A total of 1 232 students have taken a course in Spanish, 879 have taken a course in French, and 114 have taken a course in Russian. Further, 103 have taken courses in both Spanish and French, 23 have taken courses in both Spanish and Russian, and 14 have taken courses in both French and Russian. If 2 092 students have taken at least one of Spanish, French, and Russian, how many students have taken a course in all three languages

Answers

Answer 1

Answer:

[tex]n(S\cap F \cap R)=7[/tex]

Step-by-step explanation:

The Universal Set, n(U)=2092

[tex]n(S)=1232\\n(F)=879\\n(R)=114[/tex]

[tex]n(S\cap R)=23\\n(S\cap F)=103\\n(F\cap R)=14[/tex]

Let the number who take all three subjects, [tex]n(S\cap F \cap R)=x[/tex]

Note that in the Venn Diagram, we have subtracted [tex]n(S\cap F \cap R)=x[/tex] from each of the intersection of two sets.

The next step is to determine the number of students who study only each of the courses.

[tex]n(S\:only)=1232-[103-x+x+23-x]=1106+x\\n(F\: only)=879-[103-x+x+14-x]=762+x\\n(R\:only)=114-[23-x+x+14-x]=77+x[/tex]

These values are substituted in the second Venn diagram

Adding up all the values

2092=[1106+x]+[103-x]+x+[23-x]+[762+x]+[14-x]+[77+x]

2092=2085+x

x=2092-2085

x=7

The number of students who have taken courses in all three subjects, [tex]n(S\cap F \cap R)=7[/tex]

A Total Of 1 232 Students Have Taken A Course In Spanish, 879 Have Taken A Course In French, And 114
A Total Of 1 232 Students Have Taken A Course In Spanish, 879 Have Taken A Course In French, And 114
Answer 2

Using the principle of Inclusion-Exclusion, we find that 7 students have taken courses in all three languages: Spanish, French, and Russian.

Finding the Number of Students Taking All Three Language Courses

We can solve this problem using the principle of Inclusion-Exclusion. Let:
S = number of students taking Spanish
F = number of students taking French
R = number of students taking Russian
SF = number of students taking both Spanish and French
SR = number of students taking both Spanish and Russian
FR = number of students taking both French and Russian
SFR = number of students taking all three languages.

From the given data:

S = 1232F = 879R = 114SF = 103SR = 23FR = 14Total students taking at least one language = 2092

The principle of Inclusion-Exclusion states:

Total = S + F + R - SF - SR - FR + SFR
2092 = 1232 + 879 + 114 - 103 - 23 - 14 + SFR

Solving for SFR:

2092 = 2085 + SFR

Thus, SFR = 2092 - 2085 = 7

Therefore, 7 students have taken courses in all three languages: Spanish, French, and Russian.


Related Questions

A watch cost $48 more than a clock. The cost for the clock is 4/7 the cost of the watch. You'll find the total cost of the two items

Answers

Final answer:

To find the total cost of the watch and the clock, set up equations based on the given relationships, solve for the individual costs, and then add them together. The total cost amounts to $176.

Explanation:

The student is asking to find the total cost of two items - a watch and a clock. The clock costs 4/7 of what the watch costs, and the watch costs $48 more than the clock. Let's denote the cost of the clock as c and the cost of the watch as w. The problem gives us two equations: w = c + $48 and c = (4/7)w. Now, we can solve these equations to find the individual costs of the clock and the watch, then sum them to find the total cost.

Step-by-step Solution

Substitute the value of c from the second equation into the first equation: w = (4/7)w + $48.

Multiply both sides of the equation by 7 to eliminate the fraction: 7w = 4w + $336.

Subtract 4w from both sides: 3w = $336.

Divide both sides by 3 to find the cost of the watch: w = $112.

Now that we have the cost of the watch, we can substitute it back into the equation c = (4/7)w to find the cost of the clock: c = (4/7) x $112 = $64.

The total cost of both items is the sum of the cost of the clock and the cost of the watch: w + c = $112 + $64 = $176.

Therefore, the total cost of the watch and the clock together is $176.

A fruit stand sells 6 oranges for $3.00 and 3 grapefruit for $2.40. Sherry buys 10 oranges and 11 grapefruit. How much does Sherry spend on the fruit?

Answers

Answer:

Step-by-step explanation:

FIRST FOR ORANGES SHE BOUGHT 10 SO 10 TIMES 3 IS 30 AND THEN 11 TIMES 2.40 IS 26.40. 30 PLUS 26.40 IS 56.40 THATS YOUR AWNSER

What is the median of the following data set?

{6, 3, 9, 1, 7}

3
6
8
9
I know the answer just seeing what you guys know and giving points:)

Answers

Answer:

The median of the following set of data is 9 since the question is implying, which is the center of the data distribution.

Step-by-step explanation:

Answer: 6
The median is the number in the middle after putting the points in ascending order.

Arc Length and Radians question- please help! Will mark brainliest! Is 20pts!

The answer is shown but please give me an explanation so I can show my work!

Answers

Given:

Given that the radius of the merry - go - round is 5 feet.

The arc length of AB is 4.5 feet.

We need to determine the measure of the minor arc AB.

Measure of the minor arc AB:

The measure of the minor arc AB can be determined using the formula,

[tex]Arc \ length=(\frac{\theta}{360})2 \pi r[/tex]

Substituting arc length = 4.5 and r = 5, we get;

[tex]4.5=(\frac{\theta}{360})2 (3.14)(5)[/tex]

Multiplying the terms, we get;

[tex]4.5=(\frac{\theta}{360})31.4[/tex]

Dividing, we get;

[tex]4.5=0.087 \theta[/tex]

Dividing both sides of the equation by 0.087, we get;

[tex]51.7=\theta[/tex]

Rounding off to the nearest degree, we have;

[tex]52=\theta[/tex]

Thus, the measure of the minor arc AB is 52°

Answer:

52°

Step-by-step explanation:

Arc length = (theta/360) × 2pi × r

4.5 = (theta/360) × 2 × 3.14 × 5

theta/360 = 45/314

Theta = 51.59235669

n monitoring lead in the air after the explosion at the battery factory, it is found that the amounts of lead over a 6 day period had a standard error of 1.91. Find the margin of error that corresponds to a 95% confidence interval. (Round to 2 decimal places)

Answers

Answer:

434.98

Step-by-step explanation:

Which sentence can represent the inequality One-half x + three-fourths greater-than-or-equal-to 5 and one-fourth?
The sum of half of a number and three-fourths is at least five and one quarter.
Half the sum of a number and three-fourths is not more than five and one quarter.
The sum of half of a number and three-fourths is at most five and one quarter.
Half the sum of a number and three-fourths is not less than five and one quarter.

Answers

Answer:

  The sum of half of a number and three-fourths is at least five and one quarter

Step-by-step explanation:

It's all about making sense of an English sentence.

  "half the sum ..." is different from "the sum of half ..."

And ...

  "at least" and "not less than" mean the same (≥)

  "not more than" and "at most" mean the same (≤)

_____

Since all of the expressions are written out in words, it is a matter of matching the ideas expressed. That's a problem in reading comprehension, not math.

__

"One-half x + three-fourths [is] greater-than-or-equal-to 5 and one-fourth"

  means the same as ...

"The sum of half of a number and three-fourths is at least five and one quarter"

Final answer:

The correct sentence for the inequality one-half x + three-fourths ≥ 5 and one-fourth is 'The sum of half of a number and three-fourths is at least five and one quarter'.

Explanation:

The correct representation of the inequality one-half x + three-fourths ≥ 5 and one-fourth (0.5x + 0.75 ≥ 5.25) in a sentence is The sum of half of a number and three-fourths is at least five and one quarter. This means that when you take half of a certain number (which we call x), add three-fourths to it, the result should be no less than five and one quarter. The other options either incorrectly suggest that the inequality is an equation, or misrepresent the inequality by suggesting the sum is 'at most' or not more or less than the given value, which changes the meaning of the original inequality.

(20-(-16))=20+16=36 I need the answer to this question please!

Answers

Answer:

3.75

Step-by-step explanation:

Hope this helps

Which graph represents the function f(x) = 2/(x - 1) + 4x

Answers

I attached a screenshot of the graph, but you may also look for the graph by going to Desmos.com

40% of students in a school wore blue on a spirit Day. If two
students are randomly selected, what is the probability that both
students will not be wearing blue?

Answers

The probability that both students will not wear blue is 0.36, obtained by multiplying the probability of one student not wearing blue, 0.60, by itself.

To find the probability that both students will not be wearing blue, we first need to determine the probability that one student is not wearing blue, and then multiply that probability by itself for two students.

Step 1: Calculate the probability that one student is not wearing blue.

Given that 40% of students wore blue, the probability that one student is not wearing blue is 1 - 0.40 = 0.60.

Step 2: Multiply the probability for one student by itself for two students.

The probability that both students will not be wearing blue is (0.60) ×(0.60) = 0.36.

So, the probability that both students will not be wearing blue is 0.36.

The boundary of a lamina consists of the semicircles y = 1 − x2 and y = 16 − x2 together with the portions of the x-axis that join them. Find the center of mass of the lamina if the density at any point is inversely proportional to its distance from the origin.

Answers

The center of mass of the lamina is located at the point (0, (39/12) (1 / ln(4))).

To find the center of mass of the given lamina, we need to calculate the moment about the x-axis and the y-axis, and then divide them by the total mass of the lamina.

Given information:

- The boundary of the lamina consists of the semicircles y = sqrt(1 - x^2) and y = sqrt(16 - x^2), and the portions of the x-axis that join them.

- The density at any point is inversely proportional to its distance from the origin.

Find the total mass of the lamina.

Let the density function be [tex]\[ \rho(x, y) = \frac{k}{\sqrt{x^2 + y^2}} \][/tex], where k is a constant.

The total mass, M, is given by the double integral of the density function over the region of the lamina.

M = ∫∫ ρ(x, y) dA

To evaluate this integral, we need to express the lamina in polar coordinates.

The semicircles can be represented as:

0 ≤ r ≤ 1, 0 ≤ θ ≤ π

0 ≤ r ≤ 4, π ≤ θ ≤ 2π

The total mass can be calculated as:

[tex]\[ M = \int_{0}^{\pi} \int_{0}^{1} \frac{k}{r} r \, dr \, d\theta + \int_{\pi}^{2\pi} \int_{0}^{4} \frac{k}{r} r \, dr \, d\theta \]\[ M = k \left( \pi \ln(1) + 2\pi \ln(4) \right) \]\[ M = 2\pi k \ln(4) \][/tex]

Calculate the moment about the x-axis.

The moment about the x-axis, Mx, is given by:

[tex]\[ M_x = \int_{0}^{\pi} \int_{0}^{1} \frac{k}{r} r^2 \sin(\theta) \, dr \, d\theta + \int_{\pi}^{2\pi} \int_{0}^{4} \frac{k}{r} r^2 \sin(\theta) \, dr \, d\theta \]\[ M_x = k \left( \frac{\pi}{2} + \frac{32\pi}{3} \right) \]\[ M_x = \frac{39\pi}{6} k \][/tex]

Calculate the moment about the y-axis.

The moment about the y-axis, My, is given by:

My = ∫∫ x ρ(x, y) dA

In polar coordinates:

[tex]\[ M_y = \int_{0}^{\pi} \int_{0}^{1} \frac{k}{r} r^2 \cos(\theta) \, dr \, d\theta + \int_{\pi}^{2\pi} \int_{0}^{4} \frac{k}{r} r^2 \cos(\theta) \, dr \, d\theta \][/tex]

My = 0 (due to symmetry)

Find the coordinates of the center of mass.

The coordinates of the center of mass (x_cm, y_cm) are given by:

x_cm = My / M

y_cm = Mx / M

Substituting the values, we get:

x_cm = 0 / (2πk ln(4)) = 0

y_cm = (39π/6) k / (2πk ln(4)) = (39/12) (1 / ln(4))

Therefore, the center of mass of the lamina is located at the point (0, (39/12) (1 / ln(4))).

Complete question:

The boundary of a lamina consists of the semicircles y=sqrt(1 − x^2) and y= sqrt(16 − x^2) together with the portions of the x-axis that join them. Find the center of mass of the lamina if the density at any point is inversely proportional to its distance from the origin.

The center of mass of the lamina is at the origin (0, 0)

To find the center of mass of the lamina, we first need to find the mass and the moments about the  x- and  y-axes.

The mass  M of the lamina can be calculated by integrating the density function over the lamina. Since the density at any point is inversely proportional to its distance from the origin, we can express the density[tex]\( \delta \) as \( \delta(x, y) = \frac{k}{\sqrt{x^2 + y^2}} \)[/tex], where  k is a constant.

Let's denote [tex]\( \delta(x, y) \) as \( \frac{k}{\sqrt{x^2 + y^2}} \)[/tex]. Then the mass M  is given by the double integral of [tex]\( \delta(x, y) \)[/tex] over the region  R bounded by the semicircles and the portions of the x-axis:

[tex]\[ M = \iint_R \delta(x, y) \, dA \][/tex]

Where  dA  represents the differential area element.

To find the moments about the  x- and  y -axes, we calculate:

[tex]\[ M_x = \iint_R y \delta(x, y) \, dA \]\[ M_y = \iint_R x \delta(x, y) \, dA \][/tex]

Then, the coordinates [tex]\( (\bar{x}, \bar{y}) \)[/tex] of the center of mass are given by:

[tex]\[ \bar{x} = \frac{M_y}{M} \]\[ \bar{y} = \frac{M_x}{M} \][/tex]

Now, let's proceed to find [tex]\( M \), \( M_x \), and \( M_y \)[/tex]

First, let's express the density [tex]\( \delta(x, y) \)[/tex] in terms of k:

[tex]\[ \delta(x, y) = \frac{k}{\sqrt{x^2 + y^2}} \][/tex]

Now, we'll find the mass  M by integrating [tex]\( \delta(x, y) \)[/tex] over the region  R :

[tex]\[ M = \iint_R \frac{k}{\sqrt{x^2 + y^2}} \, dA \][/tex]

Since the region  R  is symmetric about the  x-axis, we can integrate over the upper half and double the result:

[tex]\[ M = 2 \iint_{R_1} \frac{k}{\sqrt{x^2 + y^2}} \, dA \][/tex]

Now, we'll switch to polar coordinates [tex]\( (r, \theta) \)[/tex]. In polar coordinates, the region [tex]\( R_1 \)[/tex]is described by [tex]\( 0 \leq \theta \leq \pi \) and \( 1 \leq r \leq 4 \).[/tex]

So, the integral becomes:

[tex]\[ M = 2 \int_{0}^{\pi} \int_{1}^{4} \frac{k}{r} \cdot r \, dr \, d\theta \]\[ = 2k \int_{0}^{\pi} \int_{1}^{4} 1 \, dr \, d\theta \]\[ = 2k \int_{0}^{\pi} (4 - 1) \, d\theta \]\[ = 2k \int_{0}^{\pi} 3 \, d\theta \]\[ = 6k \pi \][/tex]

For [tex]\( M_x \)[/tex], we integrate [tex]\( x \delta(x, y) \)[/tex] over the region R :

[tex]\[ M_x = \iint_R x \cdot \frac{k}{\sqrt{x^2 + y^2}} \, dA \]\[ = 2 \int_{0}^{\pi} \int_{1}^{4} r \cos(\theta) \cdot \frac{k}{r} \cdot r \, dr \, d\theta \]\[ = 2k \int_{0}^{\pi} \int_{1}^{4} \cos(\theta) \cdot r \, dr \, d\theta \]\[ = 2k \int_{0}^{\pi} \left[ \frac{1}{2} r^2 \cos(\theta) \right]_{1}^{4} \, d\theta \][/tex]

[tex]\[ = 2k \int_{0}^{\pi} \left( 8 \cos(\theta) - \frac{1}{2} \cos(\theta) \right) \, d\theta \]\[ = 2k \int_{0}^{\pi} \left( \frac{15}{2} \cos(\theta) \right) \, d\theta \]\[ = 2k \left[ \frac{15}{2} \sin(\theta) \right]_{0}^{\pi} \]\[ = 2k \cdot 0 \]\[ = 0 \][/tex]

Now, for[tex]\( M_y \)[/tex], we integrate [tex]\( y \delta(x, y) \)[/tex]over the region  R :

[tex]\[ M_y = \iint_R y \cdot \frac{k}{\sqrt{x^2 + y^2}} \, dA \\\[ = 2 \int_{0}^{\pi} \int_{1}^{4} r \sin(\theta) \cdot \frac{k}{r} \cdot r \, dr \, d\theta \\\[ = 2k \int_{0}^{\pi} \int_{1}^{4} \sin(\theta) \cdot r \, dr \, d\theta \\\[ = 2k \int_{0}^{\pi} \left[ \frac{1}{2} r^2 \sin(\theta) \right]_{1}^{4} \, d\theta \\[/tex]

[tex]\[ = 2k \int_{0}^{\pi} \left( 8 \sin(\theta) - \frac{1}{2} \sin(\theta) \right) \, d\theta \\\[ = 2k \int_{0}^{\pi} \left( \frac{15}{2} \sin(\theta) \right) \, d\theta \\\[ = 2k \left[ -\frac{15}{2} \cos(\theta) \right]_{0}^{\pi} \\\[ = 2k \cdot 0 \\\[ = 0 \][/tex]

Now, we have [tex]\( M = 6k \pi \), \( M_x = 0 \), and \( M_y = 0 \).[/tex]

Finally, we can find the coordinates of the center of mass [tex]\( (\bar{x}, \bar{y}) \):[/tex]

[tex]\[ \bar{x} = \frac{M_y}{M} = \frac{0}{6k \pi} = 0 \]\[ \bar{y} = \frac{M_x}{M} = \frac{0}{6k \pi} = 0 \][/tex]

So, the center of mass of the lamina is at the origin (0, 0) .

Answer the question.
Sophie works as a computer programmer. she earns $28 per hour. If Sophie works 10 hours. how much money will she earn?

Answers

$280

10 * 28 = 280 hope this helps :)

g a. A 99% confidence level and a sample of 24 observations. 2.807 2.807 Correct b. A 90% confidence level and a sample of 24 observations. 1.714 1.714 Correct c. A 99% confidence level and a sample of 20 observations. 2.845 2.845 Incorrect d. A 90% confidence level and a sample of 20 observations.

Answers

Answer: b. A 90% confidence level and a sample of 24 observations. 1.714 1.714 Correct

Step-by-step explanation:

Most individuals are aware of the fact that the average annual repair cost for an automobile depends on the age of the automobile. A researcher is interested in finding out whether the variance of the annual repair costs also increases with the age of the automobile. A sample of automobiles years old showed a sample standard deviation for annual repair costs of and a sample of automobiles years old showed a sample standard deviation for annual repair costs of . Let year old automobiles be represented by population . a. State the null and alternative versions of the research hypothesis that the variance in annual repair costs is larger for the older automobiles. b. Conduct the hypothesis test at a level of significance. Calculate the value of the test statistic (to 2 decimals).

Answers

Answer:

Step-by-step explanation:

Hello!

The researcher's objective is to test if the variance of the annual repair costs increases with the age of the automobile, i.e. the older the car, the more the repairs costs. The parameters of the study are the population variances of the annual repair costs of 4 years old cars and 2 years old cars.

X₁: Costs of annual repair of a 4 years old car.

Assuming X₁~N(μ₁;δ₁²)

A sample of 26 automobiles 4 years old showed a sample standard deviation for annual repair costs of $170

n₁= 26 and S₁= $170

X₂: Costs of annual repair of a 2 years old car.

Assuming X₂~N(μ₂;σ₂²)

A sample of 25 automobiles 2 years old showed a sample standard deviation for the annual repair cost of $100.

n₂= 25 and S₂= $100

a. State the null and alternative versions of the research hypothesis that the variance in annual repair costs is larger for older automobiles.

H₀: δ₁² ≤ σ₂²

H₁: δ₁² > σ₂²

b. At a .01 level of significance, what is your conclusion? What is the p-value? Discuss the reasonableness of your findings.

This is a variance ratio test and you have to use a Snedecor's F-statistic:

[tex]F= \frac{S^2_1}{S_2^2} * \frac{Sigma_1^2}{Sigma_2^2}~~F_{n_1-1;n_2-1}[/tex]

[tex]F_{H_0}= \frac{28900}{10000}*1= 2.89[/tex]

This test is one-tailed to the right and so is the p-value, you have to calculate it under a F₂₅;₂₄

P(F₂₅;₂₄≥2.89)= 1 - P(F₂₅;₂₄<2.89)= 1 - 0.994= 0.006

Using the p-value approach the decision rule is:

If p-value ≤ α, reject the null hypothesis.

If p-value > α, do not reject the null hypothesis.

α: 0.01

The p-value is less than the level of significance, the decision is to reject the null hypothesis.

Then using a 1% level, you can conclude that the population variance of the cost of annual repairs for 4 years old cars is greater than the population variance of the cost of annual repairs for 2 years old cars.

I hope this helps!

Victor has $40 in a savings account. The interest rate is 5%, compounded annually.
To the nearest cent, how much interest will he earn in 3 years?

Answers

Answer:

$6.31

Step-by-step explanation:

We are going to use the compound simple interest formula for this problem:

[tex]A=P(1+\frac{r}{n} )^{nt}[/tex]

P = initial balance

r = interest rate (decimal)

n = number of times compounded annually

t = time

Our first step is to change 5% into its decimal form:

5% -> [tex]\frac{5}{100}[/tex] -> 0.05

Next, plug in the values:

[tex]A=40(1+\frac{0.05}{1})^{1(3)}[/tex]

[tex]A=46.31[/tex]

Lastly, subtract 40 (our original value) from 46.31:

[tex]46.31-40=6.31[/tex]

Victor earned $6.31 in interest after 3 years.

What is the best estimate of the difference between 48 and 21

Answers

Answer: 27?

Step-by-step explanation:

Answer

The best estimate for 48 and 21 is 50 and 20.  50-20= 30 so 30 is ur answer

Step-by-step explanation:

Daniel makes 16 more muffins than kris.
Daniel makes 34 muffins. How many muffins does kris make?
Solve the equation problem choose yes or no

Answers

Kris makes 18 muffins

When the driver applies the brakes of a small-size truck traveling 10 mph, it skids 5 ft before stopping. How far will the truck skid if it is traveling 55 mph when the brakes are applied

Answers

Answer:

The truck will skid for 151 ft before stopping when the brakes are applied

Step-by-step explanation:

From the equations of motion, we will use

[tex]v^{2} = u^{2}-2aS[/tex]

We have to make sure that the parameters we are working with are in the same unit of length. Here, we will be converting from ft to miles

When the truck is travelling at 10 mph.

S = distance the truck skids = [tex]\frac{5ft}{5286ft/mile}= 0.00094697miles[/tex]

Final velocity of truck, v = 0 m/s (this is because the truck decelerates to a halt)

Initial velocity of truck u = 10 mph

Hence, we have

[tex]0^{2}=10^{2}-2a\times 0.00094697[/tex]

[tex]a= 52799.9miles/hr^{2}[/tex]

This is the deceleration of the truck

We will work based on the assumption that the car decelerates at the same rate each time the brakes are fully applied.

When the truck is travelling at u= 55 mph.

We will need to use the deceleration of the car to find the distance traveled when it skids.

[tex]0^{2}=55^{2}-2\times52799.98\times S[/tex]

[tex]S= 0.0286 miles\approx 151 ft[/tex]

∴The car skids for about 151 ft when it is travelling at 55 mph and the brakes are applied.

The screening process for detecting a rare disease is not perfect. Researchers have developed a blood test that is considered fairly reliable. It gives a positive reaction in 94.5% of the people who have that disease. However, it erroneously gives a positive reaction in 1.5% of the people who do not have the disease. Consider the null hypothesis "the individual does not have the disease" to answer the following questions.
a. What is the probability of a Type I error?
b. What is the probability of a Type II error?

Answers

Answer:

a) Type 1 Error: 1.5%

b) Type 2 Error: 5.5%

Step-by-step explanation:

Probability of positive reaction when infact the person has disease = 94.5%

This means, the probability of negative reaction when infact the person has disease = 100- 94.5% = 5.5%

Probability of positive reaction when the person does not have the disease = 1.5%

This means,

Probability of negative reaction when the person does not have disease = 100% - 1.5% = 98.5%

Our Null Hypothesis is:

"The individuals does not have the disease"

Part a) Probability of Type 1 Error:

Type 1 error is defined as: Rejecting the null hypothesis when infact it is true. Therefore, in this case the Type 1 error will be:

Saying that the individual have the disease(positive reaction) when infact the individual does not have the disease. This means giving a positive reaction when the person does not have the disease.

From the above data, we can see that the probability of this event is 1.5%. Therefore, the probability of Type 1 error is 1.5%

Part b) Probability of Type 2 Error:

Type 2 error is defined as: Accepting the null hypothesis when infact it is false. Therefore, in this case the Type 2 error will be:

Saying that the individual does not have the disease(negative reaction) when infact the individual have the disease.

From the above data we can see that the probability of this event is 5.5%. Therefore, the probability of Type 2 error is 5.5%

If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a ≤ M(b − a). Use this property to estimate the value of the integral. π/6 5 tan(2x) dx π/8

Answers

Answer:

The final integration in the given limits will be 89.876

Suppose 40% of DC area adults have traveled outside of the United States. Nardole wants to know if his customers are atypical in this respect. He surveys 40 customers and finds 60% have traveled outside of the U.S. Is this result a statistically significant difference?

Answers

Answer:

We conclude that % of DC area adults who have traveled outside of the United States is different from 40%.

Step-by-step explanation:

We are given that 40% of DC area adults have traveled outside of the United States. Nardole wants to know if his customers are typical in this respect. He surveys 40 customers and finds 60% have traveled outside of the U.S.

We have to test is this result a statistically significant difference.

Let p = % of DC area adults who have traveled outside of the United States

SO, Null Hypothesis, [tex]H_0[/tex] : p = 40%  {means that 40% of DC area adults have traveled outside of the United States}

Alternate Hypothesis, [tex]H_a[/tex] : p [tex]\neq[/tex] 40%  {means that % of DC area adults who have traveled outside of the United States is different from 40%}

The test statistics that will be used here is One-sample z proportion statistics;

                  T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1- \hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = % of customers who have traveled outside of the United States

                  in a survey of 40 customers = 60%

          n  = sample of customers = 40

So, test statistics = [tex]\frac{0.60-0.40}{\sqrt{\frac{0.60(1-0.60)}{40} } }[/tex]

                             = 2.582

Since in the question we are not given with the significance level so we assume it to be 5%. So, at 0.05 level of significance, the z table gives critical value of 1.96 for two-tailed test. Since our test statistics is more than the critical value of z so we have sufficient evidence to reject null hypothesis as it will fall in the rejection region.

Therefore, we conclude that % of DC area adults who have traveled outside of the United States is different from 40%.

Drag each tile to the correct cell in the table.
High school students were surveyed about which math and
science topics they preferred. They were asked to choose
algebra or geometry, and biology or chemistry. The results are
shown in the frequency table below.
QUI 73%DC 100%
C
70%
30%
30%
100%
100%
28%
72%
Use this table to create a relative frequency table by row.
27%
Algebra
Geometry
Total
Algebra
Geometry
Total
Biology
67
92
Biology
Chemistry
46
66
Chemistry
Total
113
45
158
Total

Answers

Answer:

Step-by-step explanation:

Table(2) shows the relative frequency opted from the table(1).

What is the frequency?

It is defined as the number of waves that crosses a fixed point in one second known as frequency. The unit of frequency is per second.

We have a table in which data has shown:

To find the relative frequency:

For the first cell:

[tex]=\frac{67}{92} \times100 \approx 73\%[/tex]

For the second cell:

= 100 - 73 ⇒ 27%

For the third cell:  

[tex]\rm = \frac{46}{66} \times 100 \approx 70\%[/tex]

For the fourth cell:

= 100 - 70 = 30%

Thus, table(2) shows the relative frequency opted from table(1).

Learn more about the frequency here:

brainly.com/question/27063800

The average sales per customer at a home improvement store during the past year is $75 with a standard deviation of $12. The probability that the average sales per customer from a sample of 36 customers, taken at random from this population, exceeds $78 is:

Answers

Answer:

0.0668

Step-by-step explanation:

Assuming the distribution is normally distributed with a mean of $75,

with a standard deviation of $12.

We can find the z-score of 78 using;

[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]

[tex]\implies z=\frac{78-75}{\frac{12}{36} } =1.5[/tex]

Using our normal distribution table, we obtain the area that corresponds to 0.25 to be 0.9332

This is the area corresponding to the probability that, the average is less or equal to 78.

Subtract from 1 to get the complement.

P(x>78)=1-0.9332=0.0668

The probability that the average sales per customer from a sample of 36 customers, taken at random from this population, exceeds $78 is 0.0668.

Calculation of the probability:

Since The average sales per customer at a home improvement store during the past year is $75 with a standard deviation of $12.

Here  we need to find out the z score

= [tex]78-75\div 12\div 36[/tex]

= 1.5

Here we considered normal distribution table, we obtain the area that corresponds to 0.25 to be 0.9332

So,  the average is less or equal to 78.

Now

Subtract from 1 to get the complement.

So,

P(x>78)=1-0.9332

=0.0668

Learn more about probability here: https://brainly.com/question/24613748

1. $10 coupon on a $50.00 dinner

Answers

Answer: It would make the meal $40.00 and with tax it would be $42.80

Step-by-step explanation: 50 - 10 = 40

                                              40 / 0.07 = 2.8

                                              40 + 2.8 = 42.8

Answer:

Step-by-step explanation:

A school has two kindergarten classes. There are 21 children in Ms. Toodle's kindergarten class. Of these, 17 are "pre-readers" children on the verge of reading. There are 19 children in Mr. Grimace's kindergarten class. Of these, 13 are pre-readers. Using the plus four confidence interval method, a 90% confidence interval for the difference in proportions of children in these classes that are pre-readers is â0.104 to 0.336.

Which of the following statements is correct?

A) This confidence interval is not reliable because the samples are so small.
B)This confidence interval is of no use because it contains 0, the value of no difference between classes.
C)This confidence interval is reasonable because the sample sizes are both at least 5.
D) This confidence interval is not reliable because these samples cannot be viewed as simple random samples taken from a larger population.

Answers

Answer:

Answer : D

Step-by-step explanation:

A school has two kindergarten classes. There are 21 children in Ms. Toodle's kindergarten class. Of these, 17 are "pre-readers" children on the verge of reading. There are 19 children in Mr. Grimace's kindergarten class. Of these, 13 are pre-readers. Using the plus four confidence interval method, a 90% confidence interval for the difference in proportions of children in these classes that are pre-readers is â0.104 to 0.336.  

Which of the following statements is correct?

A) This confidence interval is not reliable because the samples are so small.  

B)This confidence interval is of no use because it contains 0, the value of no difference between classes.  

C)This confidence interval is reasonable because the sample sizes are both at least 5.  

D) This confidence interval is not reliable because these samples cannot be viewed as simple random samples taken from a larger population.

The Answer is D - This confidence interval is not reliable because these samples cannot be viewed as simple random samples taken from a larger population.

In this setup, all the students are already involved in the data. This is not a sample from a larger population, but probably, the population itself.

help, will give brainliest

Answers

Answer:

10.0

Step-by-step explanation:

4.0+8.0=12.0-2.0=10.0

3•(7+10)=G+30 use the distributive property to solve

Answers

Answer: G=21

Step-by-step explanation:

Solve for G by simplifying both sides of the equation, then isolating the variable.

Sam’s dry cleaning store has 3 employees who fold the clothes. Each employee can fold 45 shirts every hour. Assuming a level aggregate program how many more employees will Sam has to hire or fire to meet a demand of 1600 shirts per day if everyone works an 8 hour shift? Hire 5 more employees Hire 2 more employees Fire 1 employee Hire 17 more employees Fire 2 employee

Answers

Answer:

Hire 2 more employees.

Step-by-step explanation:

Multiply 45 by 8 to find out how many shirts 1 employee can fold for one day, one employee can fold 360 shirts in one day, then multiply that by 3 to see how many shirts they can fold a day with only the three employees. They can fold 1080 shirts in one day.

1600-1080= 520. Subtracting the demand by how many his store already can fold shows how many more he needs.

1 employee isn't enough because they can only fold 360 shirts a day so he would need to hire 2 employees because they can fold 720 shirts which meets the demand of shirts that need to be folded.

The mean per capita income is 16,44516,445 dollars per annum with a standard deviation of 397397 dollars per annum. What is the probability that the sample mean would differ from the true mean by greater than 3838 dollars if a sample of 208208 persons is randomly selected? Round your answer to four decimal places.

Answers

Final answer:

To calculate the probability that the sample mean would differ from the true mean by greater than $38, if a sample of 208 persons is randomly selected, we need to use the Central Limit Theorem. First, we determine the standard error of the mean (SEM) using the formula SEM = standard deviation / square root of sample size. Then, we calculate the Z-score using the formula Z = (sample mean - true mean) / SEM. Finally, we find the probability associated with the Z-score using a Z-table or calculator.

Explanation:

To calculate the probability that the sample mean would differ from the true mean by greater than $38, if a sample of 208 persons is randomly selected, we need to use the Central Limit Theorem.

According to the Central Limit Theorem, the distribution of sample means will be approximately normal regardless of the shape of the population distribution, as long as the sample size is large enough.

Since the sample size is greater than 30, we can assume that the distribution of sample means will be approximately normal.

To calculate the probability, we first need to determine the standard error of the mean (SEM), which is the standard deviation divided by the square root of the sample size. In this case, the SEM = $397 / √208.

Next, we calculate the Z-score using the formula Z = (sample mean - true mean) / SEM = ($38 - 0) / ($397 / √208). Finally, we can use a Z-table or calculator to find the probability associated with the Z-score.

In this case, it is the probability that Z is greater than the calculated Z-score. Hence, the probability that the sample mean would differ from the true mean by greater than $38 is the probability that Z is greater than the calculated Z-score.

During a fundraiser, Ms. Dawson’s class raised $560, which is 25% more than Mr. Casey’s class raised. How much money did Mr. Casey's class raise?

Answers

Answer:

$420

Step-by-step explanation:

To work this out you would need to find the 25% decrease of 560. To do this you would first divide 25 by 100, which gives you 0.25. Then you would minus 0.25 from 1, which gives you 0.75. This is because when finding percentage decreases you would first have to convert it into a decimal. Then you would have to minus it from 1 , to make sure that it will be a 25% decrease not a 75% decrease. Then you would multiply 560 by 0.75, which gives you 420.

1) Divide 25 by 100.

[tex]25/100=0.25[/tex]

2) Minus 0.25 from 1.

[tex]1-0.25=0.75[/tex]

3) Multiply 560 by 0.75.

[tex]560*0.75=$420[/tex]

Given a family with four ​children, find the probability of the event.

The oldest is a girl and the youngest is a boy​, given that there is at least one boy and at least one girl.

Answers

Answer:

28.57% probability that the oldest is a girl and the youngest is a boy​, given that there is at least one boy and at least one girl.

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

These are all the possible outcomes: from youngest to oldest, b is boy and g is girl

b - b - b - g

b - b - g - b

b - b - g - g

b - g - b - b

b - g - b - g

b - g - g - b

b - g - g - g

g - b - b - b

g - b - b - g

g - b - g - b

g - b - g - g

g - g - b - b

g - g - b - g

g - g - g - b

The nuber of total outcomes is 14.

Desired outcomes:

Oldest(last) girl, youngest(first) boy

b - b - b - g

b - b - g - g

b - g - b - g

b - g - g - g

So 4 desired outcomes

Probability:

4/14 = 0.2857

28.57% probability that the oldest is a girl and the youngest is a boy​, given that there is at least one boy and at least one girl.

Final answer:

The probability that a family with four children will have the oldest being a girl and the youngest being a boy, given that there is at least one boy and one girl, is 1/4.

Explanation:

To solve this probability question, we need to consider all possible combinations of children while adhering to the given conditions: the oldest child must be a girl (G), the youngest must be a boy (B), and there must be at least one boy and at least one girl in the family.

The possible genders for the four children can be represented as a sequence of G (girl) and B (boy) like this: G---B. There are two positions in the middle that can be either a boy or a girl. Since each position can be filled independently with either a boy or a girl, there are 2 options for each of the middle children, giving us 2 x 2 = 4 combinations: GBGB, GBBB, GGBB, GGBG.

To calculate the probability of any single one of these combinations occurring, we need to remember that the probability of giving birth to a boy or a girl is equal, which means each event (birth of a child) has a probability of 1/2. Thus, the probability of each combination is (1/2)^4 since there are four independent events (births). However, since we have 4 combinations that meet the criteria, we multiply this probability by 4. So, the probability is 4 * (1/2)^4 = 1/4.

Therefore, the probability that a family with four children will have the oldest being a girl and the youngest being a boy, given that there is at least one boy and at least one girl, is 1/4.

Other Questions
where do the words go? please help me ASAP!!! Find the value and expression for 0 Sin(0) = cos(28) an incentive to accept a new job is [tex]7 {}^{ - 1 } \div 7 {}^{2} [/tex] Write a persuasive paragraph on a solution to a school or community concern. Explain why this concern is a problem, and propose an effective solution. Under what circumstances might a long-term strategic alliance with a key supplier enable a company to capture most of the benefits associated with vertical integration, without bearing the associated risks and costs? 2x + 5Find the val3x+15 Write about the dish in the picture. Write what the dish is called, if you cant remember the name of the dish, describe it as best you can. Describe the ingredients in the dish. Describe what it tastes like (salty, creamy, sweet, fried, etc.), if you have never eaten it, describe what you imagine it to taste like using the taste and texture words. What is the solution to 2x2+8x=x2-16?O x=4O x=-2O x=2O x=4 A 45-mH ideal inductor is connected in series with a 60- resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current later? Leona saved $102.50 to buy a computer that is on sale. How much more money does she need to save before she can buy the computer? Math math help very urgent please Q5 and Q6 2) A professor wanted to set up a similar experiment as the one you performed in lab. He wanted to use Al(OH)3 in place of Ca(OH)2. Calculate how many mL of saturated Al(OH)3 solution it would take to titrate against 12.00 mL of 0.0542 M HCl solution. The Ksp of Al(OH)3 is 3.0x10-34. Show your work to receive credit. Finally, do you think this would be reasonable experiment for a general chemistry lab Monte Vista uses the perpetual inventory system. At the beginning of the quarter, Monte Vista has $46,000 in inventory. During the quarter the company purchases $10,300 of new inventory from a vendor, returned $800 of inventory to the vendor, and took advantage of discounts from the vendor of $360. At the end of the quarter the balance in inventory is $34,500. What is the cost of goods sold? (Points nearest to each other) Listing 8.3 gives a program that finds two * * points in a two-dimensional space nearest to each other. Revise the program so * * that it finds two points in a three-dimensional space nearest to each other. * * Use a two-dimensional array to represent the points. Test the program using * * the following points: * * double[][] points = {{-1, 0, 3}, {-1, -1, -1}, {4, 1, 1}, * * {2, 0.5, 9}, {3.5, 2, -1}, {3, 1.5, 3}, {-1.5, 4, 2}, * * {5.5, 4, -0.5}}; * * The formula for computing the distance between two points (x1, y1, z1) and * * (x2, y2, z2) is (x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2. What is the risk of going into a group of more than 20 or more people at this time from coronavirus? Which is the equation of a line with a slope of -1/3 and a yintercept at (0, 1)? the highest point in argentina is 6960 meters above sea level. the lowest point is 105 meters below sea level. What is the difference in meters between the highest and lowest elevation points? Lithium has two stable isotopes with masses of 6.01512 amu and 7.01600 amu. The average molar mass of Li is 6.941 amu. What is the percent abundance of each isotope? Show all calculations and report to the correct number of sig figs. Why is the disposal of nuclear waste a greater problem than the disposal of the trash that you and you family need to get rid of