)5.56.56.06.06.56.06.57.05.56.55.56.07.05.55.56.56.06.56.56.07.0 How did the shift from republic to empire affect the Government of Rome? A) the larger territory made it easier for Rome to rule as the number of senators increased 2 1/3 * 2 1/4 * 1 3/8 Last year, Michelle earned $45,183.36 at a hair salon. What was her average monthly income? * Stochastic n-by-n matrices Recall that an n n matrix A is said to be stochastic if the following conditions are satisfied (a) Entries of A are non negative, that is ai,j 0 for all 1 i n and all 1 j n. (b) Each column of A sums to 1, that is Pn i=1 ai,j = 1, for all 1 j n. Let S and M be arbitrary stochastic n-by-n matrices. (a) Show that = 1 is an eigenvalue of S. 2 points (b) Show that S 2 is also a stochastic matrix. 2 points (c) Does MS have to be stochastic? Explain Which of the following is an example of nondiversifiable risk? (a) Risk resulting from a general decline in the stock market (b) Risk resulting from a news release that management has committed fraud (c) Risk resulting from an explosion in a grain elevator owned by Continental (d) Risk resulting from an impending lawsuit against the company Jarrett Baker is the founder of an enterprise software company. By looking at his income statements over the past three years, you see that its working capital has declined from $42,400 in 2015 to $17,900 in 2016 to $3,100 in 2017. If this trend continues, in what ways could it jeopardize the future of his business? Write a balanced equation for the decomposition reaction described, using the smallest possible integer coefficients. When calcium carbonate decomposes, calcium oxide and carbon dioxide are formed. I need to solve this system of equations, how do I do that?3x-4y=20y=3/4x-5 Mrs. Jones believes that she is a calm wife and frequently thinks she has to shout at her husband to get his attention, but he thinks she yells because she's angry. Mr. Jones typically feels he has to shout back at his wife to defend himself, but she thinks his screaming proves that he's hostile. This couple's experience best illustrates: 1. When giving a speech, what is a speaker's primary purpose?To be impressiveTo seem educatedTo be understoodTo be liked A cube measures 3 meters on a side. What is its volume? The manager of the motor pool wants to know if it costs more to maintain cars that are driven more often Data are gathered on each car in the motor pool regarding number of miles driven IX) in a given year and maintenance costs for that year (Y) in thousands of dollars. The regression equation is computed as: Y=60+0.08X, and the p-value for the slope estimate is 0.7 What conclusion can we draw from this study? Select one: a. Cars that are driven more tend to cost more to maintain. b. There's no statistically significant linear relationship between the number of miles driven and the maintenance cost. c. The correlation between the response variable and independent variable is significant. d. The slope estimate is significantly different from zero. On January 1, a company borrowed cash by issuing a $300,000, 5%, installment note to be paid in three equal payments at the end of each year beginning December 31. (FV of $1, PV of $1, FVA of $1, PVA of $1, FVAD of $1 and PVAD of $1) 1- What would be the amount of each installment? 2- Prepare an amortization table for the installmet note. 3- Prepare the journal entry for the second installment payment. Why do you think the contents of the packet were so important? A 900.0 mLmL sample of 0.18 MHClO4MHClO4 is titrated with 0.27 MLiOHMLiOH. Determine the pHpH of the solution after the addition of 600.0 mLmL of LiOHLiOH (this is the equivalence point). A 900.0 sample of 0.18 is titrated with 0.27 . Determine the of the solution after the addition of 600.0 of (this is the equivalence point). 11.24 13.03 2.76 0.97 7.00