A student on the ground observes the sun just as it sets. His friend, who is located 100 meters higher up in a tall building, tells him via cell phone that she observes the sun setting 77 seconds after he does. Assuming that the path of the setting sun is perpendicular to the horizon, use this information to estimate the radius of the Earth.

Answers

Answer 1

Answer:

Rt≅6377Km

Explanation:

Take a look at the image. The horizontal line is the horizon, and the angle α corresponds to the earth rotation during the 77 seconds.

With this information, we can know the value of α:

α = [tex]\alpha= \frac{77s}{1day}*\frac{1day}{24H}*\frac{1H}{60min}*\frac{1min}{60s}*2*\pi  =0.0056rad[/tex]

Since we have formed a rectangle triangle:

[tex]cos\alpha =\frac{Rt}{Rt+100m}[/tex]   Solving for Rt:

Rt≅6377467m=6377Km

A Student On The Ground Observes The Sun Just As It Sets. His Friend, Who Is Located 100 Meters Higher

Related Questions

The speed limit on some interstate highways is roughly 80 km/h. What is this in meters per second? How many miles per hour is this?

Answers

Answer:

1) Speed in m/s equals 22.22 m/s.

2) Speed in miles per hour equals 49.712 mph.

Explanation:

Since we know that in 1 kilometer there are 1000 meters and in 1 hour there are 3600 seconds hence we can write

[tex]80km/h=\frac{80\times 1000m}{3600s}=22.22m/s[/tex]

Now we know that 1 mile equals 1.609 kilometer  hence we conclude that 1 kilometer equals [tex]\frac{1}{1.609}=0.6214[/tex]mile

Hence

[tex]80km/h=\frac{80\times 0.6214miles}{1h}=49.712mph[/tex]

Final answer:

The speed limit of 80 km/h is approximately 22.2 meters per second and 49.7 miles per hour.

Explanation:

The speed limit on some interstate highways is roughly 80 km/h. To convert this speed to meters per second, you divide by 3.6 (since 1 km/h is equal to about 0.27778 m/s). So, 80 km/h divided by 3.6 gives us approximately 22.2 m/s.

To convert the speed to miles per hour, you would use the conversion factor that 1 kilometer is approximately 0.621371 miles. Therefore, 80 km/h multiplied by 0.621371 gives us approximately 49.7 mi/h.

If the stopping potential of a metal when illuminated with a radiation of wavelength 480 nm is 1.2 V, find (a) the work function of the metal, (b) the cutoff wavelength of the metal, and (c) the maximum energy of the ejected electrons

Answers

Answer:

Part a)

[tex]W = 1.38 eV[/tex]

Part b)

[tex]\lambda = 901.22 nm[/tex]

Part c)

[tex]KE = 1.2 eV[/tex]

Explanation:

As we know by Einstein's equation of energy that

incident energy of photons = work function of metal + kinetic energy of electrons

here we know that incident energy of photons is given as

[tex]E = \frac{hc}{\lambda}[/tex]

[tex]E = \frac{(6.6 \times 10^{-34})(3 \times 10^8)}{480 \times 10^{-9}}[/tex]

now we have

[tex]E = 4.125 \times 10^{-19} J[/tex]

[tex]E = 2.58 eV[/tex]

kinetic energy of ejected electrons = qV

so we have

[tex]KE = e(1.2 V) = 1.2 eV[/tex]

Part a)

now we have

[tex]E = KE + W[/tex]

[tex]2.58 = 1.2 + W[/tex]

[tex]W = 1.38 eV[/tex]

Part b)

in order to find cut off wavelength we know that

[tex]W = \frac{hc}{\lambda}[/tex]

[tex]1.38 eV = \frac{1242 eV-nm}{\lambda}[/tex]

[tex]\lambda = 901.22 nm[/tex]

Part c)

Maximum energy of ejected electrons is the kinetic energy that we are getting

the kinetic energy of electrons will be obtained from stopping potential

so it is given as

[tex]KE = 1.2 eV[/tex]

Two joggers are running with constant speed in opposite directions around a circular lake. One jogger runs at a speed of 2.15 m/s; The other runs at a speed of 2.55 m/s. The track around the lake is 300m long, and the two joggers pass each other at exactly 3:00 PM. How long is it before the next time the two joggers pass each other again?

Answers

Answer:

The two joggers will pass each other after 1 minute and 4 seconds at 3:01:04 PM.

Explanation:

The situation is analogous to two joggers running in opposite direction in a straight line where one jogger starts at the beginning of the line and the other starts at the other end, 300 m ahead.

The equation for the position of the joggers will be:

x = x0 + v · t

Where:

x = position of the jogger at time t

x0 = initial position

v = velocity

t = time

When the joggers pass each other, their position will be the same. Let´s find at which time both joggers pass each other:

x jogger 1 = x jogger 2

0 m + 2.15 m/s · t = 300 m - 2.55 m/s · t

(notice that the velocity of the joggers has to be of opposite sign because they are running in opposite directions).

2.15 m/s · t + 2.55 m/s · t = 300 m

4.70 m/s · t = 300 m

t = 300 m / 4.70 m/s = 63.8 s

The two joggers will pass each other after 1 minute and 4 seconds at 3:01:04 PM.

What is the magnetic field at the center of a circular loop
ofwire of radius 4.0cm when a current of 2.0A flows in
thewire?

Answers

Answer:

The magnetic field at the center of a circular loop is [tex]3.14\times10^{-5}\ T[/tex].

Explanation:

Given that,

Radius = 4.0 cm

Current = 2.0 A

We need to calculate the magnetic field at the center of a circular loop

Using formula of magnetic field

[tex]B = \dfrac{I\mu_{0}}{2r}[/tex]

Where, I = current

r = radius

Put the value into the formula

[tex]B =\dfrac{2.0\times4\pi\times10^{-7}}{2\times4.0\times10^{-2}}[/tex]

[tex]B =0.00003141\ T[/tex]

[tex]B=3.14\times10^{-5}\ T[/tex]

Hence, The magnetic field at the center of a circular loop is [tex]3.14\times10^{-5}\ T[/tex].

On your wedding day, you leave for the church 25 minutes before the ceremony is to begin. The church is 8 miles away. On the way, you have to make an unanticipated stop for construction work. As a result, your average speed for the first 15 minutes is only 7 miles per hour. What average speed in miles per hour do you need for the rest of the trip to get to the church in time

Answers

Answer:

V=37.5miles/h

Explanation:

For convenience, let's convert the average speed to miles per minute:

V=7miles/h * 1h/60min = 0.1167 miles/min.

The distance traveled during the first 15 min was:

D = V*t = 1.75 miles   So, the remaining distance is 6.25miles.

Since you only have 10min left:

Vr = Dr / tr = 6.25 / 10 = 0.625 miles / min. If we take that to miles per hour we get final answer:

Vr = 0.625 miles/min * 60min/1h = 37.5 miles/h

A particular automotive wheel has an angular moment of inertia of 12 kg*m^2, and is decelerated from 135 rpm to 0 rpm in 8 seconds. a. How much torque is required to do this? b. How much work is done to accomplish this?

Answers

Answer:

(A) Torque required is 21.205 N-m

(b) Wok done will be equal to 1199.1286 j

Explanation:

We have given moment of inertia [tex]I=12kgm^2[/tex]

Wheel deaccelerate from 135 rpm to 0 rpm

135 rpm = [tex]135\times \frac{2\pi }{60}=14.1371rad/sec[/tex]

Time t = 8 sec

So angular speed [tex]\omega _i=135rpm[/tex] and [tex]\omega _f=0rpm[/tex]

Angular acceleration is given by [tex]\alpha =\frac{\omega _f-\omega _i}{t}=\frac{0-14.1371}{8}=--1.7671rad/sec^2[/tex]

Torque is given by torque [tex]\tau =I\alpha[/tex]

[tex]=12\times 1.7671=21.205N-m[/tex]

Work done to accelerate the vehicle is

[tex]\Delta w=K_I-K_F[/tex]

[tex]\Delta W=\frac{1}{2}\times 12\times 14.137^2-\frac{1}{2}\times 12\times0^2=1199.1286J[/tex]

While skydiving, your parachute opens and you slow from 50.0 m/s to 8.0 m/s in 0.75 s . Determine the distance you fall while the parachute is opening.

Answers

Answer:

21.75 m

Explanation:

t = Time taken for the car to slow down = 0.75 s

u = Initial velocity = 50 m/s

v = Final velocity = 8 m/s

s = Displacement

a = Acceleration

Equation of motion

[tex]v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{8-50}{0.75}\\\Rightarrow a=-56\ m/s^2[/tex]

Acceleration is -56 m/s²

[tex]v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{8^2-50^2}{2\times -56}\\\Rightarrow s=21.75\ m[/tex]

The distance covered in the 0.75 seconds is 21.75 m

What magnitude charge creates a 1.70 N/C electric field at a point 4.60 m away? Express your answer with the appropriate units.

Answers

Answer:

[tex]Q=4.0*10^{-9}C[/tex]

Explanation:

Electric field of a charge:

[tex]E=k*\frac{Q}{R^{2}}[/tex]

[tex]Q=\frac{E*R^{2}}{K}=1.7*4.6^{2}/(9*10^{9})=4.0*10^{-9}C[/tex]

A flat uniform circular disk (radius = 2.00 m, mass= 100
kg) is initially stationary. The disk is free to rotate inthe
horizontal plane about a frictionless axis perpendicular to
thecenter of the disk. A 40.0-kg person, standing 1.25 m from
theaxis, begins to run on the disk in a circular path and has
atangential speed of 2.00 m/s relative to the ground. Find
theresulting angular speed (in rad/s) of the disk.

Answers

Answer:

0.5 rad / s

Explanation:

Moment of inertia of the disk I₁ = 1/2 MR²

M is mass of the disc and R is radius

Putting the values in the formula

Moment of inertia of the disc  I₁  = 1/2 x 100 x 2 x 2

= 200 kgm²

Moment of inertia of man about the axis of rotation of disc

mass x( distance from axis )²

I₂  = 40 x 1.25²

= 62.5 kgm²

Let ω₁ and ω₂ be the angular speed of disc and man about the axis

ω₂ = tangential speed / radius of circular path

= 2 /1.25 rad / s

= 1.6 rad /s

ω₁ = ?

Applying conservation of angular moment ( no external torque is acting on the disc )

I₁ω₁ = I₂ω₂

200 X ω₁ = 62.5 X 1.6

ω₁ =  0.5 rad / s

If the electric potential is zero at a particular point, must the electric field be zero at the point? Explain

Answers

Answer:

If the potential is zero , the electric field could be different to zero

Explanation:

The relation between the electric field and the potential is:

=−∇

∇: gradient operator

If the electric potential, , is zero at one point but changes in the neighbourhood of this point, then the Electric field, , at that point is different from zero.

The wheel has a weight of 5.50 lb, a radius of r=13.0 in, and is rolling in such a way that the center hub, O, is moving to the right at a constant speed of v=17.0 ft/s. Assume all the mass is evenly distributed at the outer radius r of the wheel/tire assembly. What is the total kinetic energy of the bicycle wheel?

Answers

Answer:

[tex]E_{k}=1589.5ftlb[/tex]  

Explanation:

[tex]E_{k}=E_{movement}+E_{rotational}\\[/tex]    

[tex]E_{k}=\frac{1}{2}mv^{2}+\frac{1}{2}Iw^{2}[/tex]     (1)

For this wheel:

[tex]w=\frac{v}{r}[/tex]

[tex]I=mr^{2}[/tex]:    inertia of a ring

We replace (2) and (3) in (1):

[tex]E_{k}=\frac{1}{2}mv^{2}+\frac{1}{2}(mr^{2})(\frac{v}{r})^{2}=mv^{2}=5.5*17^{2}=1589.5ftlb[/tex]  

A ship leaves the island of Guam and sails a distance 255 km at an angle 49.0 o north of west. Part A: In which direction must it now head so that its resultant displacement will be 125 km directly east of Guam? (Express your answer as an angle measured south of east) Part B: How far must it sail so that its resultant displacement will be 125 km directly east of Guam?

Answers

Answer:

Explanation:

We shall represent displacement in vector form .Consider east as x axes and north as Y axes west as - ve x axes and south as - ve Y axes . 255 km can be represented by the following vector

D₁ = - 255 cos 49 i  + 255 sin49 j

= - 167.29 i + 192.45 j

Let D₂ be the further displacement which lands him 125 km east . So the resultant displacement is

D = 125 i

So

D₁ + D₂ = D

- 167.29 i + 192.45 j + D₂ = 125 i

D₂ = 125 i + 167.29 i - 192.45 j

= 292.29 i - 192.45 j

Angle of D₂ with x axes θ

tan θ = -192.45 / 292.29

= - 0.658

θ = 33.33 south of east

Magnitude of D₂

D₂² = ( 192.45)² + ( 292.29)²

D₂ = 350 km approx

Tan

A-3.07 μC charge is placed at the center of a conducting spherical shell, and a total charge of +7.25 μC is placed on the shell itself. Calculate the total charge on the outer surface of the conductor.

Answers

Answer:

4.18 μC

Explanation:

given,

charge place at the center of conducting spherical shell = -3.07 μC                    

total charge place in the shell itself = +7.25 μC                        

to calculate charge on the outer surface = ?                          

total charge on the outer surface = +7.25 μC - 3.07 μC

                                                    = 4.18 μC

hence, the charge on the outer surface of the shell is 4.18 μC

Serving at a speed of 164 km/h, a tennis player hits the ball at a height of 2.23 m and an angle θ below the horizontal. The service line is 11.6 m from the net, which is 0.99 m high. What is the angle θ in degrees such that the ball just crosses the net? Give a positive value for the angle.

Answers

Answer:

The angle θ is 6.1° below the horizontal.

Explanation:

Please, see the figure for a description of the situation.

The vector "r" gives the position of the ball and can be expressed as the sum of the vectors rx + ry (see figure).

We know the magnitude of these vectors:

magnitude rx = 11.6 m

magnitude ry = 2.23 m - 0.99 m = 1.24 m

Then:

rx = (11. 6 m, 0)

ry = (0, -1.24 m)

r = (11.6 m + 0 m, 0 m - 1.24 m) = (11.6 m, -1.24 m)

Using trigonometry of right triangles:

magnitude rx = r * cos θ = 11. 6 m

magnitude ry = r * sin θ = 2.23 m - 0.99 = 1.24 m

where r is the magnitude of the vector r

magnitude of vector r:

[tex]r = \sqrt{(11.6m)^{2} + (1.24m)^{2}} = 11.667m[/tex]

Then:

cos θ = 11.6 m / 11.667 m

θ = 6.1°

Using ry, we should obtain the same value of θ:

sin θ = 1.24 m/ 11.667 m

θ = 6.1°

( the exact value is obtained if we do not round the module of r)

A football quarterback runs 15.0 m straight down the playing field in 3.00 s. He is then hit and pushed 3.00 m straight backward in 1.74 s. He breaks the tackle and runs straight forward another 29.0 m in 5.20 s. (a) Calculate his average velocity (in m/s) for each of the three intervals. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)
v1= m/s, v2= m/s, v3= m/s
(b) Calculate his average velocity (in m/s) for the entire motion. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)
m/s

Answers

Answer:

a) [tex]v_{1}=14.29m/s\\v_{2}=9.25m/s\\v_{3}=6.36m/s[/tex]

b) [tex]v=+9.97m/s[/tex]

Explanation:

From the exercise we know that

[tex]x_{1} =15m, t_{1}=3s[/tex]

[tex]x_{2} =-3m, t_{1}=1.74s[/tex]

[tex]x_{3} =29m, t_{3}=5.20s[/tex]

From dynamics we know that the formula for average velocity is:

[tex]v=\frac{x_{2}-x_{1}  }{t_{2}-x_{1}  }[/tex]

a) For the three intervals:

[tex]v_{1}=\frac{x_{2}-x_{1}  }{t_{2}-t_{1}  }=\frac{(-3-15)m}{(1.74-3)s}=14.29m/s[/tex]

[tex]v_{2}=\frac{x_{3}-x_{2}  }{t_{3}-t_{2}  }=\frac{(29-(-3))m}{(5.20-1.74)s}=9.25m/s[/tex]

[tex]v_{3}=\frac{x_{3}-x_{1}  }{t_{3}-t_{1}  }=\frac{(29-15)m}{(5.20-3)s}=6.36m/s[/tex]

b) The average velocity for the entire motion can be calculate by the following formula:

[tex]v=\frac{v_{1}+v_{2}+v_{3}   }{n} =\frac{(14.29+9.25+6.36)m/s}{3}=+9.97m/s[/tex]

Suppose two equal charges of 0.65 C each are separated by a distance of 2.5 km in air. What is the magnitude of the force acting between them, in newtons?

Answers

Answer:

Force between two equal charges will be 608.4 N

Explanation:

We have given charges [tex]q_1=0.65C\ and\ q_2=0.65C[/tex]

Distance between the charges = 2.5 km = 2500 m

According to coulombs law force between two charges is given by

[tex]F=\frac{1}{4\pi \varepsilon _0}\frac{q_1q_2}{r^2}=\frac{Kq_1q_2}{r^2}[/tex], here K is constant which value is [tex]9\times 10^9Nm^2/C^2[/tex]

So force [tex]F=\frac{9\times 10^9\times 0.65\times 0.65}{2500^2}=608.4N[/tex]

A loop of wire with cross-sectional area 1×10^−3 m^2 lays centered in the xy -plane. The wire carries a uniform current of 180A running counter-clockwise. What is the magnitude of the magnetic moment of the current loop?

Answers

Answer:

[tex]\mu=180\times 10^{-3}A-m^2[/tex]      

Explanation:

Given that,

Area of the loop, [tex]A=10^{-3}\ m^2[/tex]

Current flowing in the wire, I = 180 A

We need to find the magnetic moment of the current loop. It is given by :

[tex]\mu=I\times A[/tex]

[tex]\mu=180\times 10^{-3}[/tex]      

[tex]\mu=180\times 10^{-3}A-m^2[/tex]      

So, the magnetic moment of the current loop is [tex]180\times 10^{-3}A-m^2[/tex]. Hence, this is the required solution.

What is the time traveled by a pulse over a distance of lcm in air (n=1) and in 1cm of glass (n 1.5)? What is the difference in picoseconds?

Answers

Answer: in air 33.33 ps and in the glass 50 ps: so the difference 16.67 ps

Explanation: In order to calculate the time for a pulse travellin in air  and in a glass we have to consider the expresion of the speed given by:

v= d/t  v the speed in a medium is given by c/n where c and n are the speed of light and refractive index respectively.

so the time is:

t=d/v=d*n/c

in air

t=0.01 m*1/3*10^8 m/s= 33.33 ps

while for the glass

t=0.01 m*1.5* 3* 10^8 m/s= 50 ps

Finally the difference is (50-33.33)ps = 16.67 ps

A Hooke's law spring is mounted horizontally over a frictionless surface. The spring is then compressed a distance d and is used to launch a mass m along the frictionless surface. What compression of the spring would result in the mass attaining double the kinetic energy received in the above situation?

Answers

Answer:

The compression is [tex] \sqrt{2} \  d [/tex].

Explanation:

A Hooke's law spring compressed has a potential energy

[tex]E_{potential} = \frac{1}{2} k (\Delta x)^2[/tex]

where k is the spring constant and [tex]\Delta x[/tex] the distance to the equilibrium position.

A mass m moving at speed v has a kinetic energy

[tex]E_{kinetic} = \frac{1}{2} m v^2[/tex].

So, in the first part of the problem, the spring is compressed a distance d, and then launch the mass at velocity [tex]v_1[/tex]. Knowing that the energy is constant.

[tex]\frac{1}{2} m v_1^2 = \frac{1}{2} k d^2[/tex]

If we want to double the kinetic energy, then, the knew kinetic energy for a obtained by compressing the spring a distance D, implies:

[tex] 2 * (\frac{1}{2} m v_1^2) = \frac{1}{2} k D^2[/tex]

But, in the left side we can use the previous equation to obtain:

[tex] 2 * (\frac{1}{2} k d^2) = \frac{1}{2} k D^2[/tex]

[tex]  D^2 =  \frac{2 \ (\frac{1}{2} k d^2)}{\frac{1}{2} k} [/tex]

[tex]  D^2 =  2 \  d^2 [/tex]

[tex]  D =  \sqrt{2 \  d^2} [/tex]

[tex]  D =  \sqrt{2} \  d [/tex]

And this is the compression we are looking for

Answer:

[tex]d'=\sqrt{2} d[/tex]

Explanation:

By hooke's law we have that the potential energy can be defined as:

[tex]U=\frac{kd^{2} }{2}[/tex]

Where k is the spring constant and d is the compression distance, the kinetic energy can be written as

[tex]K=\frac{mv^{2} }{2}[/tex]

By conservation of energy we have:

[tex]\frac{mv^{2} }{2}=\frac{kd^{2} }{2}[/tex] (1)

If we double the kinetic energy

[tex]2(\frac{mv^{2} }{2})=\frac{kd'^{2} }{2}[/tex] (2)

where d' is the new compression, now if we input (1) in (2) we have

[tex]2(\frac{kd^{2} }{2})=\frac{kd'^{2} }{2}[/tex]

[tex]2(\frac{d^{2} }{2})=\frac{d'^{2} }{2}[/tex]

[tex]d'=\sqrt{2} d[/tex]

A rock is thrown straight up and passes by a window. The window is 1.7m tall, and the rock takes 0.19 seconds to pass from the bottom of the window to the top. How far above the top of the window will the rock rise?

Answers

Answer:

The rock will rise 3.3 m above the top of the window.

Explanation:

The equations used to find the height and velocity of the rock at any given time are as follows:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height of the rock at time t

y0 = initial height

v0 = initial velocity

t = time

g = acceleration due to gravity

v = velocity of the rock at time t

If we place the frame of reference at the bottom of the window, we can say that at time t = 0.19 s the height of the rock is 1.7 m. That will allow us to find the initial velocity needed to find the time at which the rock is at its maximum height.

y = y0 + v0 · t + 1/2 · g · t²

1.7 m = 0 m + v0 · 0.19 s - 1/2 · 9.8 m/s² · (0.19 s)²

1.7 m + 1/2 · 9.8 m/s² · (0.19 s)²  = v0 · 0.19 s

(1.7 m + 1/2 · 9.8 m/s² · (0.19 s)²) / 0.19 s = v0

v0 = 9.9 m/s

With the initial velocity, we can find at which time the rock reaches its max- height. We know that at maximum height, the velocity of the rock is 0. Then, using the equation of velocity:

v = v0 + g · t

0 = 9.9 m/s - 9.8 m/s² · t

-9.9 m/s / -9.8 m/s² = t

t = 1.0 s

Now calculating the position at time t = 1.0 s, we will find the maximum heigth:

y = y0 + v0 · t + 1/2 · g · t²

y = 0 m + 9.9 m/s · 1.0 s - 1/2 · 9.8 m/s² · (1.0 s)²

y = 5.0 m  (this is the max-height meassured from the bottom of the window)

Then, the rock will rise (5.0 m - 1.7 m) 3.3 m above the top of the window.

A hot-air balloon is drifting in level flight due east at 2.8 m/s due to a light wind. The pilot suddenly notices that the balloon must gain 28 m of altitude in order to clear the top of a hill 130 m to the east. How much time does the pilot have to make the altitude change without crashing into the hill? What minimum, constant, upward acceleration is needed in order to clear the hill? What is the horizontal component of the balloon’s velocity at the instant that it clears the top of the hill? What is the vertical component of the balloon’s velocity at the instant that it clears the top of the hill?

Answers

a. There is nothing suggesting that the balloon is accelerating horizontally, so we can assume that its horizontal speed is constant. The time before the balloon crash into the hill is simply the distance between the balloon and the hill divided by its velocity. Remember that velocity is simply the amount of distance that a object travels in a certain amount of time:

[tex]t = \frac{130m}{2.8 m/s} = 46.43 s[/tex]

b. Know that you know the maximum amount of time that the balloon can take to gain 28m of altitude, the minimum acceleration can be found using the  equations constant acceleration motion:

[tex]x = \frac{1}{2}at^2 + v_ot +x_0[/tex]

where a is the acceleration, v_o is the initial vertical velocity, 0 as the balloon is not moving vertically before starting to ascend. xo is the initial position, which we will give a value of 0m.

[tex]x = \frac{1}{2}at^2\\ 28m = \frac{1}{2}(46.43s)^2a\\ a = \frac{2*28m}{(46.43s)^2} = 0.026 m/s^2[/tex]

c. As we said before, there isn't any kind of force that accelerates the balloon horizontally, therefore, we can consider that its horizontal velocity is constant and equal to 2.8m/s

d. Acceleration is the amount of change in velocity after a given amount of time. So, with the acceleration and the time we can fin the velocity:

[tex]v_y = a_y*t = 0.026m/s^2*46.43s=1.206 m/s[/tex]

Final answer:

The pilot has approximately 46.43 seconds to gain 28 m in altitude to clear the hill. The minimum constant upward acceleration needed is approximately 0.026 m/s². The horizontal component of the balloon's velocity at clearance will be 2.8 m/s, while the vertical component will be approximately 1.21 m/s.

Explanation:

The time the pilot has to make the altitude change without crashing into the hill can be found using the horizontal velocity and the distance to the hill. Since the balloon drifts horizontally at 2.8 m/s and needs to cover 130 m, the time (t) it will take can be calculated as:

t = distance / horizontal velocity = 130 m / 2.8 m/s = 46.43 seconds.

To find the minimum constant upward acceleration (a) needed to clear the hill, we use the kinematic equation:

s = ut + (1/2)at2

Where s is the vertical displacement (28 m), u is the initial vertical velocity (0 m/s), and t is the time calculated above. Rearranging for a gives:

a = 2s / t2 ≈ 2(28 m) / (46.43 s)2 ≈ 0.026 m/s2.

As the horizontal velocity is not affected by the vertical motion in the absence of air resistance, the horizontal component of the balloon's velocity when it clears the top of the hill will remain 2.8 m/s.

To find the vertical component of the velocity at the instant it clears the top of the hill, we can use the equation:

vf = u + at

Where vf is the final vertical velocity, u is the initial vertical velocity, a is the acceleration, and t is the time taken. Substituting the known values gives:

vf = 0 m/s + (0.026 m/s2)(46.43 s) ≈ 1.21 m/s.

As part of calculations to solve an oblique plane triangle (ABC), the following data was available: b=50.071 horizontal distance, C=90.286° (decimal degrees), B=62.253° (decimal degrees). Calculate the distance of c to 3 decimal places (no alpha).

Answers

Answer:

The distance of c is 56.57

Explanation:

Given that,

Horizontal distance b = 50.071

Angle C = 90.286°

Angle B = 62.253°

We need to calculate the distance of c

Using sine rule

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

[tex]\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

Put the value into the formula

[tex]\dfrac{50.071}{\sin62.253 }=\dfrac{c}{\sin90.286}[/tex]

[tex]c= \dfrac{50.071\times\sin90.286}{\sin62.253}[/tex]

[tex]c=56.575[/tex]

Hence, The distance of c is 56.575.

A type of transmission line for electromagnetic waves consists of two parallel conducting plates (assumed infinite in width) separated by a distance a. Each plate carries the same uniform surface current density of 16.0 A/m, but the currents run in opposite directions. What is the magnitude of the magnetic field between the plates at a point 1.00 mm from one of the plates if a = 0.800 cm? (μ0 = 4π × 10-7 T · m/A)

Answers

Answer:

[tex]B=2.01 \times 10^{-5}\ T[/tex]

Explanation:

Distance between plates = 0.8 cm

Distance from one plate = 1 mm

Current density (J)= 16 A/m

Currents are flowing in opposite direction.

[tex]\mu _o=4\pi \times 10^{-7}[/tex]

When current is flowing in opposite direction then magnetic field given as

[tex]B=\dfrac{\mu _oJ}{2}+\dfrac{\mu _oJ}{2}[/tex]

[tex]B=\mu _oJ[/tex]

Now by putting the values we get

[tex]B=4\pi \times 10^{-7}\times 16[/tex]

[tex]B=2.01 \times 10^{-5}\ T[/tex]

The magnitude of the magnetic field between the plates at the given point is 2.011 x 10⁻⁵ T.

What is magnetic field?

The magnitude of magnetic field between the plates due to the current flowing in opposite directions is determined by using the following formula;

B = μ₀J/2 + μ₀J/2

B = μ₀J

where;

μ₀ is permeability of free space = 4π x 10⁻⁷ T.m/AJ is current density

Substitute the given parameters and solve for the magnetic field as follows;

B = (4π x 10⁻⁷) x (16)

B = 2.011 x 10⁻⁵ T

Thus, the magnitude of the magnetic field between the plates at the given point is 2.011 x 10⁻⁵ T.

Learn more about magnetic field here: https://brainly.com/question/7802337

Kent needs to know the volume of a sphere. When he measures the radius, he gets 135.4 m with an uncertainty of +4.6 cm. What's the uncertainty of the volume?

Answers

Answer:

The uncertainty in the volume of the sphere is [tex]1.059\times 10^{4} m^{3}[/tex]

Solution:

As per the question:

Measured radius of the sphere, R = 135.4 m

Uncertainty in the radius, [tex]\Delta R = 4.6 cm = 4.6\times 10^{- 2} = 0.046 m[/tex]

We know the volume of the sphere is:

[tex]V_{s} = \frac{4}{3}\pi R^{3}[/tex]

We know that the fractional error for the given sphere is given by:

[tex]\frac{\Delta V_{s}}{V_{s}} = \frac{4}{3}\pi.\frac{|Delta R}{R}[/tex]

where

[tex]\Delta V_{s}[/tex] = uncertainty in volume of sphere

Now,

[tex]\Delta V_{s} = \frac{4}{3}\pi 3R^{2}\Delta R[/tex]

Now, substituting  the suitable values:

[tex]\Delta V_{s} = 4\pi (135.4)^{2}\times 0.046 = 1.059\times 10^{4} m^{3}[/tex]

How many 1140 nm long molecules would you have to line up end to end to stretch a distance of 158 miles?

Answers

Answer:

221754385964.9123

Explanation:

Convert miles to nanometer

1 mile = 1.6 km

1 km = 1×10³×10³×10³×10³ nm

1 mile = 1.6×10¹² nm

So,

158 miles = 158×1.6×10¹² = 252.8×10¹² nm

Length of each molecule = 1140 nm

Number of molecules = Total length / Length of each molecule

[tex]\text{Number of molecules}=\frac{252.8\times 10^{12}}{1140}\\\Rightarrow \text{Number of molecules}=221754385964.9123[/tex]

There are 221754385964.9123 number of molecules in a stretch of 158 miles

Estimate the mass of blood in your body Explain your reasoning (Note: It is not enough to provide a numeric answer. The main point of this problem is to assess your reasoning ability)

Answers

Answer: A little more that 5 Kg for a healthy person

Explanation: First, we know the following:

The regular adult has from 9 to 12 pints of blood. This is around 5 liters for a healthy male adult.

The human body is composed mostly on water, around 80%.

Blood is mostly composed on plasma, which makes blood thicker than water.

Knowing that, almost all the body is compose of water, it is safe to think that blood density should be near to that of water but higher.

The density on water is a know value. Which makes the following true:

1 Liter of Water weights 1 Kg

It could be said then, that the total mass of blood for a healthy person should be a little more that 5 kgs.

An electron moves with a speed of 5.0 x 10^4m/s
perpendicularto a uniform magnetic field of .20T. What is the
magnitude ofthe magnetic force on the electron?

Answers

Final answer:

The magnitude of the magnetic force on an electron moving with a speed of 5.0 × [tex]10^4[/tex] m/s perpendicular to a magnetic field of 0.20 Tesla is calculated using the formula F = qvB, resulting in a force of 1.6 × [tex]10^{-15}[/tex] Newtons.

Explanation:

The magnetic force on an electron moving perpendicular to a magnetic field can be calculated using the formula F = qvB, where F is the magnetic force, q is the charge of the electron (-1.6 × [tex]10^{-19}[/tex] C), v is the velocity of the electron, and B is the magnetic field strength. Given that the electron moves with a speed of  5.0 × [tex]10^4[/tex] m/s perpendicular to a uniform magnetic field of 0.20 T, we use the formula to find the magnitude of the force:

F = (1.6 ×[tex]10^{-19}[/tex]C)( 5.0 × [tex]10^4[/tex] m/s)(0.20 T) =1.6 ×[tex]10^{-19}[/tex]C× 104 m/s × 2 × [tex]10^{-1}[/tex] T

F = 1.6 ×[tex]10^{-15}[/tex] N

The magnitude of the magnetic force on the electron is  1.6 ×[tex]10^{-15}[/tex] Newtons.

A driver increases his velocity from 20 km/hr to 100 km/hr. BY what factor does he increase the kinetic energy of the car with this increase in speed? Kinetic energy is 4 times greater
Kinetic energy is 16 times greater
Kinetic energy is 25 times greater
Kinetic energy is 9 times greater
Kinetic energy is 2 times greater

Answers

Answer:

25 times greater

Explanation:

Let the mass of the car is m

Initial speed, u = 20 km/h = 5.56 m/s

Final speed, v = 100 km/h = 27.78 m/s

The formula for the kinetic energy is given by

[tex]K = \frac{1}{2}mv^{2}[/tex]

So, initial kinetic energy

[tex]K_{i} = \frac{1}{2}m(5.56)^{2}[/tex]

Ki = 15.466 m

final kinetic energy

[tex]K_{f} = \frac{1}{2}m(27.78)^{2}[/tex]

Kf = 385.86 m

Increase in kinetic energy is given by

= [tex]\left ( \frac{K_{f}}{K_{i}} \right )[/tex]

= 385.86 / 15.466 = 25

So, the kinetic energy is 25 times greater.

Final answer:

The kinetic energy of the car increases by a factor of 25.

Explanation:

The increase in kinetic energy of the car can be determined by comparing the initial kinetic energy to the final kinetic energy. Kinetic energy is directly proportional to the square of velocity.

In this case, the velocity is increased from 20 km/hr to 100 km/hr. Let's calculate the ratio of the final kinetic energy to the initial kinetic energy.

The initial kinetic energy is given by 1/2 * (mass of the car) * (initial velocity)^2, and the final kinetic energy is given by 1/2 * (mass of the car) * (final velocity)^2.

Let's substitute the values and calculate the ratio:

Ratio = (1/2 * (mass) * (final velocity)^2) / (1/2 * (mass) * (initial velocity)^2) = (final velocity)^2 / (initial velocity)^2.

Substituting the numbers, Ratio = (100 km/hr)^2 / (20 km/hr)^2 = 10000 / 400 = 25.

Therefore, the factor by which the kinetic energy of the car increases is 25 times greater.

The force of magnitude F acts along the edge of the triangular plate. Determine the moment of F about point O. Find the general result and then evaluate your answer if F = 260 N, b = 580 mm, and h = 370 mm. The moment is positive if counterclockwise, negative if clockwise.

Answers

Answer:

The moment is 81.102 k N-m in clockwise.

Explanation:

Given that,

Force = 260 N

Side = 580 mm

Distance h = 370 mm

According to figure,

Position of each point

[tex]O=(0,0)[/tex]

[tex]A=(0,-b)[/tex]

[tex]B=(h,0)[/tex]

We need to calculate the position vector of AB

[tex]\bar{AB}=(h-0)i+(0-(-b))j[/tex]

[tex]\bar{AB}=hi+bj[/tex]

We need to calculate the unit vector along AB

[tex]u_{AB}=\dfrac{\bar{AB}}{|\bar{AB}|}[/tex]

[tex]u_{AB}=\dfrac{h\hat{i}+b\hat{j}}{\sqrt{h^2+b^2}}[/tex]

We need to calculate the force acting along the edge

[tex]\hat{F}=F(u_{AB})[/tex]

[tex]\hat{F}=F(\dfrac{h\hat{i}+b\hat{j}}{\sqrt{h^2+b^2}})[/tex]

We need to calculate the net moment

[tex]\hat{M}=\hat{F}\times OA[/tex]

Put the value into the formula

[tex]\hat{M}=F(\dfrac{h\hat{i}+b\hat{j}}{\sqrt{h^2+b^2}})\times(-b\hat{j})[/tex]

[tex]\hat{M}=\dfrac{F}{\sqrt{h^2+b^2}}((h\hat{i}+b\hat{j})\times(-b\hat{j}))[/tex]

[tex]\hat{M}=\dfrac{F}{\sqrt{h^2+b^2}}(-bh\hat{k})[/tex]

[tex]\hat{M}=-\dfrac{bhF}{\sqrt{h^2+b^2}}[/tex]

Put the value into the formula

[tex]\hat{M}=-\dfrac{580\times10^{-3}\times370\times10^{-3}\times260}{\sqrt{(370\times10^{-3})^2+(580\times10^{-3})^2}}[/tex]

[tex]\hat{M}=-81.102\ \hat{k}\ N-m[/tex]

Negative sign shows the moment is in clockwise.

Hence, The moment is 81.102 k N-m in clockwise.

The moment will be  81.102 k N-m in a clockwise direction. The moment is used to rotate or twist the object.

What is a moment?

The moment is defined as the product of the force and the perpendicular distance from the pivot point. Its unit is KN-m.

The given data in the problem is;

F is the Force = 260 N

b is the Side = 580 mm

h is the distance = 370 mm

Position of the points is found by;

O(0,0)

A(0,-b)

B(h,0)

The position vector for the AB will be;

[tex]\vec AB = (h-0)+ (0-(-b))j \\\\ \vec AB =h \vec i + b \vec j[/tex]

The unit vector along with AB

[tex]\rm u_AB = \frac{\vec AB }{|\vec AB|} \\\\ \rm u_AB = \frac{h \vec i + b \vec j}{\sqrt{h^2+b^2} }[/tex]

The net moment is found by;

[tex]\hat M = \hat F \times OA \\\\ \hat M =F \frac{h \vec i + b \vec j}{\sqrt{h^2+b^2} }\times (b \vec j) \\\\ \hat M =\frac{F}{\sqrt{h^2+b^2}} \times (bh \hat k) \\\\ \hat M =- \ \frac{bhf}{\sqrt{h^2+b^2}}[/tex]

[tex]\hat M =- \ \frac{bhf}{\sqrt{h^2+b^2}} \\\\ \hat M =- \ \frac{580 \times 10^-3 \times 370 \times 10^-3 \times 260 }{\sqrt{(370\times 10^-3)^2+(580\times 10^-3)^2}} \\\\ \hat M =- 81.102 \ KNm[/tex]

-ve sign shows that moment is clockwise.

Hence the moment will be  81.102 k N-m in a clockwise direction.

To learn more about the moment refer to the link;

https://brainly.com/question/6278006

As a train accelerates away from a station, it reaches a speed of 4.6 m/s in 5.2 s. If the train's acceleration remains constant, what is its speed after an additional 7.0 s has elapsed? Express your answer using two significant figures.

Answers

Answer:

Vf = 10.76 m/s

Explanation:

Train kinematics

The train moves with uniformly accelerated movement

[tex]V_f = V_o + a*t[/tex] Formula (1)

Vf: Final speed (m/s)

V₀: Inital speed (m/s)

t: time in seconds (s)

a: acceleration (m/s²)

Movement from t = 0 to t = 5.2s

We replace in formula (1)

4.6 = 0 + a*5.2

a = 4.6/5.2 = 0.88 m/s²

Movement from t = 5.2s to t = 5.2s + 7s = 12.2s

We replace in formula (1)

[tex]V_f = 4.6 + 0.88*7[/tex]

Vf = 10.76 m/s

Other Questions
WILL GIVE Brainiest!!!!!The Zuni peoples once had six or seven pueblos, ___________ a. but now there are none. b. however now they are all joined into one large village. c. giving rise to the stories of the Seven Cities of Cibola. d. although all the villages are now inhabited by other Indian groups. Carlos wants to practice piano 2 hours each day. He practices piano for 3/4 hour before school and 7/10 hour when he gets home. How many hours has Carlos practiced piano? How much longer does he need to practice before going to bed in order to meet his goal? Find the product: 8( 2 7 )( 1 2 ) A) 4 7 B) 4 17 C) 7 4 D) 8 7 Why/what Rome is important to us government? At the primate exhibit at the zoo, you notice a slew of monkeys dangling from branches by their tails. The information plaque notes that they are colobus, macaques, and baboons. When you read this, you immediately seek out the zookeeper to complain there is an error. What is wrong with the plaque? By using displacement reactions it is possible to deduce the order of reactivity of the halogens.Discuss this statement with reference to the elements bromine, iodine and chlorine only. Write down the possible genotypes, as determined by the phenotype.a. If the phenotype is that of the dominant trait (for example, purple flowers), then the genotype is either homozygous dominant or heterozygous (PP or Pp in this example).b. If the phenotype is that of the recessive trait, the genotype must be homozygous recessive (for example, pp).c. If the problem says "true-breeding," the genotype is homozygous. Convert 100 meters to centimeters In what way have third parties been influential in US politics Jose is applying to college. He receives information on 7 different colleges. He will apply to all of those he likes. He may like none of them, all of them, or any combination of them. How many possibilities are there for the set of colleges that he applies to? Characteristics of Azotobacter Azotobacter is a genus of bacteria that live in soil and have the following characteristics: They are bacilli. They are gram-negative. They are obligate aerobes. They can fix nitrogen. (Unlike some other nitrogen-fixing bacteria, which associate with the roots of plants, Azotobacter species are free-living.) Select the four statements that are true for bacteria in the genus Azotobacter. They are poisoned by O_2. They appear purple after Gram staining. They have a relatively thin layer of in their cell wall. They require amino acids or other organic molecules as a source of nitrogen. They use O_2 for cellular respiration. They can carry out anaerobic respiration in an environment that lacks O_2. They are shaped like rods. They have the appearance of coils or corkscrews. They can convert atmospheric nitrogen to ammonia. What happens to the force between the spheres when you increase the mass of one of the spheres?What happens to the force between the spheres when you increase the mass of both spheres? If the caffeine concentration in a particular brand of soda is 2.13 mg/oz, drinking how many cans of soda would be lethal? Assume that 10.0 g of caffeine is a lethal dose, and there are 12 oz in a can. cans of soda: A liquid of mass 10 kg is enclosed in a cylinder of radius 1 m and length 5 m, what is the density of liquid? a) 0.63 kg/m3 b) 0.44 kg/m3 c) 0.54 kg/m3 d) 0.83 kg/m3 The function -6t^2+5t+56=h is used to calculate the amount of time (t) in seconds it takes for an object to reach a certain height (h). According to this function, how many seconds will it take for the object to hit the ground? A ____ is any manipulation of data, usually with the goal of producing information.decisionprocessproblemsystem where did Jewish people spread their religion after they were expelled from Judea? How long did it take beagle to sail from Tahiti back to Falmouth, England? Social studies bill of rights Bill has 5 apples and 5 bananas. He can only put 5 pieces of fruit in a bowl. How can Bill make a table to show the different ways he can put fruit in the bowl?What will be the same in each row of the table?