A student is asked to determine the molarity of a strong base by titrating it with 0.250 M solution of H2SO4. The students is instructed to pipet a 20.0 mL portion of the strong base solution into a conical flask, to add two drops of an indicator that changes at pH = 7, and to dispense the standard H2SO4 solution from a buret until the solution undergoes a permanent color change. The initial buret reading is 5.00 mL and the final reading is 30.00 mL at the equivalence point.Which procedural error will result in a strong base molarity that is too high?Using 4 drops of indicator rather than the recommended 2 dropsUsing a buret with a tip filled with air rather than the H2SO4 solutionUsing an indicator that changes at pH = 5 rather than at pH = 7Using a conical flask that contains several drops of H2O

Answers

Answer 1

Answer:

The molarity of the strong base is 0.625 M

Which procedural error will result in a strong base molarity that is too high?

⇒ Using a buret with a tip filled with air rather than the H2SO4 solution

Explanation:

Step 1: Data given

Molarity of H2SO4 = 0.250 M

The initial buret reading is 5.00 mL

The final reading is 30.00 mL

Step 2: Calculate volume of H2SO4 used

30.00 mL - 5.00 mL = 25.00 mL

Step 3: Calculate moles of H2SO4

0.250 M = 0.250 mol/L

Since there are 2 H+ ions per H2SO4

0.250 mol/L  * 2 = 0.500 mol/L

The number of moles H2SO4 = 0.500 mol/L * 0.025 L

Number of moles H2SO4 = 0.0125 mol

Step 4: Calculate moles of OH-

For 1 mol H2SO4, we need 1 mol of OH-

For 0.0125 mol of H2SO4, we have 0.0125 mol of OH-

Step 5: Calculate the molarity of the strong base

Molarity = moles / volume

Molarity OH- = 0.0125 mol / 0.02 L

Molarity OH - = 0.625 M

Which procedural error will result in a strong base molarity that is too high?

⇒ Using a buret with a tip filled with air rather than the H2SO4 solution

   


Related Questions

A gaseous reaction occurs and comes to equilibrium:
2HI(g) + Cl2(g) ---> 2HCl(g) + I2(g) + energy
Which of the following changes to the system will serve to increase the nuber of moles of I2 present at equilibrium?
A.) Increasing the volume at constant temperature
B.) Decreasing the volume at a constant temperature
C.) Increasing the temperature at a constant volume
D.) Decreasing the temperature at constant volume

Answers

Answer:

d) Decreasing the temperature at constant volume

Explanation:

if we assume ideal gas behaviour, since the concentration of the gas is proportional to its pressure at constant temperature

(from the ideal gas law PV =nRT or P= CRT), the equilibrium constant in terms of pressure will be

Kp = (p² HCl *p² I2)/(p² HI *p² CL2)

from Dalton's law : pi = P*xi

Kp = (P²*x² HCl *P* x I2)/(P*x HI *P²x² CL2) =  (x² HCl * x I2)/(x HI *x² CL2)

since Kp does not change because the T is constant and it does not depend on pressure → the equilibrium will not change due to changes in pressure caused by reductions or increases in volume at constant pressure and composition

also since the reaction is exothermic → an increase in temperature will displace the equilibrium towards the reactants , and thus decreasing the moles of I2 at equilibrium

this can be seen from van't hoff equation :

d ln (K) /dT= ΔH/RT² , since ΔH>0 → K diminishes with increase in temperature

on the other hand, a decrease in temperature will displace the equilibrium towards the products , and thus increasing the moles of I2 at equilibrium

In a report to a supervisor, a chemist described an experiment in the following way: "0.0800 mol of H2O2 decomposed into 0.0800 mol of H2O and 0.0400 mol of O2." Express the chemistry and stoichiometry of this reaction by a conventional chemical equation. Do not include physical states. Use the smallest possible whole number coefficients.

Answers

Final answer:

The chemical equation representing the decomposition of hydrogen peroxide into water and oxygen gas is 2 H2O2 → 2 H2O + O2. This represents a stoichiometric relationship with a 2:1 ratio of hydrogen peroxide to oxygen and a 1:1 ratio of hydrogen peroxide to water.

Explanation:

The stoichiometry of the chemical reaction where hydrogen peroxide (H2O2) decomposes into water (H2O) and oxygen gas (O2) can be expressed by the following balanced chemical equation:

2 H2O2 → 2 H2O + O2

According to the equation given by the student, 0.0800 mol of H2O2 decomposes to produce 0.0800 mol of H2O and 0.0400 mol of O2. However, based on stoichiometric coefficients, we should expect a 1:1 ratio between H2O2 and H2O, and a 2:1 ratio between H2O2 and O2. Therefore, the decomposition of 0.0800 mol H2O2 should yield 0.0400 mol O2 according to the equation, which aligns with what was provided by the chemist.

. A rigid tank contains 65.5 g of chlorine gas (Cl2) at a temperature of 73 °C and an absolute pressure of 6.00 × 10 5 6.00 × 10 5 Pa. Later, the temperature of the tank has dropped to 34 °C and, due to a leak, the pressure has dropped to 3.70 × 10 5 3.70 × 10 5 Pa. How many grams of chlorine gas have leaked out of the tank? (The mass per mole of Cl2 is 70.9 g/mol.)

Answers

Answer:

Chlorine gas leaked = 20 g        

Explanation:

Given: Molar mass of chlorine gas: m = 70.9 g/mol

Initial Mass of chlorine gas: w₁ = 65.5 g, Initial Absolute pressure: P₁ = 6 × 10⁵ Pa, Initial temperature: T₁ = 73 °C = 73 + 273 = 346 K      (∵ 0°C = 273 K)

Final Absolute pressure: P₂ = 3.70 × 10⁵ Pa, Final temperature: T₂ = 34 °C = 34 + 273 = 307 K

Volume is constant

Final mass of chlorine gas: w₂ = ? g

Chlorine gas have leaked = w₁ - w₂ = ? g

Initial number of moles of chlorine gas: [tex]n_{1}= \frac{w_{1}}{m_{1}} =\frac{65.5 g}{70.9 g/mol} = 0.924 mole[/tex]

According to the Ideal gas law: P.V = n.R.T

∴ at constant volume,

[tex]\frac{n_{1}\times T_{1}}{P_{1}} = \frac{n_{2}\times T_{2}}{P_{2}}[/tex]

[tex]n_{2} = \frac{n_{1}\times T_{1} \times P_{2}}{P_{1} \times T_{2}}[/tex]

[tex]n_{2} = \frac{(0.924)\times (346 K) \times (3.70 \times 10^{5} Pa)}{(6 \times 10^{5} Pa) \times (307 K)} [/tex]

Final number of moles of chlorine gas: [tex]n_{2} = 0.642 = \frac{w_{2}}{m} [/tex]

Final mass of chlorine: [tex]w_{2} = 0.642 mol \times m = (0.642 mol) \times (70.9 g/mol) = 45.5 g[/tex]

Therefore, Chlorine gas leaked = w₁ - w₂ = 65.5 g - 45.5 g = 20 g

Final answer:

No chlorine gas has leaked out of the tank.

Explanation:

To calculate the amount of chlorine gas leaked out of the tank, we need to use the Ideal Gas Law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

First, we calculate the initial number of moles using the given mass of chlorine gas (65.5 g) and its molar mass (70.9 g/mol):

65.5 g / 70.9 g/mol = 0.9237 mol

Next, we use the initial conditions (temperature = 73°C = 346 K, pressure = 6.00 × 10^5 Pa) to calculate the initial volume:

V = nRT / P = (0.9237 mol) * (8.314 J/mol K) * (346 K) / (6.00 × 10^5 Pa) ≈ 0.175 m^3

Similarly, we use the final temperature (34°C = 307 K) and pressure (3.70 × 10^5 Pa) to calculate the final volume:

V = nRT / P = (0.9237 mol) * (8.314 J/mol K) * (307 K) / (3.70 × 10^5 Pa) ≈ 0.227 m^3

Finally, we calculate the difference in the volumes to determine the amount of leaked chlorine gas:

Volume leaked = Initial volume - Final volume = 0.175 m^3 - 0.227 m^3 ≈ -0.052 m^3

Since volume cannot be negative, we conclude that no chlorine gas has leaked out of the tank.

Learn more about Chlorine gas leak here:

https://brainly.com/question/36646678

#SPJ11

Which species should have the shortest bond length?
A.) N2
B.) O2
C.) SO2
D.) SO3

Answers

Answer:

The correct option is: A) N₂

Explanation:

The Bond length of a chemical bond is the length of a chemical bond formed between two given atoms.

Bond length is inversely proportional to the bond order of the chemical bond, which is the total number of bonds between two atoms. Thus as the bond order increases, the bond length decreases.

A) N₂: The nitrogen-nitrogen bond in dinitrogen is a triple bond (N≡N).

Thus the bond order = 3.

B) O₂: The oxygen-oxygen bond in dioxygen is a triple bond (O=O).

Thus the bond order = 2.

C) SO₂: Sulfur dioxide is a resonance stabilized molecule and its resonance hybrid shows that the sulfur-oxygen bond in sulfur dioxide is a partial double bond.

Thus the bond order = 1.5

D) SO₃: Sulfur trioxide is a resonance stabilized molecule and its resonance hybrid shows that the sulfur-oxygen bond in sulfur trioxide is a partial double bond.

Thus the bond order = 1.33

Since the bond order of N₂ is the largest, therefore, the N-N bond length is the shortest.

Free-energy change, ΔG∘, is related to cell potential, E∘, by the equationΔG∘=−nFE∘where n is the number of moles of electrons transferred and F=96,500C/(mol e−) is the Faraday constant. When E∘ is measured in volts, ΔG∘ must be in joules since 1 J=1 C⋅V.1. Calculate the standard free-energy change at 25 ∘C for the following reaction:Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s)Express your answer to three significant figures and include the appropriate units.2. Calculate the standard cell potential at 25 ∘C for the reactionX(s)+2Y+(aq)→X2+(aq)+2Y(s)where ΔH∘ = -675 kJ and ΔS∘ = -357 J/K .Express your answer to three significant figures and include the appropriate units.

Answers

1. The standard free-energy change for the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 25 ∘C is -358,000 J (to three significant figures).

2. The standard cell potential for the reaction X(s)+2Y+(aq)→X2+(aq)+2Y(s) at 25 ∘C is 2.90 V (to three significant figures).

1. To calculate the standard free-energy change at 25 ∘C for the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s), we can use the following equation:

ΔG∘=−nFE∘

where:

* ΔG∘ is the standard free-energy change (in J)

* n is the number of moles of electrons transferred (2 in this case)

* F is the Faraday constant (96,500 C/(mol e⁻))

* E∘ is the standard cell potential (in V)

The standard cell potential for the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) is 1.83 V. Therefore, the standard free-energy change is:

ΔG∘=−(2 mol e⁻)(96,500 C/(mol e⁻))(1.83 V)

ΔG∘=−358,000 J

Therefore, the standard free-energy change for the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 25 ∘C is -358,000 J (to three significant figures).

2. To calculate the standard cell potential at 25 ∘C for the reaction X(s)+2Y+(aq)→X2+(aq)+2Y(s), we can use the following equation:

E∘=−ΔG∘nF

where:

* E∘ is the standard cell potential (in V)

* ΔG∘ is the standard free-energy change (in J)

* n is the number of moles of electrons transferred (2 in this case)

* F is the Faraday constant (96,500 C/(mol e⁻))

We are given that ΔH∘ = -675 kJ and ΔS∘ = -357 J/K. We can use these values to calculate ΔG∘ using the following equation:

ΔG∘=ΔH∘−TΔS∘

where T is the temperature in Kelvin (298 K in this case).

ΔG∘=−675 kJ−(298 K)(−357 J/K)

ΔG∘=−559,890 J

Now we can calculate the standard cell potential using the equation above:

E∘=−ΔG∘nF

E∘=−(−559,890 J)/(2 mol e⁻)(96,500 C/(mol e⁻))

E∘=2.90 V

Therefore, the standard cell potential for the reaction X(s)+2Y+(aq)→X2+(aq)+2Y(s) at 25 ∘C is 2.90 V (to three significant figures).

Learn more about free-energy change here:

https://brainly.com/question/33364670

#SPJ6

The standard free-energy change for the reaction Mg(s) + Fe²⁺(aq) → Mg²⁺(aq) + Fe(s) is -372 kJ at 25 °C. The standard cell potential for the reaction X(s) + 2Y⁺(aq) → X²⁺(aq) + 2Y(s) is 2.95 V at 25 °C. These values were determined using proper thermodynamic equations and constants.

1. Calculate the Standard Free-Energy Change:

The given reaction is: Mg(s) + Fe²⁺(aq) → Mg²⁺(aq) + Fe(s).

To find the standard free-energy change (ΔG°), we use the given equation ΔG° = -nFE°.

Determine the number of moles of electrons transferred (n): For the reaction, Mg is oxidized from 0 to +2 and Fe²⁺ is reduced from +2 to 0. Thus, n = 2.Look up standard reduction potentials: E°(Mg²⁺/Mg) = -2.37 V and E°(Fe²⁺/Fe) = -0.44 V.Calculate the standard cell potential (E°): E° = E°(cathode) - E°(anode) = -0.44 V - (-2.37 V) = 1.93 V.Use Faraday's constant (F = 96,500 C/mol e-): ΔG° = - (2 mol e-)(96,500 C/mol e-)(1.93 V) = -372,050 J = -372 kJ.The standard free-energy change for this reaction at 25 °C is -372 kJ.

2. Calculate the Standard Cell Potential:

Given the reaction: X(s) + 2Y⁺(aq) →  X²⁺(aq) + 2Y(s)

And ΔH° = -675 kJ and ΔS° = -357 J/K.

Use the Gibbs free energy equation: ΔG° = ΔH° - TΔS°.Assume temperature (T) = 25 °C = 298 K: ΔG° = -675 kJ - (298 K x -0.357 kJ/K) = -675 kJ + 106.386 kJ = -568.614 kJ.Convert ΔG° to J: ΔG° = -568,614 J.Use the equation ΔG° = -nFE° to find E°: Here, n = 2 because 2 moles of electrons are transferred.Rearrange the equation to find E°: E° = -ΔG° / (nF) = -(-568,614 J) / (2 x 96,500 C) = 2.95 V.

The standard cell potential for this reaction at 25 °C is 2.95 V.

Which one of the following processes produces a decrease in the entropy of the system?
A. boiling water to form steam
B. dissolution of solid KCl in water
C. mixing of two gases into one container
D. freezing water to form ice
E. melting ice to form water.

Answers

Explanation:

Entropy -

In a system, the randomness is measured by the term entropy .

Randomness basically refers as a form of energy that can not be used for any work.

The change in entropy is given by amount heat per change in temperature.

When solid is converted to liquid or gas entropy increases,

As the molecules in solid state are tightly packed and has more force of attraction between the molecules, but as it is converted to liquid or gas, the force of attraction between the molecule decreases and hence entropy increases.

So,

The particles of the substance , if are tightly held by strong force of attraction will decrease the entropy ,

And

If the particles are loosely held , the entropy will increase , i.e. , when gas is converted to liquid or solid .

A. boiling water to form steam ,

change of state from liquid to gas ,

and , hence entropy increases .

B. dissolution of solid KCl in water  ,

the number of particles increases ,

and hence , entropy increases .

C. mixing of two gases into one container  ,

the number of particles increases ,

and hence , entropy increases .

D. freezing water to form ice  ,

change of state from liquid to solid ,

and hence , entropy decreases .

E. melting ice to form water .

change of solid to liquid ,

and hence , entropy increases .

Final answer:

The process that results in a decrease in entropy is freezing water to form ice, as it involves water transitioning from a disordered liquid state to an ordered solid state.

Explanation:

The process that produces a decrease in the entropy of the system is freezing water to form ice (Option D). During freezing, water molecules move from a higher state of disorder in the liquid phase to a more ordered solid phase, resulting in reduced entropy. Freezing involves the transition of water from the liquid phase, where the molecules are more disordered, to the solid phase, where they are arranged in a structured pattern. This structured pattern, characterized by a fixed position of the molecules in the crystal lattice of ice, embodies a lower state of entropy.

Even though freezing results in a decrease in the system's entropy, this does not violate the second law of thermodynamics because the surrounding environment's entropy increases when heat is released during the freezing process, ensuring that the total entropy of the system plus its surroundings does not decrease.

1. In the first step of the mechanism for this process, a phenoxide anion is generated. This phenoxide anion goes on to act as a nucleophile via an SN2 mechanism, displacing the chloride on 3-chloro-1,2-propanediol. Why doesn’t the phenoxide anion act as a base to deprotonate one of the alcohols on 3-chloro-1,2-propanediol? Write a brief, specific explanation (1-2 sentences).

Answers

Answer:

See the explanation

Explanation:

In this case, in order to get an elimination reaction we need to have a strong base. In this case, the base is the phenoxide ion produced the phenol (see figure 1).  

Due to the resonance, we will have a more stable anion therefore we will have a less strong base because the negative charge is moving around the molecule (see figure 2).

Finally, the phenoxide will attack the primary carbon attached to the Cl. The C-Cl bond would be broken and the C-O would be produced at the same time to get a substitution (see figure 1).

Final answer:

The phenoxide anion prefers acting as a nucleophile in an SN2 mechanism on 3-chloro-1,2-propanediol because the electronegative chloride creates an electrophilic carbon that is more reactive towards nucleophilic attack than the deprotonation of an alcohol.

Explanation:

The phenoxide anion does not act as a base to deprotonate one of the alcohols on 3-chloro-1,2-propanediol because the presence of the chloride makes that carbon a more electrophilic center, which is highly susceptible to nucleophilic attack.

In an SN2 mechanism, the nucleophile favors attacking an electrophilic carbon, here significantly activated by the chloride leaving group, rather than deprotonating an alcohol which is a less electrophilic and less favorable process.

This is especially true when considering that alcohols are not particularly acidic, and thus their protons are not as easily abstracted by a base as compared to more acidic hydrogens (e.g., hydrogens adjacent to carbonyl groups).

The SN2 reaction is characterized by the simultaneous bond formation by the nucleophile and bond breaking by the leaving group, typically observed in primary alkyl halides. The phenoxide anion is a good nucleophile due to its negative charge, making it highly reactive towards electrophilic carbons, particularly against an atom that bears a good leaving group like chloride.

Consider the reaction: CO2(g) + CCl4(g) ⇌ 2 COCl2(g) ΔG° = 46.9 kJ Under the following conditions at 25 oC: LaTeX: P_{CO_2}P C O 2= 0.459 atm, LaTeX: P_{CCl_4}P C C l 4= 0.984 atm, and LaTeX: P_{COCl_2}P C O C l 2= 0.653 atm, ΔG for the reaction is , and the forward the reaction is

Answers

Final answer:

To calculate ΔG for the reaction under given conditions, use the equation ΔG = ΔG° + RT ln(Q), substituting given values and solving. Positive ΔG suggests a non-spontaneous reaction, while negative ΔG indicates a spontaneous reaction.

Explanation:

The student's question pertains to the change in Gibbs Free Energy (ΔG) for the reaction CO2(g) + CCl4(g) ⇌ 2 COCl2(g) under specified conditions. The ΔG of a reaction can be calculated using the equation ΔG = ΔG° + RT ln(Q), where ΔG° is the standard free energy change, R is the gas constant (8.314 J/(mol·K)), T is the temperature in Kelvin (here, 25°C + 273.15 = 298.15 K), and Q is the reaction quotient. The equation thus becomes ΔG = 46.9 kJ + (8.314 J/(mol·K) * 298.15 K * ln((0.653^2)/(0.459 * 0.984))).

Converting R from J to kJ gives us ΔG = 46.9 kJ + (0.008314 kJ/(mol·K) * 298.15 K * ln((0.653^2)/(0.459 * 0.984))). Solving this equation, we obtain a value for ΔG, which represents the Gibbs free energy under the given conditions. A positive ΔG suggests the reaction is non-spontaneous, while a negative ΔG indicates a spontaneous reaction. An equilibrium will lean towards the side with the lower Gibbs free energy.

Learn more about Gibbs Free Energy here:

https://brainly.com/question/13318988

#SPJ11

A 0.327-g sample of azulene (C10H8) is burned in a bomb calorimeter and the temperature increases from 25.20 °C to 27.60 °C. The calorimeter contains 1.17×103 g of water and the bomb has a heat capacity of 786 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of azulene burned (kJ/mol). C13H24O4(s) + 17 O2(g) 13 CO2(g) + 12 H2O(l) E =______ kJ/mol.

Answers

Explanation:

The given data is as follows.

Molecular weight of azulene = 128 g/mol

Hence, calculate the number of moles as follows.

      No. of moles = [tex]\frac{mass}{\text{molecular weight}}[/tex]

                            = [tex]\frac{0.392 g}{128 g/mol}[/tex]

                            = 0.0030625 mol of azulene

Also,    [tex]-Q_{rxn} = Q_{solution} + Q_{cal}[/tex]

       [tex]Q_{rxn} = n \times dE[/tex]

         [tex]Q_{solution} = m \times C \times (T_{f} - T_{i})[/tex]

              [tex]Q_{cal} = C_{cal} \times (T_{f} - T_{i})[/tex]

Now, putting the given values as follows.    

     [tex]Q_{solution} = 1.17 \times 10^{3} g \times 10^{3} \times 4.184 J/g^{o}C \times (27.60 - 25.20)^{o}C[/tex]

                   = 11748.67  J

So,  [tex]Q_{cal} = 786 J/^{o}C \times (27.60 - 25.20)^{o}C[/tex]

                    = 1886.4 J

Therefore, heat of reaction will be calculated as follows.

        [tex]-Q_{rxn}[/tex] = (11748.67 + 1886.4) J

                      = 13635.07 J

As,  [tex]Q_{rxn} = n \times dE[/tex]

          13635.07 J = [tex]-n \times dE[/tex]

                dE = [tex]\frac{13635.07 J}{0.0030625 mol}[/tex]

                     = 4452267.75 J/mol

or,                 = 4452.26 kJ/mol       (as 1 kJ = 1000 J)

Thus, we can conclude that [tex]\Delta E[/tex] for the given combustion reaction per mole of azulene burned is 4452.26 kJ/mol.

A solution contains 0.021 M Cl? and 0.017 M I?. A solution containing copper (I) ions is added to selectively precipitate one of the ions. At what concentration of copper (I) ion will a precipitate begin to form? What is the identity of the precipitate? Ksp(CuCl) = 1.0 × 10-6, Ksp(CuI) = 5.1 × 10-12.
A) 4 .8 × 10-5 M, CuClB) 3 .0 × 10-10 M, CuIC) 3 .0 × 10-10 M, CuClD) 4 .8 × 10-5 M, CuIE) N o precipitate will form at any concentration of copper (I).

Answers

Answer:

A precipitate will begin to form at [Cu+] = 3.0 *10^-10 M

The precipitate formed is CuI

Explanation:

Step 1: Data given

The solution contains 0.021 M Cl- and 0.017 M I-.

Ksp(CuCl) = 1.0 × 10-6

Ksp(CuI) = 5.1 × 10-12.

Step 2:  Calculate [Cu+]

Ksp(CuCl) = [Cu+] [Cl-]  

1.0 * 10^-6  = [Cu+] [Cl-]  

1.0 * 10^-6  = [Cu+] [0.021]  

[Cu+] = 1.0 * 10^-6 / 0.021

[Cu+] = 4.76 *10^-5 M

Ksp(CuI) = [Cu] [I]  

5.1 * 10^-12  = [Cu+] [I-]  

5.1 * 10^-12 =[Cu+] [0.017]  

[Cu+] = 5.1 * 10^-12 / 0.017

[Cu+] = 3.0 *10^-10 M

[Cu+]from CuI hast the lowest concentration

A precipitate will begin to form at [Cu+] = 3.0 *10^-10 M

The precipitate formed is CuI

The sun produces energy via fusion. One of the fusion reactions that occurs in the sun is 411H→42He+201e How much energy in joules is released by the fusion of 2.01 g of hydrogen-1? Express your answer to three significant figures and include the appropriate units.

Answers

Answer: The energy released for the the given amount of hydrogen -1 atom is [tex]1.2474\times 10^{11}J[/tex]

Explanation:

First we have to calculate the mass defect [tex](\Delta m)[/tex].

The given equation follows:

[tex]4_{1}^{1}\textrm{H}\rightarrow _{2}^{4}\textrm{He}+2_0^{1}\textrm{e}[/tex]

To calculate the mass defect, we use the equation:

Mass defect = Sum of mass of product - Sum of mass of reactant

[tex]\Delta m=(2m_{e}+m_{He})-(4m_{H})[/tex]

We know that:

[tex]m_e=0.00054858g/mol\\m_{H}=1.00782g/mol\\m_{He}=4.00260g/mol[/tex]

Putting values in above equation, we get:

[tex]\Delta m=((2\times 0.00054858)+4.00260)-(4\times 1.00782)=-0.027583g=-2.7583\times 10^{-5}kg[/tex]

(Conversion factor: 1 kg = 1000 g )

To calculate the energy released, we use Einstein equation, which is:

[tex]E=\Delta mc^2[/tex]

[tex]E=(-2.7583\times 10^{-5}kg)\times (3\times 10^8m/s)^2[/tex]

[tex]E=-2.4825\times 10^{11}J[/tex]

The energy released for 4 moles of hydrogen atom is [tex]2.4825\times 10^{11}J[/tex]

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Given mass of hydrogen atom = 2.01 g

Molar mass of hydrogen atom = 1 g/mol

Putting values in above equation, we get:

[tex]\text{Moles of hydrogen atom}=\frac{2.01g}{1g/mol}=2.01mol[/tex]

We need to calculate the energy released for the fusion of given amount of hydrogen atom. By applying unitary method, we get:

As, 4 moles of hydrogen atom releases energy of = [tex]2.4825\times 10^{11}J[/tex]

Then, 2.01 moles of hydrogen atom will release energy of = [tex]\frac{2.4825\times 10^{11}}{4}\times 2.01=1.2474\times 10^{11}J[/tex]

Hence, the energy released for the the given amount of hydrogen -1 atom is [tex]1.2474\times 10^{11}J[/tex]

Be sure to answer all parts. What is the [H3O+] and the pH of a benzoic acid-benzoate buffer that consists of 0.22 M C6H5COOH and 0.41 M C6H5COONa? (Ka of benzoic acid = 6.3 × 10−5) Be sure to report your answer to the correct number of significant figures.

Answers

Answer:

The pH will be 4.5

Explanation:

The mixture of benzoic acid (weak acid) and its salt will make a buffer.

The pH of buffer solution can be calculated using Henderson Hassalbalch's equation, which is

[tex]pH=pKa+log\frac{[salt]}{[acid]}[/tex]

pKa = -logKa

pKa = -log([tex]6.3X10^{-5}[/tex])

pKa = 4.2

[tex]pH=4.2 + log\frac{0.41}{0.22}=4.2+0.27=4.47=4.5[/tex]

Determine whether each of the following is exothermic or endothermic and indicate the sign of ΔH.
a. dry ice evaporating
b. a sparkler burning
c. the reaction that occurs in a chemical cold pack often used to ice athletic injuries

Answers

Explanation:

There are two type of reaction possible , i.e. , exothermic and endothermic reaction ,

Exothermic reaction -

The type of reaction in which energy in the form of heat or light is released , is known as exothermic reaction ,

The reaction mixture usually get heated after the reaction .( temperature increases ) .

The sign of ΔH of an exothermic reaction is negative .

Similarly ,

Endothermic reaction -

The type of reaction in which energy is absorbed in the form of heat is known as endothermic reaction .

The reaction mixture usually get cooled after the reaction .( temperature decreases ) .

The sign of ΔH of an Endothermic  reaction is positive .

a. dry ice evaporating ,

Endothermic reaction , ΔH = positive .

b. a sparkler burning ,

Exothermic reaction ΔH = negative .

c. the reaction that occurs in a chemical cold pack often used to ice athletic injuries

Endothermic reaction , ΔH = positive .

Dry ice evaporates in an endothermic process with a positive ΔH. A sparkler burning is an exothermic process with a negative ΔH. The reaction in a chemical cold pack is endothermic with a positive ΔH.

In chemistry, understanding whether a process is exothermic or endothermic is crucial. Here’s the breakdown for each scenario:

Dry ice evaporating: This is an endothermic process because it requires heat to change from solid to gas. The sign of ΔH is positive.A sparkler burning: This is an exothermic process as it releases heat and light when burning. The sign of ΔH is negative.The reaction in a chemical cold pack: This reaction is endothermic because it absorbs heat from the surroundings to provide a cooling effect. The sign of ΔH is positive.

a. What is the frequency of radiation that has a wavelength of 11 μm , about the size of a bacterium? b. What is the wavelength of radiation that has a frequency of 5.30×10^14 s^−1 ?c. Would the radiations in part (a) or part (b) be visible to the human eye?​d. What distance does electromagnetic radiation travel in 45.0 μs ?

Answers

Answer:

a)  ν = 2.7 x 10¹³  s⁻¹

b)  λ=  5.7 x 10⁻⁷ m

c)  Neither will be visible

d)  d= 13,500 m

Explanation:

The relationship ν = c/λ  where

ν = frequency of the radiation

c = speed of light = 3 x 10^8 m/s

λ = wavelength of the radiation

will be used to solve parts a), b) and c).

For part d. we know that all electromagnetic radiation travel at the speed of light so d= speed x time

a) ν = 3 x 10^8 m/s / 11 x 10 ⁻⁶ m       ( 1 μm = 10⁻6 m )

      = 2.7 x 10¹³  s⁻¹

b)  λ= c/ν = 3 x 10^8 m/s / 5.30 x 10¹⁴ s⁻¹ = 5.7 x 10⁻⁷ m

c)  The visible spectrum range is 380 to 470 nm

in a. converting to nm:

11 x 10⁻⁶ m x  10⁹ nm/m = 11,000 nm

in b. converting to nm:

5.7 x 10⁻⁷ m x  10⁹ nm/ m = 570 nm

Neither of these radiations will be visible to the human eye.

d) d= 3 x 10^8 m/s x 45 x 10⁻⁶ s = 13,500 m

The frequency of the radiation is 2.73 x 10¹³ Hz.

The wavelength of the radiation is 566 nm

The distance traveled by the electromagnetic radiation is 13,500 m.

The given parameters;

wavelength of the radiation, λ = 11 μm = 11 x 10⁻⁶ m.

The frequency of the radiation is calculated as follows;

c = fλ

[tex]f = \frac{c}{\lambda} \\\\f = \frac{3\times 10^{8}}{11 \times 10^{-6}} \\\\f = 2.73 \times 10^{13} \ Hz[/tex]

The wavelength of the radiation is calculated as follows;

[tex]\lambda = \frac{c}{f} \\\\\lambda = \frac{3\times 10^{8}}{5.3\times 10^{14}} \\\\\lambda = 5.66 \times 10^{-7} \ m\\\\\lambda = 566 \ \times 10^{-9} \ m\\\\\lambda = 566 \ nm[/tex]

The distance traveled by the electromagnetic radiation is calculated as;

d = vt

d = 3 x 10⁸ x 45 x 10⁻⁶

d = 13,500 m

Learn more here:https://brainly.com/question/20905693

In a galvanic cell,a oxidation occurs at the (name of electrode)b.the cathode is the (sign) electrodec.cations flow in solution toward the (name of electrode)d.electrons flow from the (name of electrode) to (name of electrode)

Answers

Final answer:

In a galvanic cell, oxidation occurs at the anode, the cathode is the positive electrode, cations flow toward the cathode, and electrons flow from the anode to the cathode.

Explanation:

In a galvanic cell, the following processes occur:

Oxidation occurs at the anode, which is the electrode in the left half-cell in a standard galvanic cell diagram.The cathode is the positive electrode, which is where the reduction occurs, and is located in the right half-cell in a standard galvanic cell diagram.Cations in the solution flow toward the cathode, which has a positive charge due to the reduction process that occurs there. Electrons flow from the anode to the cathode, moving through the external circuit and enabling electrical work to be done.

Learn more about Galvanic Cell here:

https://brainly.com/question/32505497

#SPJ3

A 1.00 * 10^-6 -g sample of nobelium, 254/102 No, has a half-life of 55 seconds after it is formed. What is the percentage of 254/102 No remaining at the following times?a) 5.0 min after it formsb) 1.0 h after it forms

Answers

Final answers:

a) Approximately 3.125% of 254/102 No remains 5.0 minutes after it forms.

b) About 0.391% of 254/102 No is left 1.0 hour after it forms.

Explanation:

In nuclear decay the percentage of a substance remaining can be calculated using the formula

[tex]\[ \text{Final amount} = (\frac{1}{2})^{\frac{\text{time elapsed}}{\text{half-life}}} \times 100 \][/tex]

a) For 5.0 minutes after formation we convert the time to seconds (5.0 minutes = 300 seconds) and apply the formula

[tex]\[ \text{Final amount} = (\frac{1}{2})^{\frac{300 \, \text{seconds}}{55 \, \text{seconds}}} \times 100 \approx 3.125\% \][/tex]

b) For 1.0 hour after formation we convert the time to seconds (1.0 hour = 3600 seconds) and use the formula

[tex]\[ \text{Final amount} = (\frac{1}{2})^{\frac{3600 \, \text{seconds}}{55 \, \text{seconds}}} \times 100 \approx 0.391\% \][/tex]

Nuclear decay and half-life involve complex mathematical models that govern the decay of radioactive substances. Understanding these processes is crucial in various scientific fields including nuclear physics medicine and environmental science.

At 25°C, the standard enthalpy of combustion of gaseous propane (C3H8) is –2219.0 kJ per mole of propane, and the standard enthalpy of combustion of gaseous propylene (C3H6) is –2058.3 kJ per mole of propylene.
What is the standard enthalpy change for the following reaction at 25°C? C3H6(g) + H2(g) → C3H8(g)Substance∆H°f (kJ/mol)CO2(g)–393.5H2O(l)–285.8

Answers

Final answer:

The standard enthalpy change for the combustion of C3H6(g) + H2(g) → C3H8(g) at 25°C is -219.4 kJ/mol.

Explanation:

The standard enthalpy change for the reaction is obtained by calculating the difference between the enthalpy of the products and the enthalpy of the reactants. In this case, the enthalpy change can be determined using the enthalpy of formation values for the compounds involved. The balanced equation for the combustion of propane is:

C3H6(g) + H2(g) → C3H8(g)

The enthalpy change can be calculated as follows:

∆H° = ∑∆H°f(products) - ∑∆H°f(reactants)

∆H° = [2*(∆H°f(CO2(g))) + ∆H°f(H2O(l))] - [∆H°f(C3H6(g)) + ∆H°f(H2(g))]

Substitute the given values for the enthalpies of formation:

∆H° = [2*(-393.5 kJ/mol) + (-285.8 kJ/mol)] - [(-2058.3 kJ/mol) + 0 kJ/mol]

Simplify the equation:

∆H° = -219.4 kJ/mol

Therefore, the standard enthalpy change for the combustion of C3H6(g) + H2(g) → C3H8(g) at 25°C is -219.4 kJ/mol.

Gaseous ICl (0.20 mol) was added to a 2.0 L flask and allowed to decompose at a high temperature:

2 ICl(g) ---> I2(g) + Cl2(g)

If the equilibrium [ICl] = 0.060, what is the value of Kc?


0.11
0.33
0.67
0.44

Answers

Answer:

The Kc is 1.36 (but this is not an option, may be the options are wrong, or may be I was .. Thanks!)

Explanation:

Let's think all the situation.

               2 ICl(g)   ⇄   I₂(g)    +    Cl₂(g)

Initially      0.20              -               -

Initially I have only 0.20 moles of reactant, and nothing of products. In the reaction, an x amount of compound has reacted.

React          x              x/2               x/2

Because the ratio is 2:1, in the reaction I have the half of moles.

So in equilibrium I will have

           (0.20 - x)          x/2             x/2

Notice that I have the concentration in equilibrium so:

0.20 - x = 0.060

x = 0.14

So in equilibrium I have formed 0.14/2 moles of I₂ and H₂ (0.07 moles)

Finally, we have to make, the expression for Kc and remember that must to be with concentration in M (mol/L).

As we have a volume of 2L, the values must be /2

Kc = ([I₂]/2 . [H₂]/2) / ([ICl]/2)²

Kc = (0.07/2 . 0.07/2) / (0.060/2)²

Kc = 1.225x10⁻³ / 9x10⁻⁴

Kc = 1.36

Final answer:

The value of Kc for the decomposition of ICl to I2 and Cl2 is calculated using the equilibrium concentrations and the equilibrium expression. By plugging in the given values and solving the expression, we find Kc to be 0.11.

Explanation:

To calculate the equilibrium constant (Kc) for the decomposition of ICl to I2 and Cl2 at a high temperature using the reaction 2 ICl(g) → I2(g) + Cl2(g), we need to apply the concept of the equilibrium constant expression which is based on the molar concentrations of the products raised to the power of their coefficients divided by the molar concentrations of the reactants raised to the power of their coefficients.

At the start, we have 0.20 mol ICl in a 2.0 L flask, which gives us an initial concentration of 0.10 M (0.20 mol / 2.0 L). At equilibrium, the [ICl] is given as 0.060 M. The change in concentration for ICl (reactant) is the initial concentration minus the equilibrium concentration, which is 0.10 M - 0.060 M = 0.040 M. Since the reaction consumes 2 moles of ICl for every 1 mole of I2 and Cl2 produced, each product will have a concentration change of 0.020 M (0.040 M / 2). Therefore, at equilibrium, both I2 and Cl2 have concentrations of 0.020 M.

The equilibrium constant expression is:

Kc = [I2][Cl2] / [ICl]2

Substituting the equilibrium concentrations we get:

Kc = (0.020 M)(0.020 M) / (0.060 M)2 = 4/9 × 10-3

Calculating the value yields:

Kc = 0.11

What does the principal quantum number determine? Check all that apply. Check all that apply. the possible number of electorns on particular orbital the energy of the electron on the outer shell the shape of the orbital the overall size of an orbital the orientation of the orbital the overall size of an atom the energy of an orbital

Answers

Answer:

The principle quantum number determines the overall size and energy of an orbital.

Explanation:

The principle quantum number (n) is an integer that has possible values of 1, 2, 3.... and determines the overall size and energy of an orbital.

Angular momentum quantum number (L) determines the shape of atomic orbital.

The location of the electron in the cell is given by quantum mechanics. The principal quantum number determines the size of the atom and the energy of the orbital.

What is quantum mechanics?

The quantum mechanism helps in the determination of the location of electrons in an atom with the help of four quantum numbers.

The principal quantum number is the first quantum number that helps in the analysis of the energy of the shell to which the atom belongs.

The principal number determines the size of an atom and the energy of the orbital. Thus, option F is correct.

Learn more about principal quantum number, here:

https://brainly.com/question/3336054

A 0.10 M solution of a weak monoprotic acid has a pH of 3.40 at 25°C. What is the acid-ionization
constant, Ka, for this acid?
A) 1.6 x 10-6
B) 4.0 x 10-4
C) 3.4 x 10-5
D) 1.2 x 10-3
E) 1.8 x 10-7

Answers

Answer:

The correct answer is A) 1.6 x 10-6

Explanation:

A weak monoprotic acid has the following dissociation equilibrium. At the beggining (t=0), the concentration of the monoprotic acid (HA) is equal to 0.10 M and the concentration of the ions H⁺ and A⁻ is zero (no dissociation). At a time t, dissociation occur and there is x concentration of H⁺ and A⁻ which is given by the dissociation constant Ka.

           HA(aq)    ⇄     H⁺(aq)    +       A⁻(aq)

t=0        0.10 M              0                     0

t               -x                    +x                  +x

eq          0.10 M-x             x                   x

Ka= [tex]\frac{x^{2} }{0.10 - x}[/tex]

As the pH is 3.40, we can calculate the concentration of both H⁺ and A⁻, as follows:

pH= - log (conc H⁺)= -log x

⇒ x = [tex]10^{-3.40}[/tex]= 3.98 x 10⁻⁴

Now we introduce x in the previous equation to calculate Ka:

Ka= [tex]\frac{(3.98 x 10^{-4} )^{2} }{(0.10 - (3.98 x 10^{-4}) }[/tex]

Ka= 1.59 x 10⁻⁶ ≅ 1.60 x 10⁻⁶

Final answer:

To find the acid-ionization constant Ka, the pH is used to calculate the concentration of H+ ions, and this value is squared and divided by the initial concentration of the acid to obtain Ka, which is 1.6 x 10^-6.

Explanation:

The question seeks to determine the acid-ionization constant (Ka) for a weak monoprotic acid with a given molarity and pH. The pH of the solution is 3.40, which means the concentration of hydrogen ions [H+] is 10-3.40 M. Since the acid is weak and monoprotic, its dissociation in water can be represented by HA → H+ + A-. The given concentration of acid (0.10 M) will slightly ionize into H+ and A- ions.

To solve for Ka, the equilibrium expression is Ka = [H+][A-] / [HA]. Given that [H+] = 10-3.40, we can assume that the concentration of A- at equilibrium is also 10-3.40 since the acid donates one proton per molecule (in a 1:1 ratio). The concentration of un-ionized HA will then be approximately ([initial HA] - x) = (0.10 M - 10-3.40 M). However, because the ionization of a weak acid is very small compared to the initial concentration, we can approximate [HA] at equilibrium to be 0.10 M. From this, the Ka can be approximated to be (10-3.40)2 / 0.10 M = 1.6 x 10-6.

Given thatH2(g) + F2(g) -> 2HF(g) => ∆H = -546.6 kJ . mol-12H2(g) + O2(g) -> 2H20(l) => ∆H = -571.6 kJ. mol-1Calculate the value of ∆H for:2F2(g) + 2H20(l) -> 4HF(g) + O2(g)

Answers

Answer:

The correct answer is -521.6 KJ/mol

Explanation:

In order to solve the problem, we have to rearrange and to add the reactions with the aim to obtain the requested reaction.

We have:

1) H₂(g) + F₂ (g) → 2HF(g) => ∆H₁ = -546.6 kJ/mol

2) 2H₂(g) + O₂(g) → 2H₂0(l) => ∆H₂ = -571.6 kJ/mol

If we multiply reaction 1 by 2 and add the inverse reaction of 2, we obtain:

2H₂(g) + 2F₂ (g) → 4HF(g) => 4 x ∆H₁ = 4 x (-546.6 kJ/mol)

2H₂0(l) → 2H₂(g) + O₂(g) => (-1) x ∆H₂ = (-1) x (571.6 kJ/mol)

-------------------------------------

2H₂(g) + 2F₂ (g)+  2H₂0(l) → 4HF(g) + 2H₂(g) + O₂(g)

We eliminate 2H₂(g) is repeated in both members of the reaction, and we obtain: 2F₂(g) + 2H₂0(l) -> 4HF(g) + O₂(g)

Finally, the ΔH of the reaction is calculated as follows:

ΔHtotal= (2 x ΔH₁) + ((-1)ΔH₂

ΔHtotal= (2 x (-546.6 KJ/mol)) + ((-1) x (-571.6 KJ/mol)

ΔHtotal= -521.6 KJ/mol

Suppose that the mechanism of hydrolysis of tert- butyl chloride preceded by a different mechanism so that the predicted rate law was: (d[RCl]/dt)=k[RCl][H2O]. From this experiment, would you be able to distinguish between this mechanism (which gives an order creation of reaction =2) and the mechanism proposed above (which gives a Diest order rate law)? Explain your answer.

Answers

Answer:

B, because that was the answer on quizlet.

Explanation:

A scientist measures the standard enthalpy change for the following reaction to be -213.5 kJ: CO(g) 3 H2(g)CH4(g) H2O(g) Based on this value and the standard enthalpies of formation for the other substances, the standard enthalpy of formation of H2O(g) is kJ/mol. Submit AnswerRetry Entire Group

Answers

Answer:

Approximately [tex]\rm -249.4\; kJ \cdot mol^{-1}[/tex].

Explanation:

[tex]\rm CO\; (g) + 3\; H_2\; (g) \to CH_4\; (g) + H_2 O\; (g)[/tex].

Note that hydrogen gas [tex]\rm H_2\; (g)[/tex] is the most stable allotrope of hydrogen. Since [tex]\rm H_2[/tex] is naturally a gas under standard conditions, the standard enthalpy of formation of [tex]\rm H_2\; (g)[/tex] would be equal to zero. That is:

[tex]\Delta H^{\circ}_f(\rm H_2\; (g)) = 0[/tex]

Look up the standard enthalpy of formation for the other species:

[tex]\Delta H^{\circ}_f(\rm CO\; (g)) = -110.5\; kJ \cdot mol^{-1}[/tex], [tex]\Delta H^{\circ}_f(\rm CH_4\; (g)) = -74.6\; kJ \cdot mol^{-1}[/tex].

(Source: CRC Handbook of Chemistry and Physics, 84th Edition (2004).)

[tex]\displaystyle \Delta H^{\circ}_\text{reaction} = \sum \Delta H^{\circ}_f(\text{products}) - \sum \Delta H^{\circ}_f(\text{reactants})[/tex].

In other words, the standard enthalpy change of a reaction is equal to:

the sum of enthalpy change of all products, minusthe sum of enthalpy change of all reactants.

In this case,

[tex]\begin{aligned} & \sum \Delta H^{\circ}_f(\text{products}) \\ =& \Delta H^{\circ}_f(\mathrm{CH_4\;(g)}) + \Delta H^{\circ}_f(\mathrm{H_2O\;(g)})\end{aligned}[/tex].

[tex]\begin{aligned} & \sum \Delta H^{\circ}_f(\text{reactants}) \\ =& \Delta H^{\circ}_f(\mathrm{CO\;(g)}) + 3\times \Delta H^{\circ}_f(\mathrm{H_2\;(g)})\end{aligned}[/tex].

Note that the number [tex]3[/tex] in front of [tex]\Delta H^{\circ}_f(\mathrm{H_2\;(g)})[/tex] corresponds to the coefficient of [tex]\rm H_2[/tex] in the chemical equation.

[tex]\begin{aligned}&\Delta H^{\circ}_\text{reaction} \\ =& \sum \Delta H^{\circ}_f(\text{products}) - \sum \Delta H^{\circ}_f(\text{reactants})\\ =& \left(\Delta H^{\circ}_f(\mathrm{CH_4\;(g)}) + \Delta H^{\circ}_f(\mathrm{H_2O\;(g)})\right) \\ &- \left(\Delta H^{\circ}_f(\mathrm{CO\;(g)}) + 3\times \Delta H^{\circ}_f(\mathrm{H_2\;(g)})\right) \\ =& \Delta H^{\circ}_f(\mathrm{CH_4\;(g)}) + (-74.6) - (3 \times 0 -110.5)\end{aligned}[/tex].

In other words,

[tex]\begin{aligned} & \Delta H^{\circ}_f(\mathrm{CH_4\;(g)}) + (-74.6) - (3 \times 0 -110.5) \\=& \Delta H^{\circ}_\text{reaction} = -213.5\; \rm kJ\cdot mol^{-1} \end{aligned}[/tex].

Therefore,

[tex]\begin{aligned}& \Delta H^{\circ}_f(\mathrm{CH_4\;(g)}) \\ =& -213.5 - ((-74.6) - (3 \times 0 -110.5)) \\=& -249.4\; \rm kJ\cdot mol^{-1} \end{aligned}[/tex].

1a) A 250 mL container of CO2 exerting a pressure of 1.00 atm is connected through a valve to a 500 mL container of O2 exerting a pressure of 2.00 atm. When the valve is opened, the gases mix, forming a 750 mL mixture of CO2 and O2. What is the total pressure of this mixture?1b) Each molecule of hemoglobin combines with four molecule of oxygen in order to transport oxygen throughout the body. It is observed that 1.51 g of hemoglobin combines with 2.30 mL of O 2 at 37 °C and 743 torr. What is the molar mass of hemoglobin?

Answers

Answer:

1a) 1.67 atm

1b) 68,330 g/mol

Explanation:

1a) For Boyle's Law, when a state change occurs without a change in the temperature, the product of the pressure by the volume remains constant. For Dalton's Law, the total pressure of a gas mixture is the sum of the partial pressure of the components. Then:

P1V1 + P2V2 = PV

Where P1 is the initial pressure of CO₂, V1 is the initial volume of it, P2 is the initial pressure of O₂, V2 is the initial pressure of it, P is the pressure of the mixture and V is the final volume of the mixture (V1 + V2).

1*250 + 2*500 = P*750

750P = 1250

P = 1.67 atm

1b) Let's call hemoglobin by Hem. The stoichiometry reaction is:

Hem + 4O₂ → HemO₂

So, let's calculate the number of moles of oxygen in the reaction, by the ideal gas law, PV = nRT, where P is the pressure, V is the volume (0.0023 L), n is the number of moles, R is the ideal gas constant (62.3637 L.torr/mol.K), and T is the temperature (37°C = 310 K).

743*0.0023 = n*62.3637*310

19,332.747n = 1.7089

n = 8.84x10⁻⁵ mol

For the reaction, the stoichiometry is:

1 mol of Hem -------------------- 4 mol of O₂

x ------------------- 8.84x10⁻⁵ mol of O₂

By a simple direct three rule

4x = 8.84x10⁻⁵

x = 2.21x10⁻⁵ mol of hemoglobin

The molar mass is the mass divided by the number of moles:

M = 1.51/2.21x10⁻⁵

M = 68,330 g/mol

Final answer:

The total pressure of the mixture of CO2 and O2 is 3.00 atm. The molar mass of hemoglobin is approximately 64.7 g/mol.

Explanation:

To determine the total pressure of the mixture of CO2 and O2, we can use Dalton's Law of Partial Pressures. According to this law, the total pressure of a mixture of gases is equal to the sum of the partial pressures of each gas. In this case, the partial pressures of CO2 and O2 are 1.00 atm and 2.00 atm, respectively. Therefore, the total pressure of the mixture is 1.00 atm + 2.00 atm = 3.00 atm.

To find the molar mass of hemoglobin, we can use the ideal gas law. The equation for the ideal gas law is PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin. We can rearrange this equation to solve for the molar mass (M).

M = (mRT)/(PV), where m is the mass of the substance in grams. Plugging in the given values, we have M = (1.51 g)(0.0821 L·atm/mol·K)(310 K)/(743 torr)(0.0821 L·atm/mol·K)(2.30 mL/1000 L). Simplifying the calculation gives us a molar mass of hemoglobin approximately equal to 64.7 g/mol.

Learn more about Dalton's Law of Partial Pressures and ideal gas law here:

https://brainly.com/question/30235822

#SPJ11

A hot air balloon can have a volume of 2950 cubic meters (2.95 ✕ 106 liters) and operate at temperatures up to 250°F (121°C). Assuming a balloon is operating at this maximum temperature with an external pressure of 1.00 atm, what mass of air would the balloon hold? While air is a mixture of many gases, we can assume a molar mass of 28.97 g/mol for air.

Answers

Answer:

2.64 × 10⁶ g

Explanation:

We can find the mass of air using the ideal gas equation.

[tex]P.V=n.R.T=\frac{m}{M} .R.T[/tex]

where,

P is the pressure (P = 1.00 atm)

V is the volume (V = 2.95 × 10⁶ L)

n is the number of moles

R is the ideal gas constant (0.08206atm.L/mol.K)

T is the absolute temperature (121°C + 273 = 394 K)

m is the mass

M is the molar mass (28.09 g/mol)

[tex]m=\frac{P.V.M}{R.T} =\frac{1.00atm \times 2.95 \times 10^{6} L \times 28.97g/mol}{(0.08206atm.L/mol.K) \times 394 K } =2.64 \times 10^{6} g[/tex]

Which of the following statements is INCORRECT? A. It is not possible to know the exact location of an electron and its exact energy simultaneously. B. The energies of an hydrogen atom's electrons are quantized. C. The wave mechanical model correctly predicts all the energy states and the orbitals available to an electron in an hydrogen atom. D. The behavior of an atom's electrons can be described by circular orbits around a nucleus.E. Electrons have both wave and particle properties.

Answers

Answer:

D. The behavior of an atom's electrons can be described by circular orbits around a nucleus.

Explanation:

Which of the following statements is INCORRECT?

A. It is not possible to know the exact location of an electron and its exact energy simultaneously. CORRECT. This is known as the Heisenberg's uncertainty principle.

B. The energies of an hydrogen atom's electrons are quantized. CORRECT. According to the modern atomic model, the energy levels are quantized, that is, they have a discrete amount of energy.

C. The wave mechanical model correctly predicts all the energy states and the orbitals available to an electron in an hydrogen atom. CORRECT. The characteristics of the energy levels are explained by Schrödinger's wave equation.

D. The behavior of an atom's electrons can be described by circular orbits around a nucleus. INCORRECT. This was postulated by Bohr's atomic model but it is now considered to be incorrect.

E. Electrons have both wave and particle properties. CORRECT. This is what De Broglie called wave-particle duality.

Final answer:

Statement D is incorrect because Niels Bohr's model of electrons moving in circular orbits around a nucleus has been replaced by the quantum mechanical model, which describes electrons as occupying 'orbitals' rather than specific paths.

Explanation:

The statement D, 'The behavior of an atom's electrons can be described by circular orbits around a nucleus', is incorrect. This is a description of a model proposed by Niels Bohr to explain the behavior of electrons in an atom, known as the Bohr model. However, this model has been superseded by the wave mechanical model (also known as the quantum mechanical model) which states that we can't know the exact location of an electron, but we can predict where it's likely to be—an area known as an 'orbital'. Electrons do not travel in defined circular orbits as originally proposed by Bohr.

Learn more about Orbitals here:

https://brainly.com/question/32355752

#SPJ6

A buffer of pH 9.24 is to be prepared from a weak acid and its salt. The best acid from which to prepare the buffer is

(A) phthalic acid, K1 = 1.3 x 10-3 (1st ionization)
(B) hydrohen phthalate, K2 = 3.9 x 10-5
(C) arsenious acid, Ka = 6 x 10-10
(D) formic acid, Ka = 1.8 x 10-5
(E) phenol, Ka = 1.3 x 10-10

Answers

Answer:

(C) arsenious acid, Ka = 6 x 10⁻¹⁰

Explanation:

A buffer is prepared by a weak acid and the conjugate base coming from its salt. Its function is to resist abrupt changes in pH when an acid or a base are added. The best working range of a buffer is in the range of pKa ± 1. Let's consider the 5 options and their pKa (pKa = -log Ka).

(A) phthalic acid, K1 = 1.3 x 10⁻³ (1st ionization)     pKa = 2.9

(B) hydrogen phthalate, K2 = 3.9 x 10⁻⁵                pKa = 4.4

(C) arsenious acid, Ka = 6 x 10⁻¹⁰                           pKa = 9

(D) formic acid, Ka = 1.8 x 10⁻⁵                               pKa = 4.7

(E) phenol, Ka = 1.3 x 10⁻¹⁰                                      pKa = 9.8

The acid whose pKa is closer to the desired pH is arsenious acid. Its working range of pH is 8 - 10. In the second place, phenol could work as a buffer system since the working pH range is 8.8 - 10.8.

The Ksp of AgCl is 1.8x10^-10 and the Ksp of AgI is 8.3x10^-17. A solution is .100M in I- and Cl-. When a silver nitrate solution is slowly added to this mixture, what is the molarity of iodide ions when AgCl just starts to precipitate?
A.) 1.0x10^-5M
B.) 9.1x10^-9M
C.) 8.3x10^-7M
D.) 4.6x10^-8M

Answers

Answer:

[tex][I^-]=4.6*10^{-8}M[/tex]

Explanation:

The expression of the Ksp:

[tex]Ksp_{AgCl}=[Ag^{+}][Cl^-][/tex]

[tex]Ksp_{AgI}=[Ag^{+}][I^-][/tex]

When the product of the concentrations of both ions equals the Ksp, the salt starts to precipitate.

For the AgCl:

[tex]1.8*10^{-10}M^{2}=[Ag^{+}]*0.1M[/tex]

[tex][Ag^{+}]=1.8*10^{-9}M[/tex]

Initially the concentration of I- was 0.1 M, due to the lower Ksp than the AgCl's, the AgI will precipite before. So, when AgCl starts to precipitate the concentration of I- will be in equilibrium, following the Ksp equation.

[tex]8.3*10^{-17}M^{2}=1.8*10^{-9}M*[I^-][/tex]

[tex][I^-]=4.6*10^{-8}M[/tex]

A student titrated a 25.00-mL sample of a solution containing an unknown weak, diprotic acid (H2A) with N2OH. If the titration required 17.73 mL of 0.1036 M N2OH to completely neutralize the acid, calculate the concentration (in M) of the weak acid in the sample.
(a) 9.184 x 10 M
(b) 3.674 x 10-2 M
(c) 7.304 x 10-2 M
(d) 7.347 x 10-2 M
(e) 1.469 x 101 M

Answers

Answer: The concentration of weak acid is [tex]3.674\times 10^{-2}M[/tex]

Explanation:

To calculate the concentration of acid, we use the equation given by neutralization reaction:

[tex]n_1M_1V_1=n_2M_2V_2[/tex]

where,

[tex]n_1,M_1\text{ and }V_1[/tex] are the n-factor, molarity and volume of acid which is [tex]H_2A[/tex]

[tex]n_2,M_2\text{ and }V_2[/tex] are the n-factor, molarity and volume of base which is NaOH.

We are given:

[tex]n_1=2\\M_1=?M\\V_1=25.00mL\\n_2=1\\M_2=0.1036M\\V_2=17.73mL[/tex]

Putting values in above equation, we get:

[tex]2\times M_1\times 25.00=1\times 0.1036\times 17.73\\\\M_1=\frac{1\times 0.1036\times 17.73}{2\times 25.00}=3.674\times 10^{-2}M[/tex]

Hence, the concentration of weak acid is [tex]3.674\times 10^{-2}M[/tex]

10.0 g of ammonium nitrate (?Hsoln = 25.7 kJ/mol, molar mass = 80.0 g/mol) dissolves in 100.0 g of water.

What is the change in temperature of the solution?

Assume the specific heat capacity of the solution is 4.2 J

Answers

Answer:

The change in temperature = 7.65 °C

Explanation:

Step 1: Data given

10.0 grams of ammonium nitrate dissolves in 100.0 grams of water

Hsoln = 25.7 kJ/mol

Molar mass = 80.04 g/mol

Heat capacity of the solution = 4.2 J

Step 2: Calculate moles  ammonium nitrate

Moles = mass / molar mass

Moles = 10.0 grams / 80.04 g/mol

Moles =0.125 moles

Step 3: Calculate q

q = 25.7 kJ/mol * 0.125 moles

q = 3.2125 kJ = 3212.5 J

Step 4: Calculate change in temperature

q = m*c*ΔT

3212.5 J = 100g *4.2 J * ΔT

ΔT= 7.65

The change in temperature = 7.65 °C

Explanation:

The given data is as follows.

Molar mass of ammonium nitrate = 80.0 g/mol

So, we will calculate the number of moles of ammonium nitrate as follows.

     No. of moles = [tex]\frac{\text{given mass}}{\text{molar mass}}[/tex]

                            = [tex]\frac{10.0 g}{80.0 g/mol}[/tex]

                            = 0.125 mol

Heat released due to solution of ammonium nitrate = [tex]\Delta H \times \text{no. of moles}[/tex]

                    = [tex]25.7 kJ/mol \times 0.125  mol[/tex]

                    = 3.2125 KJ

                    = 3212.5 J              (as 1 kJ = 1000 J)

Therefore, calculate the total mass of solution as follows.

   mass of solution(m) = (10.0 + 100.0 ) g

                                    = 110.0 g

Hence, heat released will be calculated as follows.

                 Q = [tex]m \times C \times \Delta T[/tex]

          3212.5 J = [tex]110.0 \times 4.2 J \times \Delta T[/tex]

           [tex]\Delta T = 6.95^{o}C[/tex]

Thus, we can conclude that the change in temperature of the solution is [tex]6.95^{o}C[/tex].

Other Questions
The elements of which group in the periodic table release the most energy by gaining an electron? All of the following increase from left to right across the second period of the periodic table (Na - Ar) EXCEPT effective nuclear charge number of core electrons number of valence electrons atomic number (8) who knows how to do this?, need help You are a manager in a supermarket. One evening, you hear raised voices and see Chuck shouting at a customer, "Im not going to put the bread in a separate bag! Im going to put it in the top of this bag so it doesnt get squashed. Thats good enough!" Because yelling at customers is not allowed, you intervene and take care of the customer, and you ask Chuck to meet you in the office. There you use____________suspending Chuck without pay for the rest of his shift, to try to prevent this behavior from happening again. given a system of equations, list three ways that we can write new equations that can be used to create equivalent systems a. Match each type of titration to its pH at the equivalence point.Weak acid, strong baseStrong acid, strong baseWeak base, strong acidpH less than 7pH equal to 7pH greater than 7b. A 56.0 mL volume of 0.25 M HBr is titrated with 0.50 M KOH. Calculate the pH after addition of 28.0 mL of KOH.c. Consider the titration of 50.0 mL of 0.20 M NH3 (Kb=1.8 x 10^-5) with 0.20 M HNO3. Calculate the pH after addition of 50.0 mL of the titrant.d. A 30.0 mL volume of 0.50 M CH3COOH (Ka = 1.8 x 10^-5) was titrated with 0.50 M NaOH. Calculate the pH after addition of 30.0 mL of NaOH. Talk, Inc., offers to buy from Ultra Corporation 1,000 smartphones. Without notifying Talk, Ultra timely ships phones of a different quality. With respect to the offer and a possible contract, this shipment is an acceptance and _____. a. a counteroffer. b. complete performance. c. a breach. d. an accommodation. 11. A biologist tracked the growth of a strain of bacteria, as shown inthe graph.a. Explain why the relationship represented by the graph is afunction.There are no repeatedhamberb. What If? Suppose there was the same number of bacteria for two consecutive hours. Would the graph still represent a Function? Explain... I'maGoldMiner has benefited from a record rise in gold prices in the global commodities market. While the price of its output is highly influenced by market speculation, if it wants to increase production to take advantage of the current profit-maximizing opportunity, the companya) must accept market price for its physical capital inputs.b) must reduce what it pays for inputs that make up its costs of production.c) must reduce production to encourage speculators to drive gold prices higher.d) must alter the price of its labor inputs to maximize profits. A projectile returns to its original height 4.08 s after being launched, during which time it travels 76.2 m horizontally. If air resistance can be neglected, what was the projectile's initial speed? What does the fifth ammendment guarantee? Consider a wire of length 12 ft. The wire is to be cut into two pieces of length x and 12x. Suppose the length x is used to form a circle of radius r and the length 12x is used to form a square with side of length s. What value of x will minimize the sum of their areas? The mutation resulting in sickle cell disease changes one base pair of dna so that a codon now codes for a different amino acid The effective combined tax rate in a firm is 40%. An outlay of $2 million for certain new assets is under consideration. Over the next 8 years, these assets will be responsible for annual receipts of $600,000 and annual disbursements (other than for income taxes) of $250,000. After this time, they will be used only for stand-by purposes with no future excess of receipts over disbursements a) What is the prospective rate of return before income taxes?b) What is the prospective rate of return after taxes if straight-line depreciation can be used to write off these assets for tax purposes in 8 years?c) What is the prospective rate of return after taxes if it is assumed that the assets must be written off for tax purposes over the next 20 years, using straight line depreciation? two objects were lifted by a machine. One object had a mass of 2 kilograms, was lifted at a speed of 2m/sec . The other had a mass of 4 kilograms and was lifted at 3m/sec. Which object had more kinetic energy while it was being lifted? Show all calculations State in which all electrons are at their lowest possible energy level Mary's family went to Disneyland. Her mom drove 75 miles an hour and her dad drove 60 miles an hour. If they drove for a total of 1710 miles, how many hours did each one of the drive? y=-4x+2 y=6x-8 in substitution in what way does modern evolutionary theory differ from the theory as proposed by darwin A long steel I-beam used in bridge construction has a length of 15.0 m. The beam may be exposed to temperatures as low as 23C in the winter and as high as 32C in the summer. What is the difference in length of the beam between these two temperature extremes? (Give the absolute value of the difference. Enter your answer in mm.)