A student guesses on every question of a​ multiple-choice test that has 6 ​questions, each with 3 possible answers. What is the probability that the student will get at least 4 of the questions​ right?

Answers

Answer 1

Answer:  

The probability that the student will get at least 4 of the questions​ right is 0.0823044.

Step-by-step explanation:

For each question we have 3 choices. So,total choices will be :

[tex]3\times3\times3\times3\times3\times3=729[/tex]

Getting 4 correct means, 4 corrects and two wrongs

Now, as there are 3 answer choices, out of which only one will be correct, so 2/3 is the probability if a question is answered wrong.

And 1/3 is the probability if a question is answered correctly.

Hence, we can consider this probability :

[tex]P=(2/3)*(2/3)*(1/3)*(1/3)*(1/3)*(1/3)[/tex] = 4/729

=> P = 0.00548696

We can select any combination of 2 from 6 for being wrong, so we will multiply P by (6,2)=6!/(2!*4!) = 15

So the answer is P*15 =[tex]0.00548696*15=0.0823044[/tex]

The probability that the student will get at least 4 of the questions​ right is 0.0823044.

Answer 2

With 3 choices per question, the probability of getting at least 4 out of 6 questions correct is approximately 0.0823044

1: Total Choices

Each question has 3 possible answers.

So, the total choices for 6 questions would be 3 raised to the power of 6 (3^6).

2: Probability of Getting 4 Correct and 2 Wrong

Getting 4 correct and 2 wrong means selecting 4 correct answers out of 6 questions.

The probability of a question being answered correctly is 1/3, and the probability of being answered incorrectly is 2/3.

So, the probability of getting 4 correct and 2 wrong is calculated using combinations (6 choose 4) multiplied by (1/3)^4 multiplied by (2/3)^2.

3: Calculate Probability

(6 choose 4) is the number of ways to choose 4 correct answers out of 6 questions, which is 15.

The probability (P) is then calculated as 15 multiplied by (1/3)^4 multiplied by (2/3)^2.

4: Multiply by Number of Combinations

Since there are 15 ways to choose 4 correct answers out of 6 questions, multiply the probability by 15.

So, the probability that the student will get at least 4 of the questions right is approximately 0.0823044.

To learn more about probability

https://brainly.com/question/23417919

#SPJ6


Related Questions

A blueberry shortcake 49 feet, 4 inches long and 9 feet wide was made in Canada on September 19, 1995. The height of the shortcake was 8 inches. What was the number of cubic feet in the volume of the shortcake?

Please help me solve this problem!

Answers

Answer:

296 cubic feet

Step-by-step explanation:

First and foremost, you have to have everything in either feet or inches.  Right now they are in both.  Since the answer is asked for in feet, let's convert everything to feet.  The width is already in feet, so that's good.

However, even though the length is 49 feet, we still have to convert the 4 inches part of that to feet.  Using the fact that there are 12 inches in a foot:

[tex]4in.*\frac{1ft}{12in.}=\frac{1}{3}ft[/tex] so we have

[tex]49\frac{1}{3}ft[/tex]

Convert that to improper to make the multiplication easier in the end:

[tex]49\frac{1}{3}=\frac{148}{3}ft[/tex]

Now we have to convert the 8 inches to feet using the same reasoning:

[tex]8in.*\frac{1ft}{12in.}=\frac{2}{3}ft[/tex]

Now everything is in terms of feet.  The volume is found by multiplying length times width times height:

[tex](\frac{148}{3} )(\frac{9}{1})(\frac{2}{3})=  \frac{2664}{9}ft[/tex]

Divide that and it comes out to an even 296 cubic feet

An ISU Computer Science shirt is sold in 6 colors, 5 sizes, striped or solid, and
long sleeve or short sleeve. (a) How many different shirts are being sold? (b) What if
the black and yellow shirts only come in short-sleeve and solid?

Answers

a)

[tex]6\cdot5\cdot2\cdot2=120[/tex]

b)

[tex]4\cdot5\cdot2\cdot2 +2\cdot5\cdot1\cdot1=80+10=90[/tex]

Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.) f(x) = x3 − x2 − 12x + 7, [0, 4]

Answers

Rolle's theorem works for a function [tex]f(x)[/tex] over an interval [tex][a,b][/tex] if:

[tex]f(x)[/tex] is continuous on [tex][a,b][/tex][tex]f(x)[/tex] is differentiable on [tex](a,b)[/tex][tex]f(a)=f(b)[/tex]

This is our case: [tex]f(x)[/tex] is a polynomial, so it is continuous and differentiable everywhere, and thus in particular it is continuous and differentiable over [0,4].

Also, we have

[tex]f(0)=7=f(4)[/tex]

So, we're guaranteed that there exists at least one point [tex]c\in(a,b)[/tex] such that [tex]f'(c)=0[/tex].

Let's compute the derivative:

[tex]f'(x)=3x^2-2x-12[/tex]

And we have

[tex]f'(x)=0 \iff x= \dfrac{1\pm\sqrt{37}}{3}[/tex]

In particular, we have

[tex]\dfrac{1+\sqrt{37}}{3}\approx 2.36[/tex]

so this is the point that satisfies Rolle's theorem.

The number C that satisfies the conclusion of Rolle's Theorem on the interval [0, 4] is: [tex]\[ c = \frac{1 + \sqrt{37}}{3} \][/tex]

To verify that the function [tex]\( f(x) = x^3 - x^2 - 12x + 7 \)[/tex] satisfies the three hypotheses of Rolle's Theorem on the interval [0, 4] and then to find all numbers c that satisfy the conclusion of Rolle's Theorem, follow these steps:

1. The function f is continuous on the closed interval [a, b]:

  - [tex]\( f(x) = x^3 - x^2 - 12x + 7 \)[/tex] is a polynomial, and polynomials are continuous everywhere.

  - Therefore, f is continuous on [0, 4].

2. The function f is differentiable on the open interval (a, b):

  - Again, [tex]\( f(x) = x^3 - x^2 - 12x + 7 \)[/tex] is a polynomial, and polynomials are differentiable everywhere.

  - Therefore, f is differentiable on (0, 4).

3. f(a) = f(b) :

  - Calculate [tex]\( f(0) \)[/tex] and f(4):

 [tex]\[ f(0) = 0^3 - 0^2 - 12 \cdot 0 + 7 = 7 \] \[ f(4) = 4^3 - 4^2 - 12 \cdot 4 + 7 = 64 - 16 - 48 + 7 = 7 \][/tex]

  - Therefore,  f(0) = f(4) = 7 .

Since all three hypotheses are satisfied, by Rolle's Theorem, there exists at least one number c in (0, 4) such that  f'(c) = 0 .

Finding c

1. Compute the derivative of f:

[tex]\[ f(x) = x^3 - x^2 - 12x + 7 \] \[ f'(x) = 3x^2 - 2x - 12 \][/tex]

2. Set the derivative equal to zero and solve for x:

[tex]\[ f'(x) = 3x^2 - 2x - 12 = 0 \][/tex]

  Solve the quadratic equation using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where  a = 3,  b = -2 , and c = -12 :

[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 3 \cdot (-12)}}{2 \cdot 3} \] \[ x = \frac{2 \pm \sqrt{4 + 144}}{6} \] \[ x = \frac{2 \pm \sqrt{148}}{6} \] \[ x = \frac{2 \pm 2\sqrt{37}}{6} \] \[ x = \frac{1 \pm \sqrt{37}}{3} \][/tex]

3. Check which solutions are in the interval (0, 4):

  - For [tex]\( x = \frac{1 + \sqrt{37}}{3} \)[/tex]:

 [tex]\[ \frac{1 + \sqrt{37}}{3} \approx \frac{1 + 6.08}{3} \approx \frac{7.08}{3} \approx 2.36 \][/tex]

  - For [tex]\( x = \frac{1 - \sqrt{37}}{3} \)[/tex]:

[tex]\[ \frac{1 - \sqrt{37}}{3} \approx \frac{1 - 6.08}{3} \approx \frac{-5.08}{3} \approx -1.69 \][/tex]

    - This solution is not in the interval (0, 4).

To get to his office from home, Greg walks 7 blocks north and then 3 blocks east. After work he meets some friends at a cafe; to get there he walks 2 blocks south and 6 blocks west. All blocks are 660 feet long. What is the straight-line distance?

Answers

Final answer:

To find Greg's straight-line distance from home to the cafe, we calculate his north-south and east-west displacements in feet using a 660 feet block length. Then, applying the Pythagorean theorem, we determine the hypotenuse, which represents the straight-line distance. The calculated straight-line distance is approximately 3847.11 feet.

Explanation:

To calculate the straight-line distance that Greg would travel from his starting point to the cafe, we can use the Pythagorean theorem. Initially, Greg walks 7 blocks north and 3 blocks east, and then from his office to the cafe, he walks 2 blocks south and 6 blocks west. Considering that every block is 660 feet, we can determine his total displacement in the north-south direction and the east-west direction.

First, we find the net blocks traveled north-south: 7 blocks north - 2 blocks south = 5 blocks north. Then, we find the net blocks traveled east-west: 3 blocks east - 6 blocks west = 3 blocks west. Since the blocks are 660 feet each, we convert blocks into feet:

Using the Pythagorean theorem (a2 + b2 = c2), where 'a' and 'b' are the legs of the right triangle and 'c' is the hypotenuse representing the straight-line distance, we calculate:

We then plug these values into the equation:

c2 = 33002 + 19802
 = 10890000 + 3920400
 = 14810400

We find the square root of 14810400 to get the straight-line distance (c), which is:

c = √14810400 ≈ 3847.11 feet

So, the straight-line distance from Greg's home to the cafe is approximately 3847.11 feet.

A large company must hire a new president. The Board of Directors prepares a list of five candidates, all of whom are equally qualified. Two of these candidates are members of a minority group. To avoid bias in the selection of the candidate, the company decides to select the president by lottery. a. What is the probability one of the minority candidates is hired?

Answers

Answer: 0.4

Step-by-step explanation:

Given : The number of candidates are equally qualified for President = 5

The number of candidates are members of a minority group =2

Since , to avoid bias in the selection of the candidate, the company decides to select the president by lottery. Here the chances of each candidates is same.

The probability one of the minority candidates is hired is given by :-

[tex]\text{P(Minority)}=\dfrac{\text{Number of minority candidates}}{\text{Total candidates}}\\\\=\dfrac{2}{5}=0.4[/tex]

Hence, the  probability one of the minority candidates is hired =0.4

Final answer:

The probability that one of the minority candidates is hired is 0.4, or 40%, since there are 2 minority candidates out of a total of 5 candidates.

Explanation:

Since there are five equally qualified candidates and two of them are minority candidates, we can calculate the probability by considering the ratio of the number of minority candidates to the total number of candidates.

The probability (P) that one of the minority candidates is hired can be calculated using the formula P = (Number of Favorable Outcomes) / (Total Number of Possible Outcomes).

Here, the Number of Favorable Outcomes is 2 (since there are two minority candidates) and the Total Number of Possible Outcomes is 5 (since there are five candidates in total).

So, the probability is P = 2/5.

Let's compute this:

P = 2/5

P = 0.4

Therefore, the probability that one of the minority candidates will be hired is 0.4, or 40%.

A political party sends a mail survey to 1500 randomly selected registered voters in a community. The survey asks respondents to give an opinion about the job performance of the current president. Of the 1500 surveys sent out, 480 are returned, and of these, only 120 say they're satisfied with the president's job performance.

1.) The population is

A) the 120 respondents satisfied with the president's job performance.
B) the 480 respondents that answered the survey.
C) all registered voters in this community.
D) the 1500 registered voters in the community selected to receive this survey.

2.) The sample is

A) the voters in his district.
B) the 1500 randomly selected voters receiving the questionnaire.
C) the 120 voters surveyed that are satisfied with the president's job performance.
D) the 480 surveys returned.

3.) This is an example of

A) a survey with little bias because 1500 voters represent an important part of his district.
B) a survey containing nonresponse.
C) a survey with little bias since people understand whether they approve of the president's job performance.
D) All of the above

Answers

Final answer:

In the political party's survey example, the population is all registered voters in the community, the sample is the 1500 randomly selected voters, and the situation is an example of a survey with nonresponse bias.

Explanation:

Understanding Population and Sample in Surveys

When it comes to surveys, it's important to differentiate between a population and a sample. For the political party's mail survey:

The population refers to all registered voters in the community since they are the entire group of individuals the survey is designed to understand and represent.

The sample is the 1500 randomly selected voters who received the questionnaire, as they are a manageable number intended to represent the larger population of all registered voters in the community.

This example is of a survey containing nonresponse bias, because a significant portion of the surveys were not returned, which could skew the results and not accurately represent the overall population.

Nonresponse is an issue that affects the reliability and accuracy of survey results because those who do not respond could have systematically different views from those who do. This is an example of nonsampling error, as the error arises not from the method of selecting the sample but from the lack of responses.

Final answer:

The population in the survey is all registered voters in the community, and the sample is the 1500 randomly selected voters. This scenario is an example of a survey containing nonresponse bias.

Explanation:

In the scenario described, the population is Option C) all registered voters in this community, since the study seeks to understand an attribute (opinion on the president's job performance) of this entire group. The sample is Option B) the 1500 randomly selected voters receiving the questionnaire, as they are the portion of the population supposed to represent the larger group's opinions. The issue described is an example of B) a survey containing nonresponse bias, which occurs when the subset of the sample that responds (480 returned surveys) is different in some way from those who do not respond, which can potentially skew the survey results. Finally, nonresponse bias is a critical challenge in survey methods since response rates can affect the representativeness of the sample and hence the accuracy of the survey's conclusions.

In a certain​ state, 50​% of adults indicated that sausage is their favorite pizza. Suppose a simple random sample of adults in the state of size 23 is obtained and the number of adults who indicated that sausage is their favorite pizza was 17. What are values of the parameters​ n, p, and x in the binomial probability​ experiment?

Answers

Answer:

n = 23

x = 17

p = 0.50

Step-by-step explanation:

For a binomial experiment we have the following variables:

1) Number of trials or Sample size:

The number of trials is represented by n. In the given scenario 23 adults were asked about their favorite pizza, so the number of trials in this will be 23. Thus

n = 23

2) Number of success

The number of success is denoted by x. Number of success indicates that how many trials resulted in the favorable outcome. In the given case, choosing a sausage pizza is a success. Since 17 adults chose the sausage, so

x = 17

3) Probability of success on single trial

This is represented by p. It is stated that 50% adults say sausage is their favorite pizza. So,

p = 50% = 0.50

Final answer:

In a binomial probability experiment, n represents the size of the random sample, p represents the probability of success, and x represents the number of successes. In this given scenario, n=23, p=0.50 and x=17.

Explanation:

In a binomial probability experiment, the parameters n, p, and x are designated as follows: 'n' is the size of the random sample which in this case is 23. 'p' is the probability of success on a single trial, here it is the percentage of adults who indicated that sausage is their favorite pizza, which in decimal form is 0.50. 'x' is the number of successes, in this scenario, the number of adults in the sample of 23 who prefer sausage on their pizza, which is 17. So, in this experiment, n=23, p=0.50 and x=17. Success in this context is defined as an individual person preferring sausage on their pizza.

To ensure the binomial experiment is valid, and can be approximated by a normal distribution, the quantities np and nq (where q is 1-p, the probability of failure) must both be greater than five (np > 5 and nq > 5). In this case, np = 23*0.50 = 11.5 and nq = 23*0.50 = 11.5, thus the experiment is valid.

Learn more about binomial probability experiment here:

https://brainly.com/question/31866072

#SPJ3

Find the roots of the parabola given by the following equation.

2x^2+ 5x - 9 = 2x
Show work please!

Answers

[tex]2x^{2}+5x-9=2x\\2x^{2}+3x-9=0\\(x+3)(2x-3)=0\\\boxed{x=-3,\frac{3}{2}}[/tex]

ANSWER

[tex]x = \frac{3}{2} \: or \: x = - 3[/tex]

EXPLANATION

We want to find the roots of the parabola with equation:

[tex]2 {x}^{2} + 5x - 9 = 2x[/tex]

We need to write this in the standard quadratic equation form.

We group all terms on the left to get:

[tex]2 {x}^{2} + 5x - 2x - 9 = 0[/tex]

We simplify to get:

[tex]2 {x}^{2} +3x- 9 = 0[/tex]

We now compare to:

[tex]a {x}^{2} + bx + c = 0[/tex]

[tex] \implies \: a = 2 , \: \: b = 3 \: \: and \: c=- 9[/tex]

[tex] \implies ac = 2 \times - 9 = - 18[/tex]

The factors of -18 that sums up to 3 are -3, 6.

We split the middle term with these factors to get:

[tex]2 {x}^{2} +6x - 3x- 9 = 0[/tex]

Factor by grouping:

[tex]2x(x + 3) -3(x + 3) = 0[/tex]

Factor again to obtain:

[tex](2x - 3)(x + 3) = 0[/tex]

Apply the zero product principle to get:

[tex]2x - 3 = 0 \: or \: x + 3 = 0[/tex]

[tex] \implies \: x = \frac{3}{2} \: or \: x = - 3[/tex]

Find all values of x that are NOT in the domain of h.
If there is more than one value, separate them with commas.

h(x) = x + 1 / x^2 + 2x + 1

Answers

Answer:

if x=-1 then its is NOT in the domain of h.

Step-by-step explanation:

Domain is the set of values for which the function is defined.

we are given the function

h(x) = x + 1 / x^2 + 2x + 1

h(x) = x+1 /x^2+x+x+1

h(x) = x+1/x(x+1)+1(x+1)

h(x) = x+1/(x+1)(x+1)

h(x) = x+1/(x+1)^2

So, the function h(x) is defined when x ≠ -1

Its is not defined when x=-1

So, if x=-1 then its is NOT in the domain of h.

Answer: [tex]x=-1[/tex]

Step-by-step explanation:

Given the function h(x):

[tex]h(x)=\frac{x+1}{ x^2 + 2x + 1}[/tex]

The values that are not in the domain of this function are those values that  make the denominator equal to zero.

Then, to find them, you can make the denominator equal to zero and solve for "x":

[tex]x^2 + 2x + 1=0\\\\(x+1)(x+1)=0\\\\(x+1)^2=0\\\\x=-1[/tex]

10. Sarah is planning to fence in her backyard garden. One side of the garden is 34 feet long, another side is 30 feet long, and the third side is 67 feet long.Find the perimeter of Sarah’s garden to determine the amount of fencing material needed.

A.262 ft.
B.68,340 ft.
C.250 ft.
D.131 ft.

Answers

Answer:

131ft is the amount of fencing material needed

Step-by-step explanation:

Perimeter is the distance around a shape: we have to sum all the distances

P = d1 + d2 + d3

P = 34 ft + 30 ft + 67 ft = 131 ft

Answer:

D. 131 ft.

Step-by-step explanation:

If Sarah is planning to fence in her backyard garden and one side of the garden is 34 feet long, another side is 30 feet long, and the third side is 67 feet long. The perimeter of Sarah’s garden to determine the amount of fencing material needed is 131 feet.

The mean per capita income is 24,787 dollars per annum with a variance of 169,744.What is the probability that the sample mean would differ from the true mean by greater than 42 dollars if a sample of 412 persons is randomly selected? Round your answer to four decimal places.

Answers

Final answer:

The question asks for the probability that the sample mean of income differs from the true mean by over 42 dollars for a sample size of 412. We use the Central Limit Theorem to approach this problem, calculating the standard error and Z-score to refer to the standard normal distribution to find the associated probability.

Explanation:

This question pertains to the field of statistics, more specifically, the Central Limit Theorem. The Central Limit Theorem says that if we take many samples from a population, the distribution of the sample means will approximate a normal distribution, regardless of the shape of the population distribution. We can use this theorem to calculate a probability related to the sample mean.

In this case, the population mean (μ) is a per capita income of 24,787 dollars and the population variance (σ²) is 169,744 dollars. We're asked to find the probability that the sample mean would differ from the true mean by more than 42 dollars if a sample of 412 persons is randomly selected.

The standard error of the sample mean is calculated by σ / sqrt(n), where σ is the standard deviation (sqrt(σ²)), and n is the sample size (412). After finding the standard error, we will calculate the Z-score of 42, which is the number of standard errors 42 is away from the mean. Calculating the Z-score is achieved by z = (X - μ) / SE, where X is the value of 42.

We can refer the calculated Z-score to the standard normal distribution to find the associated probability. However, since we are looking for the probability of a difference greater than 42, we want the probabilities in the tails of the distribution beyond our calculated Z-score, so it would be 1 minus this value.

Learn more about Central Limit Theorem here:

https://brainly.com/question/898534

#SPJ12

The functions q and r are defined as follows.
q(x) = -x - 2
r(x) = -2x^2 -2
Find the value of r(q(-4)) .

Answers

Answer:

r(q(-4)) = -10

Step-by-step explanation:

q(x) = -x - 2

r(x) = -2x^2 -2

r(q(-4))

First find q(-4)

Let x=-4

q(-4) = -(-4) - 2

q(-4) = +4 -2 = 2

q(-4) =2

We substitute this value in for x in r(x)

r(2) = -2(2)^2 -2

     = -2 (4) -2

     = -8 -2

     = -10

For this case we have the following functions:

[tex]q (x) = - x-2\\r (x) = - 2x ^ 2-2[/tex]

We must find [tex]r (q (x))[/tex]. So:

We substitute [tex]q (x)[/tex]in [tex]r (x).[/tex]

[tex]r (q (x)) = - 2 (-x-2) ^ 2-2[/tex]

Now we substitute[tex]x = -4[/tex]

[tex]r (q (-4)) = - 2 (- (- 4) -2) ^ 2-2\\r (q (-4)) = - 2 (+ 4-2) ^ 2-2\\r (q (-4)) = - 2 (2) ^ 2-2\\r (q (-4)) = - 2 (4) -2\\r (q (-4)) = - 8-2\\r (q (-4)) = - 10[/tex]

Answer:

[tex]r (q (-4)) = - 10[/tex]

Check My Work (No more tries available) Solve the following word problem, rounding dollars to the nearest cent. The Flour Power Bakery makes 280 cherry cheesecakes at a cost of $2.51 each, If a spoilage rate of 30% is anticipated, at what price should the cakes be sold to achieye a 65% markup based on cost? Do not enter units in your answer 10.24 per cheesecake

Answers

Answer:

5.92 per cheesecake.

Step-by-step explanation:

The initial number cherry cheesecakes = 280,

Also, the cost of each cheesecakes = $ 2.51,

So, the total cost price = 280 × 2.51 = $ 702.8,

Markup = 65 %,

Thus, the total selling cost = 702.8 + 65% of 702.8 = $ 1159.62,

Now, the spoilage rate = 30 %,

So, the total new number of cheesecakes = 280 - 30% of 280 = 280 - 84 = 196,

Hence, the selling cost of each cheesecake = [tex]\frac{1159.62}{196}[/tex]

[tex]=\$ 5.91642857143[/tex]

[tex]\approx \$ 5.92[/tex]

Use the formula for the present value of an ordinary annuity or the amortization formula to solve the following problem.

PV=$15,000​; i=0.03​; PMT=​$650​; n=​?

n= ​(Round up to the nearest​ integer.)

Use the formula for the present value of an ordinary annuity or the amortization formula to solve the following problem.

PV=$9,000​; PMT=​$500​; n=35​; i=​?

i= ​(Type an integer or decimal rounded to three decimal places as​ needed.)

Answers

Answer:

  1.  n = 40

  2.  

Step-by-step explanation:

The ordinary annuity formula can be written as ...

  PV = PMT(1 -(1+r)^-n)/r

where PMT is the payment per period, r is the interest rate per period, and n is the number of periods.

This formula can be solved explicitly for n, but not for r. Iterative or other methods can be used to find r.

__

1. Filling in the given information, we have ...

  15000 = 650(1 -1.03^-n)/0.03

  450/650 = 1 - 1.03^-n . . . . . divide by the coefficient of the stuff in parens

  1.03^-n = 4/13 . . . . . . . . . . . solve for the exponential term

  -n·log(1.03) = log(4/13) . . . . take logarithms

  n = log(13/4)/log(1.03) ≈ 39.87 . . . . . solve for n

  n ≈ 40

__

2. We can rewrite the annuity formula to make it be a function of i that is zero at the desired value of i.

  f(i) = PV -PMT(1 -(1+i)^-n)/i

If we want i as a percentage, then we can replace i with i/100 and fill in the given values to get ...

  f(i) = 9000 -500(1 -(1 +i/100)^-35)/(i/100)

  f(i) = 1000(9 -50(1 -(1 +i/100)^-35)/i) . . . . multiply the fraction by 100/100

Since we're seeking a value of f(r) that is zero, we can eliminate the factor of 1000.

  f(i) = 9 -50(1 - (1+i/100)^-35)/i

The attached graph shows the solution to f(i)=0 is near i=4.27%. As a decimal rounded to 3 decimal places, this is ...

  i ≈ 0.043

A complex number, represented by z = x + iy, may also be visualized as a 2 by 2 matrix

(x y
-y x)

(a) Verify that addition and multiplication of complex numbers de ned via matrix opera-
tions are consistent with the usual addition and multiplication rules.
(b) What is the matrix representation corresponding to (x + iy)^-1?

Answers

Answer:

Step-by-step explanation:

A) Suppose that we have the complex numbers

[tex]z= x + iy \quad \text{and} \quad \\\\ \tilde{z}=\tilde{x} + i \tilde{y}[/tex]

Remember that to sum complex numbers, we sum the real parts of the two numbers to get the real part and the imaginary parts of the two numbers to get the imaginary part. Hence,  

[tex]z+\tilde{z} = (x + i y) + (\tilde{x} + i \tilde{y}) = (x + \tilde{x})+i (y+\tilde{y})[/tex]

On the other hand, if we sum the matrix visualizations of [tex]z \quad \text{and} \quad \tilde{z}[/tex] we get

[tex]\left[\begin{array}{cc}x &y\\-y&x\end{array}\right] + \left[\begin{array}{cc}\tilde{x}&\tilde{y}\\ -\tilde{y}&\tilde{x}\end{array}\right] = \left[\begin{array}{cc}x + \tilde{x}& y + \tilde{y}\\-(y+\tilde{y})&x+\tilde{x}\end{array}\right][/tex]

which is the matrix visualization of [tex]z + \tilde{z}[/tex].

To multiply two complex numbers, we use the distributive law to multiplly and then separete the real part from the imaginary part

[tex]z \cdot \tilde{z}= (x + iy) \cdot (\tilde{x} + i \tilde{y})=(x \tilde{x} + i x \tilde{y} + i \tilde{x} y - y\tilde{y} ) = (x\tilde{x}-y\yilde{y})+i(x\tilde{y}+\tilde{x}y)[/tex]

Again, if we multiply the matrix visualizations of [tex]z \quad \text{and} \quad \tilde{z}[/tex] we get

[tex]\left[\begin{array}{cc}x&y\\-y&x\end{array}\right]\left[\begin{array}{cc}\tilde{x}&\tilde{y}\\-\tilde{y}&\tilde{x}\end{array}\right] = \left[\begin{array}{cc}x\tilde{x}-y\tilde{y}&x\tilde{y}+y\tilde{x}\\-y\tilde{x}-x\tilde{y}&x\tilde{x}-y\tilde{y}\end{array}\right][/tex]

which is the matrix viasualization of [tex]z\cdot\tilde{z}.[/tex]

B)  Since the usual matrix operations are consisten with the usual addition and multiplication rules in the complex numbers, we can use them to find the multiplicative inverses of a complex number [tex]z=x+iy[/tex].

We are looking for the complex number [tex]z^{-1}=(x+iy)^{-1}[/tex] which in terms of matrices is equivalent to find the matrix

[tex]\left[\begin{array}{cc}x&y\\-y & x\end{array}\right]^{-1}= \dfrac{1}{x^{2}+y^{2}} \left[\begin{array}{ccc}x&-y\\y&x\end{array}\right][/tex]    

Hence,

[tex]z^{-1}=\dfrac{1}{x^2 +y^2} (x-iy)=\dfrac{1}{|z|^2}(x-iy)[/tex]

If a company employed 50 people in 1995, and tripled their employment by 2005, how many total people would be employed if there are 40% more employees than in 2005 by 2015?

Answers

Answer:

210

Step-by-step explanation:

In 2005 the employee was tripple of 1995 which is 50×3=150. So number of employees in 2005=150.

In 2015 number of employees were 40% of employees in 2005.

40% of 150 =150×40÷100 = 60,

Therefore number of employees in 2015 =150+60= 210 employees.

Answer:

210 employees in 2015

Step-by-step explanation:

In order to solve this we first have to calculate the number of employees that there were in 2005, since the problem says that they tripled their employees from 1995, that meas three times 50, meaning 150 employees in 2005, if by 2015 the number of employees had increase in 40% we just do a simple rule of three, 150 being the 100% and trying to calculate the 140%:

[tex]\frac{150}{100}= \frac{x}{15} \\x=\frac{150*15}{100}\\ x= 210[/tex]

So now we know that there were 210 employees in 2015.

For a certain data set the regression equation is y = 2 + 3x. The correlation coefficient between y and x in this data set _______.


A. Must be 0


B. Is negative


C. Must be 1


D. Must be 3

Answers

Answer:

C. Must be 1

Step-by-step explanation:

The correlation coefficient of an equation represents the relation between the  two variable ( dependent and independent )

It lies between -1 to 1,

If an equation has strongly positive correlation then the value of correlation coefficient is 1,

If there is no relation then the value of correlation is 0,

If there is strongly negative relation then the value of correlation coefficient is -1,

Here, the equation is,

y = 2 + 3x

Since, the value of y is increasing with increasing the value of x,

We can say that there is strong positive relation between the variables x and y,

Hence, by the above statements,

The correlation coefficient between y and x in this data set must be 1.

Option 'C' is correct.

Determine whether the geometric series is convergent or divergent. 6 + 5 + 25/6 + 125/36 + ...
If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Answers

The [tex]n[/tex]-th term in the series is 6 multiplied by the [tex](n-1)[/tex]-th power of 5/6:

[tex]a_1=6=6\left(\dfrac56\right)^{1-1}[/tex]

[tex]a_2=5=6\left(\dfrac56\right)^{2-1}[/tex]

[tex]a_3=\dfrac{25}6=6\left(\dfrac56\right)^{3-1}[/tex]

and so on.

[tex]\displaystyle\sum_{n=1}^\infty6\left(\frac56\right)^{n-1}[/tex]

Consider the [tex]N[/tex]-th partial sum,

[tex]S_N=\displaystyle\sum_{n=1}^N6\left(\frac56\right)^{n-1}[/tex]

[tex]S_N=6\left(1+\dfrac56+\cdots+\dfrac{5^{N-2}}{6^{N-2}}+\dfrac{5^{N-1}}{6^{N-1}}\right)[/tex]

Multiplying both sides by 5/6 gives

[tex]\dfrac56S_N=6\left(\dfrac56+\dfrac{5^2}{6^2}+\cdots+\dfrac{5^{N-1}}{6^{N-1}}+\dfrac{5^N}{6^N}\right)[/tex]

and substracting this from [tex]S_N[/tex] gives

[tex]\dfrac16S_N=6\left(1-\dfrac{5^N}{6^N}\right)[/tex]

[tex]S_N=36\left(1-\left(\dfrac56\right)^N}\right)[/tex]

As [tex]N\to\infty[/tex], it's clear that the sum converges to 36.

Final answer:

The geometric series in the question is convergent with a common ratio of 5/6. Using the formula for the sum of an infinite geometric series, the sum of the series is found to be 36.

Explanation:

In mathematics, specifically in series, determining whether a geometric series is convergent or divergent is centered around the common ratio value. In terms of this particular series: 6 + 5 + 25/6 + 125/36 + ..., the common ratio is 5/6. Given this common ratio, it's clear that it falls between -1 and 1. Hence, this geometric series is convergent.

Once we establish it is a convergent series, we can calculate its sum using the formula for the sum of an infinite geometric series: S = a / (1 - r), where 'a' is the first term and 'r' is the common ratio. Inserting the respective values a = 6 and r = 5/6, we get: S = 6 / (1 - 5/6) = 36. Hence, the sum of this infinite geometric series is 36.

Learn more about Geometric Series here:

https://brainly.com/question/34429025

#SPJ11

Consider a bell-shaped symmetric distribution with mean of 16 and standard deviation of 1.5. Approximately what percentage of data lie between 13 and 19?

Answers

Answer: 95.45 %

Step-by-step explanation:

Given : The distribution is bell shaped , then the distribution must be normal distribution.

Mean : [tex]\mu=\ 16[/tex]

Standard deviation :[tex]\sigma= 1.5[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = 13

[tex]z=\dfrac{13-16}{1.5}=-2[/tex]

For x = 19

[tex]z=\dfrac{19-16}{1.5}=2[/tex]

The p-value = [tex]P(-2<z<2)=P(z<2)-P(z<-2)[/tex]

[tex]0.9772498-0.0227501=0.9544997\approx0.9545[/tex]

In percent, [tex]0.9545\times100=95.45\%[/tex]

Hence, the percentage of data lie between 13 and 19 = 95.45 %

Solve the equation for x.
Sqrt X-6+3 = 10
x=1
x=13
x = 43
x= 55

Answers

Answer is 55
Two ways you can approach this first you can subtract the three from the 10 and get 7. Square that to get 49. Now you know that x-6 has to equal 49 and the only option greater than 49 is 55
Second you can just take the problem step by step.
Subtract three from both sides.
Sqrt x-6 =7
Square both sides
X-6=7^2
x-6=49
Add six to each side
X=55

The value of  X  is 55.

The detailed answer explains how to solve the equation for x by following a step-by-step process.

Solve the equation for x:

Given equation: √(X-6) + 3 = 10Subtract 3 from both sides: √(X-6) = 7Square both sides: X-6 = 49Therefore, X = 55


Use Euler’s formula to answer question.

A polyhedrons has 20 vertices and 20 faces. How many edges does it have?

Options are
-42
-40
-38
-39

Answers

Answer:  The correct option is (C) 38.

Step-by-step explanation:  Given that a polyhedron has 20 vertices and 20 faces.

We are to find the number of edges of the polyhedron using Euler's formula.

Euler's formula :

For any polyhedron, the number of vertices and faces together is exactly two more than the number of edges.

Mathematically, V − E + F = 2, where V, E and F represents the number of vertices, number of edges and number of faces of the polyhedron.

For the given polyhedron, we have

number of vertices, V = 20,

number of faces, F = 20

and

number of edges, E = ?

Therefore, from Euler's formula

[tex]V-E+F=2\\\\\Rightarrow 20-E+20=2\\\\\Rightarrow 40-E=2\\\\\Rightarrow E=40-2\\\\\Rightarrow E=38.[/tex].

Thus, the required number of edges of the given polyhedron is 38.

Option (C) is CORRECT.

Using Euler's formula V - E + F = 2 for a polyhedron with 20 vertices and 20 faces, we find that the number of edges (E) is 38.

The question pertains to finding the number of edges of a polyhedron using Euler's formula, which states V - E + F = 2, where V is the number of vertices, E is the number of edges, and F is the number of faces. Given that the polyhedron has 20 vertices (V = 20) and 20 faces (F = 20), we can rearrange Euler's formula to solve for the number of edges (E): E = V + F - 2. Plugging in the values we get E = 20 + 20 - 2, which simplifies to E = 38. Therefore, the polyhedron has 38 edges.

Many people believe that they can tell the difference between Coke and Pepsi. Other people say that the two brands​ cannot be distinguished. To test​ this, a random sample of 20 adults was selected to participate in a test. After being​ blindfolded, each person was given a small taste of either Coke or Pepsi and asked to indicate which brand soft drink it was. If people really​ can't tell the​ difference, what is the probability that fewer than 6 people will guess​ correctly

Answers

Answer:0.0206

Step-by-step explanation:

Using Binomial distribution for a sample of 20 adults

Let r denotes the no of correct answers out of 20

Probability that fewer than 6 people will guess correctly is P(r<6)

P(r<6)=P(r=0)+P(r=1)+P(r=2)+P(r=3)+P(r=4)+P(r=5)

[tex]P(r=0)=^{20}C_0\left ( 0.5\right )^{0}\left ( 0.5\right )^{20}=\left ( 0.5\right )^{20}[/tex]

[tex]P(r=1)=^{20}C_0\left ( 0.5\right )^{1}\left ( 0.5\right )^{19}=20\left ( 0.5\right )^{20}[/tex]

[tex]P(r=2)=^{20}C_0\left ( 0.5\right )^{2}\left ( 0.5\right )^{18}=190\left ( 0.5\right )^{20}[/tex]

[tex]P(r=3)=^{20}C_0\left ( 0.5\right )^{3}\left ( 0.5\right )^{17}=1140\left ( 0.5\right )^{20}[/tex]

[tex]P(r=4)=^{20}C_0\left ( 0.5\right )^{4}\left ( 0.5\right )^{16}=4845\left ( 0.5\right )^{20}[/tex]

[tex]P(r=5)=^{20}C_0\left ( 0.5\right )^{5}\left ( 0.5\right )^{15}=15,504\left ( 0.5\right )^{20}[/tex]

[tex]P(r<6)=\left ( 0.5\right )^{20}\left [ 1+20+190+1140+4845+15504\right ][/tex]

[tex]P(r<6)=\left ( 0.5\right )^{20}\times 21,700[/tex]

P(r<6)=0.02069

a $22,000 deposit at an apr of 5.1% with a quarterly compounding for 25 years. after 25 years will be

Answers

Answer:

After 25 years the amount will be $78099.34.

Step-by-step explanation:

The compound interest formula is ;

[tex]A=p(1+r/n)^{nt}[/tex]

Where p = 22000

r = 5.1% or 0.051

n = 4

t = 25

So, putting the values in formula we get;

[tex]A=22000(1+0.051/4)^{100}[/tex]

[tex]A=22000(1.01275)^{100}[/tex]

A = $78099.34

Therefore, after 25 years the amount will be $78099.34.

If D is the midpoint of segment AB and AB = 15, what is AD?

Answers

Answer: AD = 7.5

Step-by-step explanation: A midpoint is halfway between 2 points, which is AB. AB = 15. To find AD, which is half of the line, divide 15 by 2.

15/2 = 7.5

AD is 7.5

Answer:

AD = 7.5 units

Step-by-step explanation:

It is given in the question, a segment AB having measure = 15 units

If D is the midpoint of the segment AB, then we have to find the measure of segment AD.

Since D is the midpoint of AB then length of segment AD = [tex]\frac{1}{2}\times AB[/tex]

= [tex]\frac{1}{2}\times 15[/tex]

= 7.5 units

Therefore, AD = 7.5 units will be the answer.

A researcher testing the effects of two treatments for anxiety computed a 95% confidence interval for the difference between the mean of treatment 1 and the mean of treatment 2. If this confidence interval includes the value of zero, then she should reject the null hypothesis that the two population means are equal: true or false?

Answers

Answer:

False

Step-by-step explanation:

Given that a researcher testing the effects of two treatments for anxiety computed a 95% confidence interval for the difference between the mean of treatment 1 and the mean of treatment 2

Also that  confidence interval includes zero.

When confidence interval includes zero, we need not reject the null hypothesis since null hypothesis claims that difference =0

When confidence interval includes 0 it confirms that there is no difference and hence null hypothesis should be accepted.

Final answer:

The statement is false; if a 95% confidence interval for the difference between two treatment means includes zero, it indicates no significant difference, implying the null hypothesis cannot be rejected.

Explanation:

If a researcher testing the effects of two treatments for anxiety computed a 95% confidence interval for the difference between the mean of treatment 1 and the mean of treatment 2, and this confidence interval includes the value of zero, the correct interpretation is false regarding the statement that she should reject the null hypothesis that the two population means are equal. A confidence interval that contains zero indicates that the difference between the two treatments could be zero, suggesting there is no significant difference between the two treatments.

Therefore, there is insufficient evidence to reject the null hypothesis, and it is retained.

Understanding confidence intervals is crucial in hypothesis testing. A 95% confidence interval includes the true mean 95% of the time if the same experiment is repeated under the same conditions. Including zero in this interval suggests that the effect of the treatments could be negligible, meaning we cannot confidently claim there is a difference between the treatments based on the data provided.

Answer 2. Ella was born early in the morning on a Monday. She got married on the 9074th day of her life. What day of the week was it? 9074 24 66 Answer

Answers

Answer:

Ella got married on a Wednesday.

Step-by-step explanation:

Let's solve this problem by understanding the following:

Each week is composed by 7 days: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.

So 1 week = 7 days;

Because the married day was on the 9074th day of her life, we can find the number of weeks that 9074 days represent:

[tex]\frac{1 week}{7 days} * 9074 days = 1296.285714 weeks[/tex]

This means that 9074 days represent 1296.285714 weeks, which can be interpreted as 1296 entire weeks and a fraction of a week (0.285714).

Now let's calculate how many days 0.285714 weeks represent:

[tex]\frac{7 days}{1 week} * 0.285714 weeks = 2 days[/tex]

This means that 9074 days are actually 1296 weeks and 2 days, because Ella was born on a Monday, and because after 7 days (1 week) it is Monday again, after 1296 weeks it is Monday, but as we also calculated 2 extra days, then the married day is two days after a Monday, that is a Wednesday.

In conclusion, Ella got married on a Wednesday.

Evaluate the triple integral_E x^6e^y dV where E is bounded by the parabolic cylinder z = 25 - y^2 and the planes z = 0, x = 5, and x = -5.

Answers

Final answer:

To evaluate the triple integral, set up the limits of integration based on the given bounds. The parabolic cylinder and the planes define the limits for x, y, and z. Evaluate the triple integral using appropriate integration techniques.

Explanation:

To evaluate this triple integral, we need to set up the limits of integration based on the given bounds of the parabolic cylinder and the planes. The parabolic cylinder is defined by the equation z = 25 - y^2, so we need to find the limits for x, y, and z. Since the plane z = 0 is a boundary, the lower limit of integration for z is 0. The other boundary planes, x = 5 and x = -5, set the limits for x. For y, we need to find the limits based on the parabolic cylinder equation. By rearranging the equation, we have y = ±sqrt(25-z), which gives us the upper and lower limits for y.

Now, we can set up the triple integral as follows:

-55-sqrt(25-z)sqrt(25-z)025-y^2 x^6e^y dzdydx

We can then evaluate this triple integral using the appropriate integration techniques, such as using the power rule and integration by parts for the x^6e^y term.

Learn more about Evaluating triple integrals here:

https://brainly.com/question/35166811

#SPJ2

Final answer:

To evaluate the triple integral, we need to find the limits of integration for each variable. Given the given bounds, the limits for x and y can be determined, and then the integral can be solved using standard techniques.

Explanation:

To evaluate the triple integral, we need to find the limits of integration for each variable.

Given that E is bounded by the parabolic cylinder z = 25 - y^2 and the planes z = 0, x = 5, and x = -5, the limits for y will be -√(25-x^2) to √(25-x^2), the limits for x will be -5 to 5, and the limits for z will be 0 to 25 - y^2.

The integral becomes: ∫∫∫ x^6e^y dz dx dy, with the limits as mentioned above. You can now solve this triple integral using standard integration techniques.

Learn more about Integration here:

https://brainly.com/question/31744185

#SPJ3

A scientist mixes water (containing no salt) with a solution that contains 35% salt. She wants to obtain 175 ounces of a mixture that is 20% salt. How many ounces of water and how many ounces of the 35% salt solution should she use?

Answers

Answer: There is 100 ounces of 35% salt solution and 100 ounces of water.

Step-by-step explanation:

Since we have given that

Percent of salt in a solution = 35%

Percent of salt in a mixture = 20%

Number of ounces of a mixture = 175 ounces

We need to find the number of ounces of water and salt as well as .

We would use "Mixture and Allegation":

      Salt                       Water

      35%                           0%

                       20%

---------------------------------------------------------------

20% - 0%          :                35% - 20%

   20%              :                     15%

   4                    :                      3

So, Ratio of salt and water in the mixture is 4 : 3.

So, Number of ounces of salt in the mixture is given  by

[tex]\dfrac{4}{7}\times 175\\\\=100\ ounces[/tex]

Number of ounces of water in the mixture is given by

[tex]\dfrac{3}{7}\times 175\\\\=75\ ounces[/tex]

Hence, there is 100 ounces of 35% salt solution and 100 ounces of water.

Final answer:

To make a 175-ounce mixture with 20% salt, the scientist should mix 75 ounces of water with 100 ounces of the 35% salt solution.

Explanation:

The student is asking for help with a typical mixture problem in algebra that involves determining the amounts of two different concentrations in order to create a mixture with a desired concentration. To solve this, we can set up two equations, one based on the total volume of the mixture and one based on the total amount of salt.

Let x be the amount of water (0% salt) and y be the amount of the 35% salt solution. The total volume should be 175 ounces, so we have:

Equation 1: x + y = 175

The total amount of salt in the solution must be 20% of 175 ounces, which is 35 ounces. So for the salt amount, we have:

Equation 2: 0.35y = 35

Solving Equation 2 gives us y = 100 ounces for the 35% solution. Substituting y in Equation 1, we get x = 75 ounces for the water. Therefore, the scientist should mix 75 ounces of water with 100 ounces of the 35% salt solution to obtain 175 ounces of a 20% salt mixture.

Question 9 (7 points) Adam borrows $6000 for two years at an 8% annual interest rate, what is his monthly payment? A. $250 D. $522 B. $271 C.$290 E. None of these

Answers

Answer:

B. $271

Step-by-step explanation:

Given,

Present value of the loan, PV = $ 6000,

Annual rate of interest = 8 % = 0.08,

So, the monthly rate of interest, r = [tex]\frac{0.08}{12}[/tex],

Also, time = 2 years,

So, the total number of months, n = 24,

Hence, the monthly payment would be,

[tex]A=\frac{PV(r)}{1-(1+r)^{-n}}[/tex]

[tex]=\frac{6000(\frac{0.08}{12})}{1-(1+\frac{0.08}{12})^{-24}}[/tex]

[tex]=\$271.363748737[/tex]

[tex]\approx \$271[/tex]

Option B is correct.

A student took a chemistry exam where the exam scores were mound-shaped with a mean score of 90 and a standard deviation of 64. She also took a statistics exam where the scores were mound-shaped, the mean score was 70 and the standard deviation was 16. If the student's grades were 102 on the chemistry exam and 77 on the statistics exam, then: a. the student did relatively better on the chemistry exam than on the statistics exam, compared to the other students in each class. b. it is impossible to say which of the student's exam scores indicates the better performance. c. the student did relatively better on the statistics exam than on the chemistry exam, compared to the other students in the two classes. d. the student's scores on both exams are comparable, when accounting for the scores of the other students in the two classes. e. the student did relatively the same on both exams

Answers

Answer:

wow that school has alot of test don't it lol

Step-by-step explanation:

anyway what's the question

Final answer:

After calculating the Z-scores for the student's performance in each class, we found that she performed closer to the top of her class in statistics. Thus, she did relatively better on the statistics exam compared to the chemistry exam.

Explanation:

To determine relative performance in each class, we need to calculate the number of standard deviations the student's score is from the mean (also known as a

Z-score

).

For the chemistry exam, where the mean was 90 and the standard deviation was 64, the student's Z-score is: (102 - 90) / 64 = 0.1875.

For the statistics exam, with a mean of 70 and standard deviation of 16, the student's Z-score is: (77 - 70) / 16 = 0.4375.

Comparing these Z-scores, we can conclude that the student did relatively better in the statistics class because her Z-score (0.4375) was higher there than in her chemistry class (0.1875). This indicates she performed closer to the top of her class in statistics. Therefore, the answer would be selection C: the student did relatively better on the statistics exam than on the chemistry exam, compared to the other students in the two classes.

Learn more about Z-Score here:

https://brainly.com/question/33620239

#SPJ11

Other Questions
What is the pH of 0.001 mol dm-3 solution of sodium hydroxide Of the following sets, which numbers in {1, 2, 3, 4, 5} make the inequality 3x + 1 > 4 true? {1, 2} {1, 2, 3} {1, 2, 3, 4, 5} {2, 3, 4, 5} Calculate the vapor pressure at 25 C of an aqueous solution that is 5.50% NaCl by mass. (Assume complete dissociation of the solute.) Tro, Nivaldo J.. Chemistry (p. 617). Pearson Education. Kindle Edition. I need help with 12.51014 LWH NF3 has three F atoms bonded to a central N atom, with one lone electronpair on the N. What is the shape of this molecule?OA. TetrahedralOB. Trigonal planarOC. BentOD. Trigonal pyramidal A male patient presents with the following respiratory volumes and capacities: TV = 500 mL, ERV-600 mL, IRV 2,700 mL. What is this patient's VC? Are these values normal? If not, are they more consistent with an obstructive or restrictive disease pattern? Explain. Find a vector equation and parametric equations for the line. (Use the parameter t.) The line through the point (0, 11, 8) and parallel to the line x = 1 + 4t, y = 6 4t, z = 3 + 6t How did the Peace of Utrecht resolve the problem of succession to the Spanish throne? The leader of the Spanish House of Alva was placed on the throne by the nobility on offering guarantees that he would protect noble rights. The monarchy was abolished and Spain declared a republic. The German Habsburg Duke of Austria was placed on the throne after the death of his cousin, the Spanish Habsburg Charles II. Louis XIV of France's grandson, Philip, was placed on the French throne with the agreement that the French and Spanish thrones would never be united. Write a program to display a message telling the educational level of a student based on their number of years of school. The user should enter a number indicating the number of years of school, and the program should then print the corresponding message given below. Be sure to use named constants rather than any numbers other than 0 in this program. How are photosynthesis and cellular respiration related? (A)They are both ways of forming glucose molecules. (B) One forms glucose and the other breaks it down (C)They are both used during fermentation (D)Both processes require an input of sunlight HELP! What is the solution set of |2x + 1| > 5?A {x|1 < x < 3}B {x|1 < x < 3}C {x|x > 2 or x < 3}D {x|x < 2 or x > 3} If you are performing an activity close to the ground, you are performing at a ______ level Sulfur dioxide and oxygen react to form sulfur trioxide during one of the key steps in sulfuric acid synthesis. An industrial chemist studying this reaction fills a 25.0L tank with 4.5 mol of sulfur dioxide gas and 4.5 mol of oxygen gas at 30.C. He then raises the temperature, and when the mixture has come to equilibrium measures the amount of sulfur trioxide gas to be 1.4 mol. Calculate the concentration equilibrium constant for the reaction of sulfur dioxide and oxygen at the final temperature of the mixture. Round your answer to 2 significant digits. What is one example of how globalization can weaken local cultures? Read the excerpt from chapter 23 of The Adventures of Huckleberry Finn. What we want is to go out of here quiet, and talk this show up, and sell the rest of the town! Then we'll all be in the same boat. Ain't that sensible?" ("You bet it is!the jedge is right!" everybody sings out.) What is ironic about the judge's statement?A. Rather than admit they have been fooled, the townspeople truly believe it is more sensible to devise a plan to fool the others as well.B. Despite the fact they themselves have been fooled, the townspeople trick themselves into thinking it will be easy to fool the others.C. Although the show was truly funny, the townspeople are still petrified of what others will say about the fact they attended the show.D. In spite of the fact the townspeople claim to be embarrassed about attending the show, they actually enjoyed themselves immensely. An electron with kinetic energy 2.9 keV moving along the positive direction of an x axis enters a region in which a uniform electric field of magnitude 7.5 kV/m is in the negative direction of the y axis. A uniform magnetic field is to be set up to keep the electron moving along the xaxis, and the direction of the field is to be chosen to minimize the required magnitude of the field. What is the magnitude of the magnetic field in mT? PLZ HELP WILL GIVE BRAINLIEST!!!Type the correct answer in each BLANK. The line of best fit represents the number of miles Jean covered at different speeds during a trip. If the speed is represented by x and the distance covered is represented by y, the equation of the best line of fit is y =(BLANK) . She covered about (BLANK) miles at the speed of 50 miles per hour. A cholera outbreak has occurred, and the culprit is contaminated drinking water. Which controllable risk factors mighthave caused this outbreak? Check all that apply.The unsanitary handling of human waste by nearby waterways.The genetic makeup of individuals reporting cholera-related symptoms.The significant difference in reported cases between males and females.The reduction in accessibility to regions that use filtered bottled water.The lack of access individuals with symptoms have to health clinics. The average time required to complete an accounting test has been determined to be 55 minutes. Assuming that times required to take tests are exponentially distributed, how many students from a class of 30 should be able to complete the test in between 45 and 60 minutes? Professor Halen has 184 students in his college mathematics lecture class. The scores on the midterm exam are normally distributed with a mean of 72.3 and a standard deviation of 8.9. How many students in the class can be expected to receive a score between 82 and 90?