A student at the top of a building of height h throws ball A straight upward with speed v0 (3 m/s) and throws ball B straight downward with the same initial speed. A. Compare the balls’ accelerations, both direction, and magnitude, immediately after they leave her hand. Is one acceleration larger than the other? Or are the magnitudes equal? B. Compare the final speeds of the balls as they reach the ground. Is one larger than the other? Or are they equal?

Answers

Answer 1

Answer:same

Explanation:

Given

ball A initial velocity=3 m/s(upward)

Ball B initial velocity=3 m/s (downward)

Acceleration on both the balls will be acceleration due to gravity which will be downward in direction

Both acceleration is equal

For ball A

maximum height reached is [tex]h_1=\frac{3^2}{2g}[/tex]

After that it starts to move downwards

thus ball have to travel a distance of h_1+h(building height)

so ball A final velocity when it reaches the ground is

[tex]v_a^2=2g\left ( h_1+h\right )[/tex]

[tex]v_a^2=2g\left ( 0.458+h\right )[/tex]

[tex]v_a=\sqrt{2g\left ( 0.458+h\right )}[/tex]

For ball b

[tex]v_b^2-\left ( 3\right )^2=2g\left ( h\right )[/tex]

[tex]v_b^2=2g\left ( \frac{3^2}{2g}+h\right )[/tex]

[tex]v_b=\sqrt{2g\left ( 0.458+h\right )}[/tex]

thus [tex]v_a=v_b[/tex]

Answer 2

Final answer:

A. The magnitudes of the accelerations of both balls are equal, but they have opposite directions. B. The final speeds of both balls when they reach the ground will be the same.

Explanation:

A. The acceleration of both balls will be the same in magnitude but in opposite directions. Since the acceleration due to gravity acts downward, ball A will have a negative acceleration while ball B will have a positive acceleration. Therefore, the magnitudes of their accelerations will be equal.

B. When both balls reach the ground, their final speeds will also be the same. This is because the vertical motion of the balls is independent of their initial speeds when air resistance is ignored. The time it takes for them to reach the ground will be the same, and hence their final velocities will also be equal.


Related Questions

A woman on a bridge 90.0 m high sees a raft floating at
aconstant speed on the river below. She drops a stone fromrest in
an attempt to hit the raft. The stone is releasedwehn the raft has
6.00 m more to travel before passing under thebridge. The stone
hits the water 2.00 m in front of theraft. Find the speed of the
raft.

Answers

Answer:

0.93 m/s

Explanation:

t = Time taken

u = Initial velocity = 0

v = Final velocity

s = Displacement = 90 m

a = Acceleration = 9.81 m/s²

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 90=0\times t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{90\times 2}{9.81}}\\\Rightarrow t=4.3\ s[/tex]

So, the raft covered 6-2 = 4 m in 4.3 seconds

Speed = Distance / Time

[tex]\text{Speed}=\frac{4}{4.3}=0.93\ m/s[/tex]

Speed of the raft is 0.93 m/s

Final answer:

To find the speed of the raft, we can use the principle of conservation of energy. When the woman drops the stone, it starts with potential energy due to its height and then converts to kinetic energy as it falls.

Explanation:

To find the speed of the raft, we can use the principle of conservation of energy. When the woman drops the stone, it starts with potential energy due to its height and then converts to kinetic energy as it falls. The kinetic energy of the stone when it hits the water is equal to the potential energy it had initially. We can use the equation:

mgh = 0.5mv^2

Where m is the mass of the stone, g is the acceleration due to gravity, h is the height of the bridge, and v is the speed of the stone when it hits the water. Rearranging the equation, we can solve for v:

v = √(2gh)

Substituting the given values h = 90.0 m and g = 9.8 m/s^2, we can calculate the speed of the stone when it hits the water. This speed is equal to the speed of the raft.

What is the acceleration of a 20 kg cart if the net force on it is 40 N?

Answers

Answer:

Acceleration of the cart will be [tex]a=2m/sec^2[/tex]

Explanation:

We have given force F = 40 N

Mass of the cart = 20 kg

From newton's second law we know that force, mass and acceleration are related to each other

From second law of motion force on any object moving with acceleration a is given by

F = ma, here m is mass and a is acceleration

So [tex]40=20\times a[/tex]

[tex]a=2m/sec^2[/tex]

An object moving due to gravity can be described by the motion equation y=y0+v0t−12gt2, where t is time, y is the height at that time, y0 is the initial height (at t=0), v0 is the initial velocity, and g=9.8m/s2 (the acceleration due to gravity). If you stand at the edge of a cliff that is 75 m high and throw a rock directly up into the air with a velocity of 20 m/s, at what time will the rock hit the ground? (Note: The Quadratic Formula will give two answers, but only one of them is reasonable.) View Available Hint(s)

Answers

Answer: 6.45 s

Explanation:

We have the following equation:

[tex]y=y_{o}+V_{o}t-\frac{1}{2}gt^{2}[/tex] (1)

Where:

[tex]y=0[/tex] is the height when the rock hits the ground

[tex]y_{o}=75 m[/tex] the height at the edge of the cilff

[tex]V_{o}=20 m/s[/tex] the initial velocity

[tex]g=9.8 m/s^{2}[/tex] acceleration due gravity

[tex]t[/tex] time

[tex]0=75 m+(20 m/s)t-(4.9 m/s^{2})t^{2}[/tex]  (2)

Rearranging the equation:

[tex]-(4.9 m/s^{2})t^{2} + (20 m/s)t + 75 m=0[/tex] (3)

At this point we have a quadratic equation of the form [tex]at^{2}+bt+c=0[/tex], and we have to use the quadratic formula if we want to find  [tex]t[/tex]:

[tex]t=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}[/tex]  (4)

Where [tex]a=-4.9[/tex], [tex]b=20[/tex], [tex]c=75[/tex]

Substituting the known values and choosing the positive result of the equation:

[tex]t=\frac{-20\pm\sqrt{20^{2}-4(-4.9)(75)}}{2(-4.9)}[/tex]  (5)

[tex]t=6.453 s[/tex]  This is the time it takes to the rock to hit the ground

A man pushes a lawn mower on a level lawn with a force of 195 N. If 37% of this force is directed downward, how much work is done by the man in pushing the mower 5.7 m?

Answers

Final answer:

The work done by the man in pushing the lawn mower is 699.245 J, calculated by determining the horizontal force component and multiplying by the distance pushed.

Explanation:

To calculate how much work is done by the man in pushing the lawn mower, we need to consider only the component of the force that acts in the direction of the movement. Since 37% of the 195 N force is directed downward, only the remaining 63% is contributing to the horizontal movement. Therefore, the horizontal component of the force is 0.63 × 195 N = 122.85 N.

The formula to calculate work (W) is W = force (F) × distance (d) × cosine(θ), where θ is the angle between the force and the direction of movement. In this case, the force and movement are in the same direction, so θ = 0 and cosine(θ) = 1. Thus, the work done is:

W = 122.85 N × 5.7 m × 1 = 699.245 J

In terms of energy expended while pushing a lawn mower, this work is a relatively small amount when compared to a person's daily intake of food energy.

A motorboat is moving at 4.0 m/s when it begins to accelerate at 1.0 m/s^2. To the nearest tenth of a second, how long does it take for the boat to reach a speed of 17.0 m/s? Please show work.

Answers

Answer:

Time taken by motorboat to reach [tex]17.0m/s[/tex] equals 13 seconds.

Explanation:

From the first equation of kinematics we have

[tex]v=u+at[/tex]

where,

'v' is the final speed of the accelerating object

'u' is the initial speed of the object

'a' is the accleration of the object

't' is the time for which the object accelerates

Applying the given values in the equation above we get

[tex]17=4+1.0\times t\\\\\\\therefore t=17-4=13seconds[/tex]

The density of a rock will be measured by placing it into a graduated cylinder partially filled with water, and then measuring the volume of water displaced. The density D is given by D = m/(V1 − V0), where m is the mass of the rock, V0 is the initial volume of water, and V1 is the volume of water plus rock. Assume the mass of the rock is 750 g, with negligible uncertainty, and that V0 = 500.0 ± 0.1 mL and V1 = 813.2 ± 0.1 mL. Estimate the density of the rock, and find the uncertainty in the estimate.

Answers

Answer:

[tex]\rho = 2.39 g/mL[/tex]

[tex]\Delta \rho = 1.53 \times 10^{-3} mL[/tex]

Explanation:

As we know that density is the ratio of mass and volume of the object

here we know that

mass of the rock is

[tex]m = 750 g[/tex]

volume of the rock is given as

[tex]V = V_1 - V_o[/tex]

here we know that

[tex]V_1 = 813.2 \pm 0.1 mL[/tex]

[tex]V_2 = 500.0 \pm 0.1 mL[/tex]

now we have

[tex]V = 313.2 \pm 0.2 mL[/tex]

now density is given as

[tex]\rho = \frac{750}{313.2}[/tex]

[tex]\rho = 2.39 g/mL[/tex]

now uncertainty of density is given as

[tex]\Delta \rho = \frac{\Delta V}{V} \rho[/tex]

[tex]\Delta \rho = \frac{0.2}{313.2}(2.39)[/tex]

[tex]\Delta \rho = 1.53 \times 10^{-3} mL[/tex]

The density of the rock, given its mass is 750 g and the volume of water displaced is 313.2 mL, is 2.394 g/mL. The uncertainty in this measurement is ± 0.0015 g/mL, considering an uncertainty of ± 0.1 mL for both the initial and final volume measurements.

Given that the mass (m) of the rock is 750 g, the initial volume of water (V0) is 500.0 mL, and the volume of water plus the rock (V1) is 813.2 mL, we can determine the density (D) and the uncertainty in the density.

Using the formula:

D = m / (V1 - V0)

Therefore, D = 750 g / (813.2 mL - 500.0 mL)

= 750 g / 313.2 mL

= 2.394 g/mL.

Using the uncertainties in V0 and V1, which are both ± 0.1 mL. Since we subtract these volumes, the total volume uncertainty is ± (0.1 mL + 0.1 mL) = ± 0.2 mL. Thus, the uncertainty in the density (ΔD) can be approximated by the formula:

ΔD = D × (ΔV / (V1 - V0))

where ΔV is the total volume uncertainty. Substituting the values, we get ΔD = 2.394 g/mL × (0.2 mL / 313.2 mL) = ± 0.00153 g/mL (rounded to four significant figures).

Therefore, the estimated density of the rock is 2.394 ± 0.0015 g/mL.

A ball is thrown vertically into the air with a initial velocity of 20 m/s. Find the maximum height of the ball and find the amount of time needed to reach the maximum height.

Answers

Answer:

The maximum height of the ball is 20 m. The ball needs 2 s to reach that height.

Explanation:

The equation that describes the height and velocity of the ball are the following:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height of the ball at time t

y0 = initial height

v0 = initial velocity

t = time

g = acceleration

v = velocity at time t

When the ball is at its maximum height, its velocity is 0, then, using the equation of the velocity, we can calculate the time at which the ball is at its max-height.

v = v0 + g · t

0 = 20 m/s - 9.8 m/s² · t

-20 m/s / -9.8 m/s² = t

t = 2.0 s

Then, the ball reaches its maximum height in 2 s.

Now,  we can calculate the max-height obtaining the position at time t = 2.0 s:

y = y0 + v0 · t + 1/2 · g · t²

y = 0 m + 20 m/s · 2 s - 1/2 · 9,8 m/s² · (2 s)²

y = 20 m

The maximum height reached by the ball is 20.4 meters, and it takes approximately 2.04 seconds to reach this height.

When a ball is thrown vertically into the air with an initial velocity of 20 m/s, we can calculate the maximum height using the kinematic equation:

[tex]v^2 = u^2 + 2gh,[/tex]

where v is the final velocity (0 m/s at the highest point), u is the initial velocity (20 m/s), g is the acceleration due to gravity (9.81 m/s2), and h is the maximum height. Solving for h gives us:

[tex]h = u^2 / (2g).[/tex]

By substituting the values we get:

[tex]h = (20 m/s)^2 / (2 * 9.81 m/s^2) = 20.4 m.[/tex]

To find the time needed to reach the maximum height, we use the equation:

v = u + gt,

Solving for t when v is 0 m/s, we get:

t = u / g = 20 m/s / 9.81 m/s2 = approx. 2.04 seconds.

Thus, the maximum height of the ball is 20.4 meters and the time needed to reach the maximum height is approximately 2.04 seconds.

The best rebounders in basketball have a vertical leap (that is, the vertical movement of a fixed point on their body) of about 100 cm . a) What is their initial "launch" speed off the ground?
b)How long are they in the air?

Answers

Answer:

a) 4.45 m/s

b) 0.9 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

[tex]v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -9.81\times 1}\\\Rightarrow u=4.45\ m/s[/tex]

a) The vertical speed when the player leaves the ground is 4.45 m/s

[tex]v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-4.45}{-9.81}\\\Rightarrow t=0.45\ s[/tex]

Time taken to reach the maximum height is 0.45 seconds

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 1=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{1\times 2}{9.81}}\\\Rightarrow t=0.45\ s[/tex]

Time taken to reach the ground from the maximum height is 0.45 seconds

b) Time the player stayed in the air is 0.45+0.45 = 0.9 seconds

The following sound waves have what velocity? (a) f = 36.3 Hz, λ = 11.0 m m/s (b) f = 363.0 Hz, λ = 4.80 m m/s (c) f = 3,630.0 Hz, λ = 11.0 cm m/s (d) f = 36,300.0 Hz, λ = 4.80 cm m/s

Answers

Answer:

(a) v =  399.3 m/s, (b) v =  1742.4 m/s, (c) v =  399.3 m/s, (d) v = 1742.4 m/s

Explanation:

The velocity of a wave can be defined as:

[tex]v = \lambda f[/tex]   (1)

Where [tex]\lambda[/tex] and f are the wavelength and frequency of the sound wave.

The values for each case will be replaced in equation (1).

(a) f = 36.3 Hz, λ = 11.0 m

[tex]v = (11.0 m)(36.3 Hz)[/tex]

But 1 Hz = s⁻¹, therefore:

[tex]v = (11.0 m)(36.3 s^{-1})[/tex]

[tex]v = 399.3 m.s^{-1}[/tex]

[tex]v = 399.3 m/s[/tex]

So the sound wave has a velocity of 399.3 m/s.

(b) f = 363.0 Hz, λ = 4.80 m

[tex]v = (4.80 m)(363.0 Hz)[/tex]

[tex]v = (4.80 m)(363.0 s^{-1})[/tex]

[tex]v = 1742.4 m.s^{-1}[/tex]

[tex]v = 1742.4 m/s[/tex]

So the sound wave has a velocity of 1742.4 m/s.

(c) f = 3,630.0 Hz, λ = 11.0 cm

Before using equation (1) it is necessary to express [tex]\lambda[/tex] in meters.

[tex]11.0 cm . \frac{1 m}{100 cm}[/tex] ⇒ [tex]0.11 m[/tex]

[tex]v = (0.11 m)(3630.0 Hz)[/tex]

[tex]v = (0.11 m)(3630.0 s^{-1})[/tex]

[tex]v = 399.3 m.s^{-1}[/tex]

[tex]v = 399.3 m/s[/tex]

So the sound wave has a velocity of 399.3 m/s.

(d) f = 36,300.0 Hz, λ = 4.80 cm

[tex]4.80 cm . \frac{1 m}{100 cm}[/tex] ⇒ [tex]0.048 m[/tex]

[tex]v = (0.048 m)(36300.0 Hz)[/tex]

[tex]v = (0.048 m)(36300.0 s^{-1})[/tex]

[tex]v = 1742.4 m.s^{-1}[/tex]

[tex]v = 1742.4 m/s[/tex]

So the sound wave has a velocity of 1742.4 m/s.

Force is a vector, while mass is a scalar. Why can we use mass as an indicator of the magnitude of the force vector?

Answers

Answer:

Explanation:

Force = mass x acceleration

[tex]\overrightarrow{F}=m\overrightarrow{a}[/tex]

Force is always vector and acceleration also vector but the mass is a saclar quanity.

here, the direction of force vector is same as the direction of acceleration vector but the magnitude of force depends on the magnitude of mass of the body.

Is mass is more, force is also more.

Thus, the mass is like an indicator of the magnitude of force.

An apple falls (from rest) from a tree. It hits the ground at a speed of about 4.9 m/s. What is the approximate height (in meters) of the tree above the ground? The magnitude of the gravitational acceleration g = 9.8 m/s2 Enter your answer in meters. Keep 2 decimal places.

Answers

Answer:

The inicial height of the apple is 1.22 meters

Explanation:

Using the equation for conservarion of mechanical energy:

[tex]E=V+K=constant[/tex]

[tex]K_i=\frac{1}{2}mv_i^2[/tex] where v is the velocity

[tex]V=mgh[/tex]where h is the height

We equate the initial mechanical energy to the final:

Since [tex]v_0=0\ and h_f=0 [/tex]:

[tex]\frac{1}{2}mv_0^2+mgh_0= \frac{1}{2}mv_f^2+mgh_f\\gh_0= \frac{1}{2}v_f^2[/tex]

Solving for h:

[tex]h_0=\frac{4.9^2}{2g}= 1.22 m[/tex]

A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wall to break apart the wall. The machine was not placed near the wall because then arrows could reach it from the castle wall. Instead, it was positioned so that the stone hit the wall during the second half of its flight. Suppose a stone is launched with a speed of v0 = 25.0 m/s and at an angle of θ0 = 41.0°. What is the speed of the stone if it hits the wall (a) just as it reaches the top of its parabolic path and (b) when it has descended to half that height? (c) As a percentage, how much faster is it moving in part (b) than in part (a)?

Answers

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration ([tex]g=9.8 m/s^2[/tex]) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

[tex]u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s[/tex]

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

[tex]v=18.9 m/s[/tex]

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

[tex]v_y^2 - u_y^2 = 2ah[/tex] (1)

where

[tex]u_y = 16.4 m/s[/tex] is the initial vertical velocity

[tex]v_y[/tex] is the vertical velocity at height h

[tex]a=g=-9.8 m/s^2[/tex] is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, [tex]v_y = 0[/tex], so we can use the equation to find the maximum height

[tex]h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m[/tex]

So, at half of the maximum height,

[tex]h = \frac{13.7}{2}=6.9 m[/tex]

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

[tex]v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s[/tex]

And so, the speed of the stone at half of the maximum height is

[tex]v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s[/tex]

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

[tex]v_1 = 18.9 m/s[/tex]

while the speed at half of the maximum height (part b) is

[tex]v_2 = 22.2 m/s[/tex]

So the difference is

[tex]\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s[/tex]

And so, in percentage,

[tex]\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%[/tex]

So, the stone in part (b) is moving 17.4% faster than in part (a).

An electron is released from rest at the negative plate of a parallel plate capacitor. The charge per unit area on each plate is = 2.1 × 10^-7 C/m^2, and the plates are separated by a distance of 1.2 × 10^-2 m. How fast is the electron moving just before it reaches the positive plate?

Answers

Explanation:

An electron is released from rest, u = 0

We know that charge per unit area is called the surface charge density i.e. [tex]\sigma=\dfrac{q}{A}=2.1\times 10^{-7}\ C/m^2[/tex]

Distance between the plates, [tex]d=1.2\times 10^{-2}\ m[/tex]

Let E is the electric field,

[tex]E=\dfrac{\sigma}{\epsilon_o}[/tex]

[tex]E=\dfrac{2.1\times 10^{-7}}{8.85\times 10^{-12}}[/tex]

E = 23728.81 N/C

Now, [tex]ma=qE[/tex]

[tex]a=\dfrac{qE}{m}[/tex]

[tex]a=\dfrac{1.6\times 10^{-19}\times 23728.81}{9.1\times 10^{-31}}[/tex]

[tex]a=4.17\times 10^{15}\ m/s^2[/tex]

Let v is the speed of the electron just before it reaches the positive plate. So, third equation of motion becomes :

[tex]v^2=2ad[/tex]

[tex]v^2=2\times 4.17\times 10^{15}\times 1.2\times 10^{-2}[/tex]

[tex]v=10.003\times 10^6\ m/s[/tex]

Hence, this is the required solution.

Tom Sawyer runs 10 m/s down the dock and leaps on to his floating raft already moving 1.5 m/s away from shore. If Tom weighs 70 kg and the raft weighs 130 kg, what speed will they both be moving? A. 895 kg m/sB. 11.5 m/sC. 6.4 m/sD. 5.75 m/s

Answers

Answer:

Not the right answer in the options, speed is 4.47 m/s, and the procedure is coherent with option A

Explanation:

Answer A uses mass and velocity units, which are momentum units. By using the conservation of momentum:

.[tex]p_{initial} =p_{final} \\m_{Tom}*v_{Tom}+m_{raft}*v_{raft}=(m_{Tom}+m_{raft})*v_{both} \\70*10+130*1.5 kg*m/s=895kg*m/s\\v_{both}=\frac{895 kg*m/s}{200 kg} =4.47 m/s[/tex]

Since Tom stays in the raft, then both are moving with the same speed. From the options, the momentum is in agreement with option A, however, the question asks for speed.

Consider steady heat transfer between two large parallel plates at constant temperatures of T1 = 210 K and T2 = 150 K that are L = 2 cm apart. Assume that the surfaces are black (emissivity ε = 1). Determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is filled with atmospheric air.

Answers

Answer:

[tex]Q=81.56\ W/m^2[/tex]

Explanation:

Given that

[tex]T_1= 210 K[/tex]

[tex]T_2= 150 K[/tex]

Emissivity of surfaces(∈) = 1

We know that heat transfer between two surfaces due to radiation ,when both surfaces are black bodies

[tex]Q=\sigma (T_1^4-T_2^4)\ W/m^2[/tex]

So now by putting the values

[tex]Q=\sigma (T_1^4-T_2^4)\ W/m^2[/tex]

[tex]Q=5.67\times 10^{-8}(210^4-150^4)\ W/m^2[/tex]

[tex]Q=81.56\ W/m^2[/tex]

So rate of heat transfer per unit area

[tex]Q=81.56\ W/m^2[/tex]

Suppose your hair grows at the rate of 1/26 inches per day. Find the rate at which it rows in nanometers per second. Because the distance between atoms in a molecule is on the order of 0.1 nm, you answer suggests how rapidly layers of atoms are assembled in this protein synthesis. Your units should be "atomic layers/sec" Hint : Use dimensional analysis

Answers

Answer:

11.306 nm/s

or

113.06 atomic layers/sec

Explanation:

Hello!

First we need to know how much an inch equals in nanometers and a day in seconds:

Since 1inch = 2.54cm and 1cm=10^7nm

     1 inch = 2.54 * 10^7 nm

Also 1day = 24hours = 24*60minutes = 24*60*60seconds

   1 day = 86.4 * 10^3 s

Therefore the rate at which the hair grows in nanometers per seconds is:

    1/26 in/day = (1/26) * (2.54*10^7)/(86.4*10^3) = 11.306 nm/s

 

Now, if 1 atomic layer = 0.1 nm this means that 1 nm = 10 atomic layers.

Therefore:

The rate in atomic layers is

11.306 nm/s = 11.306 (10 atomic layers)/s = 113.06 atomic layers/sec

A car is driven east for a distance of 47 km, then north for 23 km, and then in a direction 32° east of north for 27 km. Determine (a) the magnitude of the car's total displacement from its starting point and (b) the angle (from east) of the car's total displacement measured from its starting direction.

Answers

Answer:

(a). The car's total displacement from its starting point is 76.58 m.

(b). The angle of the car's total displacement measured from its starting direction is 36.81°.

Explanation:

Given that,

Distance = 47 km in east

Distance = 23 km in north

Angle = 32° east of north

Distance = 27 km

According to figure,

Angle = 90-32 = 58°

(a). We need to calculate the magnitude of the car's total displacement from its starting point

Using Pythagorean theorem

[tex]AC=\sqrt{AB^2+BC^2}[/tex]

[tex]AC=\sqrt{(47+27\cos58)^2+(23+27\sin58)^2}[/tex]

[tex]AC=76.58\ m[/tex]

The magnitude of the car's total displacement from its starting point is 76.58 m.

(b). We need to calculate the angle (from east) of the car's total displacement measured from its starting direction

Using formula of angle

[tex]\tan\theta=\dfrac{y}{x}[/tex]

put the value into the formula

[tex]\theta=tan^{-1}\dfrac{23+27\sin58}{47+27\cos58}[/tex]

[tex]\theta=tan^{-1}0.7486[/tex]

[tex]\theta=36.81^{\circ}[/tex]

Hence, (a). The car's total displacement from its starting point is 76.58 m.

(b). The angle of the car's total displacement measured from its starting direction is 36.81°.

A woman is sitting at a bus stop when an ambulance with a siren wailing at 317 Hz approaches at 69 miles per hour (mph). Assume the speed of sound to be 343 m/s. a) How fast is the ambulance moving in meters per second? (perform the necessary unit conversion) Vs= 69 mph = m/s b) What frequency does the woman hear? fa = Hz c) What speed (vs) would the ambulance be traveling in order for the woman to hear the siren at an approaching frequency of 350 Hz? Vs= m/s d) What frequency would she hear as the siren moves away from her at the same speed (as in part c)? fa = Hz

Answers

Answer:

a) 30.84m/s

b) 348.32Hz

c) 32.34m/s

d) 289.69Hz

Explanation:

a) If 1 mile=1609,34m, and 1 hour=3600 seconds, then 69mph=69*1609.34m/3600s=30.84m/s

b) Based on Doppler effect:

/*I will take as positive direction the vector [tex]\vec r_{observer}-\vec r_{emiter}[/tex] */

[tex]f_{observed}=(\frac{v_{sound}-v_{observed}}{v_{sound}-v_{emited}})f_{emited}[/tex]

[tex]f_{observed}=(\frac{343m/s-0m/s}{343m/s-30.84m/s})317Hz=348.32Hz[/tex]

c) [tex]350Hz=(\frac{343m/s-0m/s}{343m/s-v_{ambulance}})317Hz, V_{ambulance}=343m/s-\frac{317Hz}{350Hz}.343m/s=32.34m/s[/tex]

d) [tex]f_{observed}=(\frac{343m/s-0m/s}{343m/s+32.34m/s})317Hz=289.69Hz[/tex]

For a positive point charge, the electric field vectors point in what direction? a) Point charges cannot create an electric field.
b) Along a circle around it.
c) Toward it.
d) Away from it.
e) None of the above.

Answers

Answer:d- Away from it

Explanation:

For a positive point charge, the electric field vectors point away from the charge. Electric field line radiates out of positive charge and could terminate to a  negative charge if it is placed in its vicinity.

Similarly for negative charge electric field lines seems to come inside of negative charge. It is basically opposite of positive charge.

A busy chipmunk runs back and forth along a straight line of acorns that has been set out between its burrow and a nearby tree. At some instant, it moves with a velocity of −1.29 m/s−1.29 m/s . Then, 2.91 s2.91 s later, it moves with a velocity of 1.77 m/s1.77 m/s . What is the chipmunk's average acceleration during the 2.91 s2.91 s time interval?

Answers

Answer:

1.05 ms⁻²

Explanation:

Acceleration = change in velocity / Time

Change in velocity = Final velocity - initial velocity

= 1.77 - (-1.29)

= 1.77 + 1.29

= 3.06 m/s

Time = 2.91

Acceleration = 3.06 / 2.91

= 1.05 ms⁻² .

A hippo drives 42 km due East. He then turns and drives 28 km at 25° East of South. He turns again and drives 32 km at 40° North of East. a) Sketch a plot of the vector sum of this motion. b) Use vector math to find his total displacement in component form. c) Convert to magnitude and direction form. d) How far is the hippo from his starting point? Note: this is distance, a scalar. What total distance has the hippo traveled?

Answers

Answer:

a) Please, see the attched figure

b) Total displacement R = (78.3 km; -4.8 km)

c) R = (78.4 km * cos (-3.5°); 78.4 km * sin (-3.5°))

d) The hippo is 78.4 km from his starting point.

The total distance traveled is 102 km

Explanation:

a)Please, see the attached figure.

b) The vector A can be expressed as:

A = (magnitude * cos α; magnitude * sin α)

Where

magnitude = 42 km

α= 0

Then,

A = (42 km ; 0) or 42 km i

In the same way, we can proceed with the other vectors:

B = ( Bx ; By)

where

(apply trigonometry of right triangles: sen α = opposite / hypotenuse and

cos α = adjacent / hypotenuse. See the figure to determine which component of vector B is the opposite and adjacent side to α)

Bx = 28 km * sin 25 = 11.8 km

By = 28 km * cos 25 = -25.4 km (it has to be negative since it is directed towards the negative vertical region according to our reference system)

B = (11.8 km; -25.4 km) or 11.8 km i - 25.4 km j

C = (Cx; Cy)

where

Cx = 32 km * cos 40° = 24.5 km

Cy = 32 km * sin 40 = 20.6 km

C = (24.5 km; 20.6 km)

Then:

R = A+B+C = (42 km + 11.8 km + 24.5 km; 0 - 25.4 km + 20.6 km)

= (78.3 km; -4.8 km) or 78.3 km i -4.8 km j

c) R = (78.3 km; -4.8 km)

The magnitude of R is:

[tex]magnitude = \sqrt{(78.3)^{2 }+ (-4.8)^{2}}= 78.4 km[/tex]

Using trigonometry, we can calculate the angle:

Knowing that

tan α = opposite / adjacent

and that

opposite = Ry = -4.8 km

adjacent = Rx = 78.3 km

Then:

tan α = -4.8 km / 78.4 km

α = -3.5°

We can now write the vector R in magnitude and direction form:

R = (78.4 km * cos (-3.5°); 78.4 km * sin (-3.5°))

d) The displacement of the hipo relative to the starting point is the magnitude of vector R calculated in c):

magnitude R = 78. 4 km

The total distance traveled is the sum of the magnitudes of each vector:

Total distance = 42 km + 28 km + 32 km = 102 km  

When 9.72 g of an unknown non-electrolyte is dissolved in 50.0 g of cyclohexane, the boiling point increased to 84.93 degrees C from 80.7 degrees C. If the Kbp of the solvent is 2.79 K/m, calculate the molar mass of the unknown solute.

Answers

Answer : The molar mass of unknown compound is 128.22 g/mole

Explanation :

Mass of unknown compound = 9.72 g

Mass of solvent = 50.0 g

Formula used :

[tex]\Delta T_b=i\times K_b\times m\\\\T_2-T_1=i\times K_b\times\frac{\text{Mass of unknown compound}}{\text{Molar mass of unknown compound}\times \text{Mass of solvent in Kg}}[/tex]

where,

[tex]\Delta T_b[/tex] = elevation in boiling point

[tex]T_1[/tex] = temperature of solvent = [tex]80.7^oC=273+80.7=353.7K[/tex]

[tex]T_2[/tex] = temperature of solution = [tex]84.93^oC=273+84.93=357.93K[/tex]

i = Van't Hoff factor = 1 (for non-electrolyte)

[tex]K_f[/tex] = boiling point constant for solvent = 2.79 K/m

m = molality

Now put all the given values in this formula, we get:

[tex](357.93-353.7)K=1\times (2.79K/m)\times \frac{9.72g\times 1000}{\text{Molar mass of unknown compound}\times 50.0g}[/tex]

[tex]\text{Molar mass of unknown compound}=128.22g/mole[/tex]

Therefore, the molar mass of unknown compound is 128.22 g/mole

If two automobiles collide, they usually do not stick together.Does
this mean the collision is elastic? Explain why a head-oncollision
is likely to be more dangerous than other types ofcollisions.

Answers

Explanation:

We know that if

e = 1  then collision is called perfectly elastic collision.

0<e <1  then collision is called partial elastic collision.

e =0  then collision is called inelastic collision.

So when two automobile collide then they usually do not stick together then this collision is called as elastic collision.

When object collide head to head it become more dangerous than other type of collision because when object come toward each other and due to suddenly velocity of object become zero due to this it produce large amount of force.Usually this force produce two time more as compare to when object moving in same direction.

If the speed of an object in uniform circular motion is tripled, the magnitude of the centripetal acceleration increases by a factor of: (A) 2 (B) 3 (C) 9 (D) 6 (E) 8

Answers

Answer:

The correct option is 'D': 9

Explanation:

We know that the magnitude of the centripetal acceleration of  a body moving in circular orbit of radius 'r' with speed 'v' is given by

[tex]a_{c}=\frac{v^{2}}{r}[/tex]

Now when the speed of the body is tripled the speed becomes [tex]3v[/tex]

Hence the new centripetal acceleration is obtained as

[tex]a'_{c}=\frac{(3v)^{2}}{r}\\\\a'_{c}=\frac{9v^{2}}{r}=9a_{c}[/tex]

Thus we can see that the new centripetal acceleration becomes 9 times the oroginal value.

The acceleration of a body traveling in a circular route is known as centripetal acceleration. The magnitude of the centripetal acceleration increases by a factor of 9.

What is centripetal acceleration?

The acceleration of a body traveling in a circular route is known as centripetal acceleration. Because velocity is a vector quantity. It has both a magnitude and a direction.

When a body moves on a circular route, its direction changes constantly, causing its velocity to vary, resulting in acceleration.

Mathematically it is given as,

[tex]\rma_c=\frac{v^2}{r} \\\\ a_c'=\frac{(3v)^2}{r} \\\\ \rm v=9\frac{v^2}{r}\\\\ a_c'=9a_c[/tex]

Hence the magnitude of the centripetal acceleration increases by a factor of 9. Option c is correct.

To learn more about centripetal acceleration refer to the link;

https://brainly.com/question/17689540

If the length of a wire is increased by 20% keeping its volume constant. what will be the % change in heat produced when connected across same potential difference. please explain properly!!

Answers

Answer:decreases by 30.55%

Explanation:

Given

length of wire is increased by 20 % keeping volume constant

Let the length of wire be L and its area of cross section be A

Thus new length=1.2 L

Volume is constant

[tex]AL=1.2 L\times A'[/tex]

A'=0.833 A

and resistance is given by

[tex]R=\frac{\rho L}{A}[/tex]

where [tex]\rho [/tex]=resistivity

New resistance [tex]R'=\frac{\rho\times 1.2L}{0.833A}[/tex]

R'=1.44 R

heat produced for same potential

[tex]H_1=\frac{V^2t}{R}[/tex]

[tex]H_2=\frac{V^2t}{1.44R}=0.694H_1[/tex]

% change in heat

[tex]\frac{H_2-H_1}{H_1}\times 100[/tex]

[tex]=\frac{0.694-1}{1}[/tex]

=30.55 decreases

Answer:

30.55 %

Explanation:

Assumptions:

l = initial length of the wireL = final length of the wirev = initial volume of the wireV = final volume of the wirea = initial cross sectional area of the wireA = final cross sectional area of the wireh = initial heat of generated by the wireH = final heat generated by the wireP = potential difference across the wiret = time for which the potential difference is created across the wirer = initial resistance of the wireR = final resistance of the wire[tex]\Delta H[/tex] = change in heat produced

According to the question, we have

[tex]L = l + 20\ \% l = \dfrac{120l}{100}\\V=v\\\Rightarrow LA=la\\\Rightarrow A= \dfrac{la}{L}\\\Rightarrow A= \dfrac{la}{\dfrac{120l}{100}}\\\Rightarrow A= \dfrac{100a}{120}[/tex]

Using the formula of resistance of a wire in terms of its length, cross sectional area and the resistivity of the material, we have

[tex]r =  \dfrac{\rho l}{a}\\R=\dfrac{\rho L}{A}=\dfrac{\rho\times \dfrac{120l}{100} }{\dfrac{100a}{120}}=(\dfrac{120}{100})^2\dfrac{\rho l}{a}= 1.44r\\[/tex]

Using the formula of heat generated by the wire for potential diofference created across its end for time t, we have

[tex]h = \dfrac{P^2}{r}t\\H = \dfrac{P^2}{R}t= \dfrac{P^2}{1.44r}t\\\therefore \Delta H = h-H\\\Rightarrow \Delta H = \dfrac{P^2}{r}t-\dfrac{P^2}{1.44r}t\\\Rightarrow \Delta H = \dfrac{P^2t}{r}(-\dfrac{1}{1.44})\\\Rightarrow \Delta H = \dfrac{P^2t}{r}(\dfrac{0.44}{1.44})\\\therefore \textrm{Percentage change in the heat produced}= \dfrac{\Delta H}{h}\times 100\ \%= \left (\dfrac{\dfrac{P^2t}{r}(\dfrac{0.44}{1.44})}{\dfrac{P^2}{r}t}  \right )\times 100\ \% = 30.55\ \%[/tex]

Hence, the percentage change in the heat produced in the wire is 30.55 %.

A 3.0 mg bead with a charge of 2.9 nC rests on a table. A second bead, with a charge of -5.3 nC is directly above the first bead and is slowly lowered toward it. What is the closest the centers of the two beads can be brought together before the lower bead is lifted off the table?

Answers

Answer:

6.86 cm

Explanation:

Given:

q = charge on the first bead on the table= [tex]2.9\ nC = 2.9\times 10^{-9}\ C[/tex]m = mass of bead on the table = [tex]3.0\ mg = 3.0\times 10^{-6}\ kg[/tex]Q = charge on the second bead = [tex]-5.3\ nC = -5.3\times10^{-9}\ C[/tex]

Assume:

r = the closest distance between the centers of the beadsF = electrostatic force of attraction between the two beadsW = weight of the first beadg = acceleration due to gravity = 9.8\ m/s^2N = normal force on the first bead

When the first bead rests on the table, then electrostatic force due to the second bead acts on it in the upward direction, Normal force acts in the upward direction and its weight in the downward direction.

So, using Newton's second law on the first bead resting on the table, we have

[tex]F+N-W=0\\[/tex]

At the closest distance of the second bead to the first bead, it just lifts off the table and the normal force becomes zero.

[tex]\therefore F-W=0\\\Rightarrow F=W\\\Rightarrow \dfrac{kqQ}{r^2}=mg\\\Rightarrow r^2=\dfrac{kqQ}{mg}\\\Rightarrow r^2=\dfrac{9\times 10^9\times 2.9\times 10^{-9}\times 5.3\times 10^{-9}}{3\times 10^{-6}\times 9.8}\\\Rightarrow r^2=4.70\times 10^{-3}\\\textrm{Taking square root on both the sides}\\r = \pm 0.0686\ m\\\textrm{Since the distance is never negative}\\\therefore r = 0.0686\ m\\\Rightarrow r = 6.86\ cm[/tex]

Hence, the centers of the two beads must be brought closest to 6.86 cm before the lower bead is lifted off the table.

An auditorium measures 35.0 m x 30.0 m x 5.0 m. The density of air is 1.20 kg/m^3. (a) What is the volume of the room in cubic feet? (b) What is the weight of air in the room in pounds?

Answers

Answer:

(a) 1852259 [tex]ft^3[/tex] (b) 489085.47 pound

Explanation:

We have given auditorium measures 35 m×30 m×5 m

We know that 1 meter = 3.28 feet

So the measure of auditorium = 35×3.28 feet ×30×3.28 feet× 5×3.28 feet

(a) So the volume of the auditorium [tex]=35\times 3.28\times 30\times 3.28\times 5\times 3.28=185259.648ft^3[/tex]

Density is given as [tex]d=1.20kg/m^3[/tex]  

(b) weight of air  = volume × density [tex]=185259.648\times 1.2=222311.577kg[/tex]

We know that 1 kg = 2.20 pound

So 222311.577 kg =222311.577×2.20=489085.47 pound

Final answer:

The volume of the room is 185,197 cubic feet and the weight of air in the room is 13,889 pounds.

Explanation:

To convert the volume of the auditorium from cubic meters to cubic feet, we can use the conversion factor 1 cubic meter = 35.3147 cubic feet. With dimensions of 35.0 m x 30.0 m x 5.0 m, the volume of the auditorium is 5250 cubic meters. Multiplying this by the conversion factor, we find that the volume of the room is approximately 185,197 cubic feet.

To calculate the weight of air in the room, we can multiply the volume of air by its density. The density of air is given as 1.20 kg/m³. Using the volume of the room in cubic meters (5250 m³), we can multiply it by the density to find the mass of air, which is 6300 kg. To convert this to pounds, we can multiply by the conversion factor 1 kg = 2.20462 pounds. The weight of air in the room is therefore approximately 13,889 pounds.

Alex climbs to the top of a tall tree while his friend Gary waits on the ground below. Alex throws down a ball at 8 m/s from 50 m above the ground at the same time Gary throws a ball up. At what speed must Gary throw a ball up in order for the two balls to cross paths 25 m above the ground? The starting height of the ball thrown upward is 1.5 m above the ground. Ignore the effects of air resistance. whats the answer in m/s?

Answers

Answer:22.62 m/s

Explanation:

Given

two balls are separated by a distance of 50 m

Alex throws  the ball from a height of 50 m with a velocity of 8 m/s and Gary launches a ball with some velocity  exactly at the same time.

ball  from ground travels a distance of 25 m in t sec

For Person on tree  

[tex]25=ut+\frac{1}{2}gt^2[/tex]

[tex]25=8t+\frac{1}{2}\times 9.81\times t^2--------1[/tex]

For person at ground

[tex]23.5=ut-\frac{1}{2}gt^2---------2[/tex]

Solve equation (1)

[tex]50=16t+9.81t^2[/tex]

[tex]9.81t^2+16t-50=0[/tex]

[tex]t=\frac{-16\pm\sqrt{256+4\times 50\times 9.81}}{2\times 9.81}=\frac{47.1-16}{19.62}=1.58 s[/tex]

put the value of t in equation 2

[tex]23.5=u\times 1.58-\frac{9.81\times 1.58^2}{2}[/tex]

[tex]u=\frac{35.744}{1.58}=22.62 m/s[/tex]

If a lens has a power of -14.50, what is the focal length in mm?

Answers

Answer:

Focal length of the lens, f = - 68 mm

Explanation:

Given that,

Power of a lens, P = -14.50 D

We need to find the focal length of the lens. We know that the focal length and the power of lens has inverse relationship. Mathematically, it is given by :

[tex]f=\dfrac{1}{P}[/tex]

f is the focal length of the lens

[tex]f=\dfrac{1}{-14.50}[/tex]

f = -0.068 m

or

f = -68 mm

So, the focal length of the lens is (-68 mm). Hence, this is the required solution.

13. You throw a ball vertically upward, and as it leaves your hand, its speed is 37.0 m/s. How long (in s) does the ball take to return to the level where it left your hand after it reaches its highest point? (A) 1.38 seconds (B) 2.28 seconds (C) 3.78 seconds (D) 4.38 seconds (E) 5.18 seconds

Answers

Answer:

(C) 3.78 seconds

Explanation:

At the highest point, the velocity is equal to 0m/s

[tex]v_{f}=v_{o}-gt[/tex]

[tex]t=\frac{v_{o}}{g}[/tex]  ; t is the time to reach the highest point

The  time the ball takes to return to its starting point after the ball  reach its maximum height is the same:

[tex]T_{descent}=t=\frac{v_{o}}{g}=\frac{37}{9.81}=3.78s[/tex]

Other Questions
You deposited $1,000 in a savings account that pays 8 percent interest, compounded quarterly, planning to use it to finish your last year in college. Eighteen months later, you decide to go to the Rocky Mountains to become a ski instructor rather than continue in school, so you close out your account. How much money will you receive? Visual perception is greatly dependent on experience.a. True b. False A young girl from a poor family is sent to live with wealthy distant relations. Her relations expect her to take care of the household cooking and cleaning instead of going to school. They do not pay her and threaten her when she attempts to return home. Her situation is an example of ___________. Social Sciences Alcohol Abstinence The Harvard School of Public Health completed a study on alcohol consumption on college campuses. They concluded that 20.7% of women attending all-women colleges abstained from alcohol, compared to e6% of women attending coeducational colleges. Approximately 4.7% of women college students attend all-women schools. Source: Harvard School of Public Health. (a) What is the probability that a randomly selected female student abstains from alcohol? (b) If a randomly selected female student abstains from alcohol, what is the probability she attends a coedcational colege? jonathan went for a jog. every time he stops to tie his shoelaces, his jog lasts 2 1/2 minutes longer. if he stops to tie his shoelaces four times, how much longer does his jog take The density of air under ordinary conditions at 25C is 1.19 g/L. How many kilograms of air are in a room that measures 10.0 ft 11.0 ft and has an 10.0 ft ceiling? 1 in = 2.54 cm (exactly); 1 L = 103 cm3. A squirrel runs along an overhead telephone wire that stretches from the top of one pole to the next. The creature is initially at position xi = 3.65 m, as measured from the center of the wire segment. It then undergoes a displacement of x = -6.81 m. What is the squirrel\'s final position xf? xf = _____ m In a spoils system, which factors would most influence who is awarded government jobs? Select the two correct answers.A.level of education B.actual on-the-job experienceC.skills relevant to a particular jobD.the friendship of a winning candidateE.political support for a winning candidate What would be the likely punishment for a crime classified as a misdemeanor by the California Penal Code? A college professor's work performance recently has deteriorated, and his colleagues find him difficult to talk to. If this is due to a problem with drugs, the best description of this professor's behavior would be:A) substance intoxication.B) substance use disorder.C) tolerance.D) withdrawal. The National Security Act of 1947 reflected:OA. The decreased interest of the United States in honoring treaties.OB. The increased interest of the United States in creating colonies.C. The lesser role of the United States in foreign markets.OD. The greater role of the United States in world affairs. A(n) --------- statement is displayed on the screen to explain to the user what to enter How do you find the slope intercept form of an equation? x + 8 = -7 help me our only got 5 more minutes ! Write chemical formulas for compounds containing each of the following. One nitrogen atom for every three chlorine atoms. Read the sentence. I take dance classes after school I want to be a ballerina.Which revision most effectively corrects the fused sentence?A. I want to be a ballerina, therefore I take dance classes after school.B. I take dance classes after school, I want to be a ballerina.C. I take dance classes after school because I want to be a ballerina.D. I want to be a ballerina taking dance classes after school. A rocket carrying a satellite is accelerating straight up from the earth's surface. At 1.15 s after liftoff, the rocket clears the top of its launch platform, 70 m above the ground. After an additional 4.70 s, it is 1.15 km above the ground. Part ACalculate the magnitude of the average velocity of the rocket for the 4.70 s part of its flight.Express your answer in meters per second. Part BCalculate the magnitude of the average velocity of the rocket the first 5.85 s of its flight.Express your answer in meters per second. A can contains 375 mL of soda. How much is left after 308 mL is removed? Tectonic plates are large segments of the earth's crust that move slowly. Suppose one such plate has an average speed of 6.0 cm per year. (a) What distance does it move in 71 seconds at this speed?m(b) What is its speed in miles per million years?mi/My 19. Select other ways to write 50,897. Mark all that apply.A(5 X 10,000) + (8 X 100) + (9 X 10) + (7 X 1)50,000 + 800 + 90 +75,000 + 800+90 +7Dfifty thousand, eight hundred ninety-seven