A uniform electric field is pointing in x direction. The magnitude of the electric field is 10 N/C. The filed makes an angle of 30 deg with a rectangular surface of area 2 x10 m Calculate the electric flux crossing the surface.

Answers

Answer 1

Answer:

- 100 Nm²/C

Explanation:

E = magnitude of electric field along x-direction = 10 N/C

θ = angle made by the direction of electric field with rectangular surface = 30

φ = angle made by the direction of electric field with normal to the rectangular surface = 90 + 30 = 120

A = area of the rectangular surface = 2 x 10 = 20 m²

Φ = Electric flux crossing the surface

Electric flux is given as

Φ = E A Cosφ

Φ = (10) (20) Cos120

Φ = - 100 Nm²/C


Related Questions

Oil is poured into the open side of an open-tube manometer containing mercury. What is the density of the oil if a column of mercury 5.50 cm high supports a column of oil 85.0 cm high? (The density of mercury is 13,600 kg/m³)

Answers

Answer:

880 kg / m^3

Explanation:

height of column of oil = 85 cm = 0.85 m

height of column of mercury = 5.5 cm = 0.055 m

Density of mercury = 13600 kg/m^2

Let teh density of oil is d.

A the height of mercury column is balanced by the height of oil column

So, the pressure due to the mercury column = pressure by teh oil column

height of mercury column x density of mercury x g = height of oil column  

                                                                                       x density of oil x g

0.055 x 13600 x g = 0.85 x d x g

748 = 0.85 d

d = 880 kg / m^3

A proton initially at rest is accelerated by a uniform electric field. The proton moves 5.62 cm in 1.15 x 10^-6 s. Find the voltage drop through which the proton moves. (Answer should be positive)

Answers

Answer:

49.85 V

Explanation:

u = 0, s = 5.62 cm, t = 1.15 x 10^-6 s

Let the electric field is E and voltage is V.

Use second equation of motion

s = ut + 1/2 a t^2

5.62 x 10^-2 = 0 + 0.5 a x (1.15 x 10^-6)^2

a = 8.5 x 10^10 m/s^2

m x a = q x E

E = m x a / q

E = (1.67 x 10^-27 x 8.5 x 10^10) / (1.6 x 10^-19)

E = 887.19 V/m

V = E x s

V = 887.19 x 5.62 x 10^-2 = 49.85 V

A uniform 8.2 m tall aluminum ladder is leaning against a frictionless vertical wall. The ladder has a weight of 254 N. The ladder slips when it makes a 41.0◦ angle with the horizontal floor. Determine the coefficient of static friction between the ladder and the floor.

Answers

Final answer:

The coefficient of static friction is determined by setting up equations based on the static equilibrium conditions of the ladder leaning against a wall, resulting in a coefficient of approximately 0.869 when using the ladder's angle of 41° with the horizontal.

Explanation:

To determine the coefficient of static friction between the ladder and the floor, we can analyze the forces acting on the ladder at the point of slipping. The forces involved in this problem are the weight of the ladder (W), the normal force exerted by the floor (N), the static frictional force (f), and the force exerted by the wall, which is horizontal due to the frictionless contact (H).

The ladder makes a 41.0° angle with the horizontal floor (θ), so we can use trigonometry and Newton's laws to set up equations. First, the sum of vertical forces must be zero, as the ladder is not moving vertically:

N = W * cos(θ)

Next, the sum of horizontal forces must be zero, as the ladder is not moving horizontally:

f = H

Now, since the wall is frictionless, the horizontal force the wall exerts on the ladder is equal to the horizontal component of the ladder's weight:

H = W * sin(θ)

At the point of slipping, the static frictional force (f) is at its maximum value and is given by:

f = μ * N

Using the fact that f = H at the point of slipping, we can solve for the coefficient of static friction (μ) using the following equation:

μ = W * sin(θ) / (W * cos(θ))

μ = tan(θ)

Substitute the value of θ = 41.0° into the equation:

μ = tan(41.0°) ≈ 0.869

Therefore, the coefficient of static friction is approximately 0.869.

Many Amtrak trains can travel at a top speed of 47.0 m/s. Assuming a train maintains that speed for several hours, how many kilometers will the train have traveled after 5.00 hours? Round to the nearest km.

Answers

Answer:

846 km

Explanation:

Speed = 47 m/s

time = 5 hours = 5 x 60 x 60 seconds

Distance = speed x time

Distance = 47 x 5 x 60 x 60

Distance = 846000 m

Distance = 846 km

A solid uniform cylinder of mass 4.1 kg and radius 0.057 m rolls without slipping at a speed of 0.79 m/s. What is the cylinder’s total kinetic energy?

Answers

Answer:

The cylinder’s total kinetic energy is 1.918 J.

Explanation:

Given that,

Mass = 4.1 kg

Radius = 0.057 m

Speed = 0.79 m/s

We need to calculate the linear kinetic energy

Using formula of linear kinetic energy

[tex]K.E_{l}=\dfrac{1}{2}mv^2[/tex]

[tex]K.E_{l}=\dfrac{1}{2}\times4.1\times(0.79)^2[/tex]

[tex]K.E_{l}=1.279\ J[/tex]

We need to calculate the rotational kinetic energy

[tex]K.E_{r}=\dfrac{1}{2}\times I\omega^2[/tex]

[tex]K.E_{r}=\dfrac{1}{2}\times\dfrac{1}{2}\times mr^2\times(\dfrac{v}{r})^2[/tex]

[tex]K.E_{r}=\dfrac{1}{4}\times m\times v^2[/tex]

[tex]K.E_{r}=\dfrac{1}{4}\times4.1\times(0.79)^2[/tex]

[tex]K.E_{r}=0.639\ J[/tex]

The total kinetic energy is given by

[tex]K.E=K.E_{l}+K.E_{r}[/tex]

[tex]K.E=1.279+0.639[/tex]

[tex]K.E=1.918\ J[/tex]

Hence, The cylinder’s total kinetic energy is 1.918 J.

A meter stick is found to balance at the 49.7-cm mark when placed on a fulcrum. When a 50.0-gram mass is attached at the 10.0-cm mark, the fulcrum must be moved to the 39.2-cm mark for balance. What is the mass (in grams) of the meter stick?

Answers

Answer:

Mass of the stick = 139.04 gram

Explanation:

Let the mass of the meter stick be = M grams

given:

Attached mass, m = 50.0 gram

position of the fulcrum = 39.2 cm

The meter stick is balanced at 49.7 cm, therefore the center of mass of the stick will be at 49.7 cm

Now for the system to be balanced the moment due to all the masses about the fulcrum must be equal.

thus,

moment = Force × perpendicular distance from the point of movement

Force = mass × acceleration due to gravity(g)

therefore,

(refer figure for the distances)

50g × (39.2-10) = Mg × (49.7 - 39.2)

⇒[tex]M=\frac{50\times 29.2}{10.5}[/tex]

M = 139.04 gram

Two horizontal pipes are the same length, but pipe B has twice the diameter of pipe A. Water undergoes viscous flow in both pipes, subject to the same pressure difference across the lengths of the pipes. If the flow rate in pipe A is Q = , what is the flow rate in pipe B?

Answers

Answer:

flow rate in pipe B is 16 times the flow in pipe A

Explanation:

According to the poiseuille's law, flow rate  is is given as

[tex]Q = \frac{ \pi Pr^{4}}{8\eta*L}[/tex]

Flow rate  in the pipe will remain same as above i.e,

[tex]Q_{A} = \frac{\pi Pr^{4}}{8\eta*L}[/tex]

Flow in the pipe be will be

As diameter OF PIPE B is doubled

AND length of both pipes remained same

[tex]Q_{B} = \frac{\pi P(2r)^{4}}{8\eta*L}[/tex]

          [tex]= \frac {16\pi P(r)^{4}} {8\eta*L}}[/tex]

          so we have

flow rate in pipe B is 16 times the flow rate  in pipe A

Final answer:

The flow rate in pipe B is four times larger than the flow rate in pipe A.

Explanation:

The flow rate in pipe B can be determined using the continuity equation, which states that the flow rate must be the same at all points along the pipe. The equation is given as Q = Av, where Q is the flow rate, A is the cross-sectional area, and v is the average velocity.

Since pipe B has twice the diameter of pipe A, its cross-sectional area is four times larger. Therefore, the flow rate in pipe B will be four times larger than the flow rate in pipe A.

So, if the flow rate in pipe A is Q, then the flow rate in pipe B is 4Q.

Learn more about Flow rate here:

https://brainly.com/question/33722549

#SPJ12

One degree Celsius indicates the same temperature change as: A) one kelvin B) one degree Fahrenheit C) 9/5 kelvin. D) 5/9 degree Fahrenheit.

Answers

Answer:

Option (A)

Explanation:

The relation between degree Celsius and kelvin is

Degree C = K - 273

So change in 1 degree C is same as 1 kelvin.

A pendulum with a period of 2.00000 s in one location ⎛ ⎝g=9.80m/s2⎞ ⎠ is moved to a new location where the period is now 1.99796 s. What is the acceleration due to gravity at its new location?

Answers

Answer:

9.82 m/s^2

Explanation:

T = 2 s, g = 9.8 m/s^2

T' = 1.99796 s

Let the acceleration due to gravity at new location is g'.

The formula for the time period of simple pendulum is given by

[tex]T = 2\pi \sqrt{\frac{L}{g}}[/tex]     .... (1)

here, length of the pendulum remains same.

Now at the new location, let the time period be T'.

[tex]T' = 2\pi \sqrt{\frac{L}{g'}}[/tex]    .... (2)

Divide equation (2) by equation (1), we get

[tex]\frac{T'}{T} = \sqrt{\frac{g}{g'}}[/tex]

[tex]\frac{1.99796}{2} = \sqrt{\frac{9.8}{g'}}[/tex]

[tex]0.99796 = {\frac{9.8}{g'}}[/tex]

g' = 9.82 m/s^2

tT9.82 m/s².

What is the time period of pendulum?

Pendulum is the body which is pivoted a point and perform back and forth motion around that point by swinging due to the influence of gravity.

The time period of a pendulum is the time taken by it to complete one cycle of swing left to right and right to left.

It can be given as,

[tex]T=2\pi \sqrt{\dfrac{L}{g}}[/tex]

Here, (g) is the gravitational force of Earth and (L) is the length of the pendulum.

The time period of the pendulum with a period of 2 s in one location g=9.80m/s2 can be given as,

[tex]2=2\pi \sqrt{\dfrac{L}{9.8}}\\L=0.996468\rm m[/tex]      

Now, this pendulum is move to a new location where the period is now 1.99796 s. Thus, put the value in the above formula as,

[tex]1.99796=2\pi \sqrt{\dfrac{0.996468}{g}}\\g=9.82\rm m/s^2[/tex]

Thus, the acceleration due to gravity at its new location for the pendulum is 9.82 m/s².

Learn more about the time period of pendulum here;

https://brainly.com/question/3551146

A car travels at a constant speed around a circular track whose radius is 3.27 km. The car goes once around the track in 380 s. What is the magnitude of the centripetal acceleration of the car?

Answers

Answer:

The magnitude of the centripetal acceleration of the car is 0.22 m/s².

Explanation:

t= 380 sec

r= 3.27km= 3270m

d=π*r=π*3270m

d= 10273m

d=Vt*t

Vt= d/t = 10273m/380s

Vt= 27.03 m/s

ac= Vt²/r

ac= (27.03 m/s)²/3270m

ac=0.22 m/s²

A Carnot heat engine has an efficiency of 0.200. If it operates between a deep lake with a constant temperature of 293.0 K and a hot reservoir, what is the temperature of the hot reservoir? O 352 K O 1760 K O 366 K 1470 K

Answers

Answer:

366 K

Explanation:

T₀ = Constant Temperature of deep lake = 293.0 K

T = Temperature of hot reservoir  connected to carnot engine = ?

η = Efficiency of Carnot engine during the operation

Efficiency of Carnot engine is given as

[tex]\eta = 1-\frac{T_{o}}{T}[/tex]

Inserting the values

[tex]0.200 = 1-\frac{293.0}{T}[/tex]

T = 366 K

What is the magnitude of the electric field 17.1 cm directly above an isolated 1.83Ã10â5 C charge?

Answers

Answer:

Electric field, [tex]E=5.63\times 10^{16}\ N/C[/tex]

Explanation:

Given that,

Charge, [tex]q=1.83\times 10^5\ C[/tex]

We need to find the magnitude of electric field 17.1 cm (0.171 m) above an isolated charge. Electric field at a point is given by :

[tex]E=\dfrac{kq}{r^2}[/tex]

[tex]E=\dfrac{9\times 10^9\times 1.83\times 10^5\ C}{(0.171\ m)^2}[/tex]

[tex]E=5.63\times 10^{16}\ N/C[/tex]

So, the electric field is [tex]5.63\times 10^{16}\ N/C[/tex]. Hence, this is the required solution.

A force F S applied to an object of mass m1 produces an acceleration of 3.00 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 1.00 m/s2. (a) What is the value of the ratio m1/m2? (b) If m1 and m2 are combined into one object, find its acceleration under the action of the force F S .

Answers

Answer:

a) [tex]\frac{m_1}{m_2}=\frac{1}{3}[/tex]

b) Acceleration = 0.75 m/s²

Explanation:

a) We have force , F = mass x acceleration.

[tex]\texttt{Value of force}=F_s[/tex]

[tex]\texttt{Acceleration of }m_1=3m/s^2\\\\\texttt{Acceleration of }m_2=1m/s^2[/tex]

We have force value is same

       [tex]m_1\times 3=m_2\times 1\\\\\frac{m_1}{m_2}=\frac{1}{3}[/tex]

b) We have

         [tex]m_1\times 3=m_2\times 1\\\\m_2=3m_1[/tex]

Combined mass

       [tex]m=m_1+m_2=m_1+3m_1=4m_1[/tex]

Force

         [tex]F_s=4m_1\times a\\\\a=\frac{F_s}{4m_1}=\frac{1}{4}\times \frac{F_s}{m_1}=\frac{1}{4}\times 3=0.75m/s^2[/tex]

Calculate the mass of the air contained in a room that measures 2.50 m x 5.50 m x 3.00 m if the density of air is 1.29 g/dm3.53.2 g3.13 x 10-3 g3.20 x 104 g5.32 x 104 g5.32 x 107 g

Answers

Answer:

[tex]5.32\cdot 10^4 g[/tex]

Explanation:

First of all, we need to find the volume of the room, which is given by

[tex]V=2.50 m \cdot 5.50 m \cdot 3.00 m =41.3 m^3[/tex]

Now we  can find the mass of the air by using

[tex]m=dV[/tex]

where

[tex]d=1.29 g/dm^3[/tex] is the density of the air

[tex]V=41.3 m^3 = 41,300 dm^3[/tex] is the volume of the room

Substituting,

[tex]m=(1.29)(41300)=5.32\cdot 10^4 g[/tex]

Final answer:

The mass of the air in a room with dimensions 2.50 m x 5.50 m x 3.00 m and an air density of 1.29 g/dm³ is calculated to be 53.2 kg.

Explanation:

The mass of the air in the room can be calculated by using the formula for density, which is mass (mass) equals density (density) times volume (volume), or m = ρV. Given that the density of air is 1.29 g/dm³, first we need to convert the measurements of the room to dm³ (decimeters cubed) as the given room dimensions are in meters. The volume of the room is 2.50 m x 5.50 m x 3.00 m which equals 41.25 m³. Converting from cubic meters to cubic decimeters results in 41,250 dm³ (1 m³ = 1,000 dm³). Therefore, the mass of air is calculated as 1.29 g/dm³ * 41,250 dm³, which equals 53,212.5 grams or 53.2 kg.

Suppose a woman does 500 J of work and 9500 J of heat transfer occurs into the environment in the process. (a) What is the decrease in her internal energy, assuming no change in temperature or consumption of food? (That is, there is no other energy transfer.) (b) What is her efficiency?

Answers

Answer:

The change in internal energy and efficiency are 10000 J and 5.26%.

Explanation:

Given that,

Work = 500 J

Heat transfer = 9500 J

(a). We need to calculate the decrease in her internal energy

Using equation of internal energy of a system

[tex]\Delta U=Q-W[/tex]

Q = heat

W = work done

Put the value into the formula

She looses her heat -9500 J

[tex]\Delta U=-9500-500[/tex]

[tex]\Delta U=-10000\ J[/tex]

(b). We need to calculate the efficiency

Using formula of efficiency

[tex]e=\dfrac{W}{Q}[/tex]

[tex]e=\dfrac{500}{9500}[/tex]

[tex]e=0.0526\times100[/tex]

[tex]e=5.26\%[/tex]

Hence, The change in internal energy and efficiency are 10000 J and 5.26%.

Final answer:

By using the first law of thermodynamics, we calculate the decrease in the woman's internal energy to be -10000 J as a result of 500 J of work done and 9500 J of heat transfer into the environment. Her efficiency, defined as the ratio of work done to the absolute value of the decrease in internal energy, is found to be 5%.

Explanation:

Part (a), let's calculate the decrease in her internal energy. We'll use the first law of thermodynamics, ΔU = Q - W, which stipulates that the change in internal energy (ΔU) in a system is equal to the heat transferred into the system (Q) minus the work done by the system (W). Here, the heat transferred is -9500 J (it's negative since it's transferred out of her body). The work done is 500 J. Hence, the decrease in internal energy is ΔU = -9500 J - 500 J = -10000 J.

For part (b), efficiency (η) is defined as the ratio of the useful output to the total input. In this case, the useful output is the work done, and the total input is the absolute value of the decrease in internal energy. Thus, her efficiency is η = 500 J / 10000 J = 5%.

Learn more about Energy Efficiency here:

https://brainly.com/question/28881279

#SPJ3

AM radio signals use amplitude modulation of the radio waves to transmit a signal. A typical wavelength of an AM radio wave is 300. meters. What is the frequency of such a radio wave? a) 1.00 µHz b) 1.00 mHz c) 1.00 kHz d) 1.00 MHz e) 1.00 Hz

Answers

Answer:

The frequency of such a radio wave is 1 MHz.

(d) is correct option

Explanation:

Given that,

Wave length = 300 m

We know that,

Speed of light [tex]c= 3\times10^{8}\ m/s[/tex]

We calculate the frequency

Using formula of frequency

[tex]c = f\times\lambda[/tex]

[tex]f = \dfrac{c}{\lambda}[/tex]

Put the value into the formula

[tex]f=\dfrac{3\times10^{8}}{300}[/tex]

[tex]f =1\times10^{6}\ Hz[/tex]

[tex]f =1\ MHz[/tex]

Hence, The frequency of such a radio wave is 1 MHz.

Final answer:

The frequency of an AM radio wave with a wavelength of 300 meters is 1.00 MHz, using the formula c = λf, and knowing that the speed of light c is 3×10^8 m/s, the calculation results in a frequency of 1.00 MHz, which is 1×10^6 Hz.

Explanation:

To calculate the frequency of an AM radio wave given the wavelength, we can use the speed of light formula c = λf where c is the speed of light (approximately 3×108 meters per second), λ (lambda) is the wavelength, and f is the frequency. Since the typical wavelength for an AM radio wave is given as 300 meters, we plug this value into the equation to find the frequency:

f = c / λ

f = (3×108 m/s) / (300 m)

f = 1×106 Hz or 1.00 MHz

The frequency of an AM radio wave that has a wavelength of 300 meters is therefore 1.00 MHz, which corresponds to option (d).

Calculate the Reynolds number for a person swimming through maple syrup. The density of syrup is about 1400 kg/m^3 and the viscosity is about 0.5 Pa's. A person is about 2m in length and can swim about 1 m/s.

Answers

Answer:

The Reynolds number is 5600.

Explanation:

Given that,

Density = 1400 kg/m³

Viscosity = 0.5 Pa's

Length = 2 m

Speed = 1 m/s

We need to calculate the Reynolds number

Using formula of Reynolds number

[tex]R_{e}=\dfrac{\rho V\times L}{\mu}[/tex]

Where, [tex]\rho[/tex] = density of fluid

v = speed of syrup

l = length of a person

[tex]\mu[/tex]=Viscosity

Put the all value into the formula

[tex]R_{e}=\dfrac{1400\times1\times2}{0.5}[/tex]

[tex]R_{e}=5600[/tex]

Hence, The Reynolds number is 5600.

An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 1.98 mT. If the speed of the electron is 1.53 107 m/s, determine the following.(a) the radius of the circular path

Answers

Answer:

4.4 cm

Explanation:

B = 1.98 mT = 1.98 x 10^-3 T, v = 1.53 x 10^7 m/s, m = 9.1 x 10^-31 kg

q = 1.6 x 10^-19 C

(a) The force due to the magnetic field is balanced by the centrpetal force

mv^2 / r = q v B

r = m v / q B

r = (9,1 x 10^-31 x 1.53 x 10^7) / (1.98 x 10^-3 x 1.6 x 10^-19)

r = 0.044 m = 4.4 cm

An element has the following natural abundances and isotopic masses: 90.92% abundance with 19.99 amu, 0.26% abundance with 20.99 amu, and 8.82% abundance with 21.99 amu. Calculate the average atomic mass of this element.

Answers

Answer: The average atomic mass of the given element is 20.169 amu.

Explanation:

Average atomic mass of an element is defined as the sum of masses of the isotopes each multiplied by their natural fractional abundance.

Formula used to calculate average atomic mass follows:

[tex]\text{Average atomic mass }=\sum_{i=1}^n\text{(Atomic mass of an isotopes)}_i\times \text{(Fractional abundance})_i[/tex]     .....(1)

We are given:

For isotope 1:

Mass of isotope 1 = 19.99 amu

Percentage abundance of isotope 1 = 90.92 %

Fractional abundance of isotope 1 = 0.9092

For isotope 2:

Mass of isotope 2 = 20.99 amu

Percentage abundance of isotope 2 = 0.26%

Fractional abundance of isotope 2 = 0.0026

For isotope 3:

Mass of isotope 3 = 21.99 amu

Percentage abundance of isotope 3 = 8.82%

Fractional abundance of isotope 3 = 0.0882  

Putting values in equation 1, we get:

[tex]\text{Average atomic mass}=[(19.99\times 0.9092)+(20.99\times 0.0026)+(21.99\times 0.0882)][/tex]

[tex]\text{Average atomic mass}=20.169amu[/tex]

Hence, the average atomic mass of the given element is 20.169 amu.

Star A has a radius of 200 000 km and a surface temperature of 6 000 K. Star B has a radius of 400 000 km and a surface temperature of 3 000 K. The emissivity of both stars is the same. What is the ratio of the rate of energy radiated by Star A to that of Star B?

Answers

Answer: 4

Explanation:

In order to solve this problem, the Stefan-Boltzmann law will be useful. This law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":  

[tex]P=\sigma A T^{4}[/tex] (1)  

Where:  

[tex]P[/tex] is the energy radiated by a blackbody radiator per second, per unit area (in Watts).

[tex]\sigma=5.6703(10)^{-18}\frac{W}{m^{2} K^{4}}[/tex] is the Stefan-Boltzmann's constant.  

[tex]A[/tex] is the Surface of the body  

[tex]T[/tex] is the effective temperature of the body (its surface absolute temperature) in Kelvin.

However, there is no ideal black body (although the radiation of stars like our Sun is quite close).   Therefore, we will use the Stefan-Boltzmann law for real radiator bodies:  

[tex]P=\sigma A \epsilon T^{4}[/tex] (2)  

Where [tex]\epsilon[/tex] is the star's emissivity  

Knowing this, let's start with the answer:

We have two stars where the emissivity [tex]\epsilon[/tex]  of both is the same:

Star A with a radius [tex]r_{A}=200000km[/tex] and a surface temperature  [tex]T_{A}=6000K[/tex].

Star B with a radius [tex]r_{B}=400000km[/tex] and a surface temperature  [tex]T_{B}=3000K[/tex].

And we are asked to find the ratio of the rate of energy radiated by both stars:

[tex]\frac{P_{A}}{P_{B}}[/tex]   (3)

Where [tex]P_{A}[/tex]  is the  rate of energy radiated by Star A and [tex]P_{B}[/tex]  is the  rate of energy radiated by Star B.

On the other hand, with the radius of each star we can calculate their surface area, using the formula for tha area of a sphere (assuming both stars have spherical shape):

[tex]A_{A}=4\pi r_{A}^{2}[/tex]   (4)

[tex]A_{B}=4\pi r_{B}^{2}[/tex]   (5)

Writting the Stefan-Boltzmann law for each star, taking into consideration their areas:

[tex]P_{A}=\sigma (4\pi r_{A}^{2}) \epsilon {T_{A}}^{4}[/tex] (6)  

[tex]P_{B}=\sigma (4\pi r_{B}^{2}) \epsilon {T_{b}}^{4}[/tex] (7)  

Substituting (6) and (7) in (3):

[tex]\frac{\sigma (4\pi r_{A}^{2}) \epsilon {T_{A}}^{4}}{\sigma (4\pi r_{B}^{2}) \epsilon {T_{B}}^{4}}[/tex]   (8)

[tex]\frac{P_{A}}{P_{B}}=\frac{{r_{A}}^{2} {T_{A}}^{4}}{{r_{B}}^{2} {T_{B}}^{4}}[/tex]   (9)

[tex]\frac{P_{A}}{P_{B}}=\frac{{(200000km)}^{2} {(6000K)}^{4}}{{(400000km)}^{2} {(3000K)}^{4}}[/tex]   (10)

Finally:

[tex]\frac{P_{A}}{P_{B}}=4[/tex]  

An artificial satellite is in a circular orbit around a planet of radius r= 2.05 x103 km at a distance d 310.0 km from the planet's surface. The period of revolution of the satellite around the planet is T 1.15 hours. What is the average density of the planet?

Answers

Answer:

[tex]\rho = 12580.7 kg/m^3[/tex]

Explanation:

As we know that the satellite revolves around the planet then the centripetal force for the satellite is due to gravitational attraction force of the planet

So here we will have

[tex]F = \frac{GMm}{(r + h)^2}[/tex]

here we have

[tex]F =\frac {mv^2}{(r+ h)}[/tex]

[tex]\frac{mv^2}{r + h} = \frac{GMm}{(r + h)^2}[/tex]

here we have

[tex]v = \sqrt{\frac{GM}{(r + h)}}[/tex]

now we can find time period as

[tex]T = \frac{2\pi (r + h)}{v}[/tex]

[tex]T = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{GM}{(r + h)}}}[/tex]

[tex]1.15 \times 3600 = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{(6.67 \times 10^{-11})(M)}{(2.05 \times 10^6 + 310 \times 10^3)}}}[/tex]

[tex]M = 4.54 \times 10^{23} kg[/tex]

Now the density is given as

[tex]\rho = \frac{M}{\frac{4}{3}\pi r^3}[/tex]

[tex]\rho = \frac{4.54 \times 10^{23}}{\frac{4}[3}\pi(2.05 \times 10^6)^3}[/tex]

[tex]\rho = 12580.7 kg/m^3[/tex]

Why are noise considerations important in optical fiber communications? 3. Describe the principle of "population inversion".

Answers

Answer and Explanation:

the electronic devices always have some noises present in the signal

there are some important considerations in optical fiber communications these are.

the noise which is contributed by transmitter are electronic random noise, low frequency noisenoise which is contributed by laser are relative intensity noise, mode partition noise, conversion of phase noise to amplitude noise.noise contributed by photo detector are quantum shot noise, shot noise from dark current, avalanche multiplication noise.

PRINCIPLE OF POPULATION INVERSION :

The principle of population inversion is defined as for production of high percentage of simulated emission for a laser beam the number of atoms in higher state should be greater than lower energy state

Noise considerations are important in optical fiber communications to maintain the fidelity of the transmitted signal. Population inversion, a critical principle for laser operation, involves achieving more particles in an excited state than in a lower energy state. Single frequency operation and the prevention of multiple transverse modes result in a more focused beam for optimal transmission.

Noise considerations are crucial in optical fiber communications because they can affect the fidelity and integrity of the transmitted signal. Noise can result from a variety of sources, including intrinsic factors within the fiber, like Rayleigh scattering, or from external influences such as electromagnetic interference. Managing noise is essential to maintain a high signal-to-noise ratio (SNR), which enables the clear and accurate transmission of data over long distances.

The principle of population inversion is critical to the functioning of lasers, which are the light sources commonly used in optical fiber communication. Population inversion occurs when a system has more particles in an excited state than in a lower energy state, which is normally the opposite of what happens in thermal equilibrium. It can be achieved by pumping the system with energy, which propels the electrons into a higher energy level. Once the system has achieved population inversion, stimulated emission can occur, leading to the amplification of light and allowing for laser emission.

In laser systems, single frequency operation is often desired, which can be obtained through various methods such as using a monochromatic light source or employing optical filters. Regarding transverse modes, these are the different patterns of light intensity distribution across the cross-section of the beam. Preventing multiple transverse modes ensures that the laser operates in a single spatial mode, providing a cleaner and more focused beam, which is ideal for optical fiber transmissions.

A 26.2-kg dog is running northward at 3.21 m/s, while a 5.30-kg cat is running eastward at 2.64 m/s. Their 67.2-kg owner has the same momentum as the two pets taken together. Find the direction and magnitude of the owner's velocity.

Answers

Final answer:

The owner's velocity, with the same momentum as the combined momentum of the dog and cat, is 1.28 m/s directed 9.46 degrees east of the north.

Explanation:

To solve this problem, we need to calculate the dog's momentum, the cat's momentum, and then use these two results to find the owner's velocity and direction.

First, let's calculate the momentum for each pet. Momentum (p) is defined as mass (m) times velocity (v). For the dog, p = mv = 26.2 kg * 3.21 m/s = 84.042 kg*m/s northward. For the cat, p = mv = 5.30 kg * 2.64 m/s = 13.992 kg*m/s eastward.

To find the combined momentum vector of the two animals, we will use Pythagorean theorem because the vectors are perpendicular to each other. So, resultant momentum = sqrt[(84.042^2) + (13.992^2)] = 85.87 kg*m/s.

The owner's momentum equals the total momentum of the dog and cat, so that's 85.87 kg*m/s. The magnitude of the owner's velocity (v) is therefore the momentum divided by his mass: v = p / m = 85.87 kg*m/s / 67.2 kg = 1.28 m/s. The direction of the owner's velocity can be found using trigonometry. The angle is arctan (cat's momentum / dog's momentum) = arctan (13.992 / 84.042) = 9.46° east from north.

Learn more about Momentum here:

https://brainly.com/question/30677308

#SPJ11

The magnitude of the owner's velocity is approximately [tex]\( 1.267 \, \text{m/s} \)[/tex], and the direction is [tex]\( 45^\circ \)[/tex] northeast.

To find the direction and magnitude of the owner's velocity, we need to calculate the total momentum of the dog and cat and then equate that to the owner's momentum.

 First, we calculate the momentum of the dog and cat separately using the formula p = mv , where p  is the momentum,  m  is the mass, a v is the velocity.

For the dog:

[tex]\[ p_{\text{dog}} = m_{\text{dog}} \times v_{\text{dog}} \][/tex]

[tex]\[ p_{\text{dog}} = 26.2 \, \text{kg} \times 3.21 \, \text{m/s} \][/tex]

[tex]\[ p_{\text{dog}} = 84.002 \, \text{kg} \cdot \text{m/s} \][/tex]

For the cat:

[tex]\[ p_{\text{cat}} = m_{\text{cat}} \times v_{\text{cat}} \][/tex]

[tex]\[ p_{\text{cat}} = 5.30 \, \text{kg} \times 2.64 \, \text{m/s} \][/tex]

[tex]\[ p_{\text{cat}} = 14.032 \, \text{kg} \cdot \text{m/s} \][/tex]

The total momentum of the dog and cat is the vector sum of their individual momenta. Since they are moving in perpendicular directions (northward and eastward), we can use the Pythagorean theorem to find the magnitude of the total momentum:

[tex]\[ p_{\text{total}} = \sqrt{p_{\text{dog}}^2 + p_{\text{cat}}^2} \][/tex]

[tex]\[ p_{\text{total}} = \sqrt{(84.002)^2 + (14.032)^2} \][/tex]

[tex]\[ p_{\text{total}} = \sqrt{7056.0624 + 196.82784} \][/tex]

[tex]\[ p_{\text{total}} = \sqrt{7252.89} \][/tex]

[tex]\[ p_{\text{total}} \ =85.136 \, \text{kg} \cdot \text{m/s} \][/tex]

The direction of the total momentum vector is northeast, which is [tex]45^\circ \)[/tex] from the northward direction (the direction of the dog's velocity).

Now, we equate the owner's momentum to the total momentum of the pets:

[tex]\[ p_{\text{owner}} = p_{\text{total}} \][/tex]

[tex]\[ m_{\text{owner}} \times v_{\text{owner}} = p_{\text{total}} \][/tex]

[tex]\[ 67.2 \, \text{kg} \times v_{\text{owner}} = 85.136 \, \text{kg} \cdot \text{m/s} \][/tex]

[tex]\[ v_{\text{owner}} = \frac{85.136 \, \text{kg} \cdot \text{m/s}}{67.2 \, \text{kg}} \][/tex]

[tex]\[ v_{\text{owner}} \ = 1.267 \, \text{m/s} \][/tex]

(a) Find the voltage near a 10.0 cm diameter metal sphere that has 8.00 C of excess positive charge on it. (b) What is unreasonable about this result? (c) Which assumptions are responsible?

Answers

Answer:

Part a)

[tex]V = 7.2 \times 10^{11} Volts[/tex]

Part b)

this is a large potential which can not be possible because at this high potential the air will break down and the charge on the sphere will decrease.

Part C)

here we can assume the sphere is placed at vacuum so that there is no break down of air.

Explanation:

Part a)

As we know that the potential near the surface of metal sphere is given by the equation

[tex]V = \frac{kQ}{R}[/tex]

here we have

Q = 8 C

R = 10.0 cm

now we have

[tex]V = \frac{(9\times 10^9)(8 C)}{0.10}[/tex]

[tex]V = 7.2 \times 10^{11} Volts[/tex]

Part b)

this is a large potential which can not be possible because at this high potential the air will break down and the charge on the sphere will decrease.

Part C)

here we can assume the sphere is placed at vacuum so that there is no break down of air.

Final answer:

The voltage near a 10.0 cm diameter metal sphere with 8.00 C of excess charge is calculated to be 1.438 x 10^12 V, which is unreasonable due to the high value leading to inevitable discharge. The assumption of an 8.00 C charge on such a small sphere is responsible for this unrealistic result.

Explanation:

Calculating the Voltage near a Charged Sphere

To find the voltage near a 10.0 cm diameter metal sphere with an excess positive charge of 8.00 C, we use the formula V = kQ/r, where V is the voltage, k is Coulomb's constant (8.99 x 10^9 N m^2/C^2), Q is the charge, and r is the radius of the sphere. For a diameter of 10.0 cm, the radius (r) is 0.05 m. Thus, V = (8.99 x 10^9 N m^2/C^2 * 8.00 C) / 0.05 m = 1.438 x 10^12 V.

Unreasonable Voltage

This voltage is extremely high and unreasonable because a metal sphere of that size could not sustain such a high voltage without discharging. The consequence of such a high voltage would include electric breakdown of the air around the sphere, leading to sparks or lightning-like discharges.

Erroneous Assumptions

The assumption responsible for this unreasonable result is the magnitude of charge being considered. An 8.00 C charge on a small metal sphere is significantly larger than what could realistically accumulate on the surface, given the limits of charge density and material breakdown thresholds.

Stress distributed over an area is best described as: a) External force b) Axial force c) Radial force d) Internal resistive force none of these e

Answers

Answer:

Option D is the correct answer.

Explanation:

Stress is the force per unit area that tend to change the shape of body.

Stress is defined as internal resistive force per unit area.

         [tex]\texttt{Stress}=\frac{\texttt{Internal resistive force}}{\texttt{Area}}[/tex]

         [tex]\sigma =\frac{F}{A}[/tex]

So, so stress distributed over an area is best described as internal resistive force.

Option D is the correct answer.

Final answer:

Stress distributed over an area refers to the internal resistive forces that develop within a material in response to applied external forces. It is best described as an internal force, specifically termed internal resistive force, and is measured as the force per unit area.

Explanation:

Stress distributed over an area is best described as d) Internal resistive force. Stress is a physical quantity that represents the internal forces per unit area within a material that develop as a response to applied external forces or changes in temperature. It is calculated by the ratio of force to area and measured in Newtons per square meter (N/m²). Stress caused by forces perpendicular to the cross-section of the material is called normal stress, which can be tensile or compressive. Similarly, stress caused by forces parallel to the area, such as shear stress, represents deformation through sliding layers.

For example, when a metal rod is pulled from both ends, the internal resistive forces that develop within the material to oppose elongation are a manifestation of tensile stress. In contrast, when a book is pushed down upon by a hand, the internal resistive forces that prevent the book from compressing are an example of compressive stress.

An ideal gas at 25.8°C and a pressure 1.20 x 10^5 Pa is in a container having a volume of 1.00 L. (a) Determine the number of moles of gas in the container. (b) The gas pushes against a piston, expanding to twice its original volume, while the pressure falls to atmospheric pressure. Find the final temperature.

Answers

Answer:

a) 0.0483 mol

b) 232 °C

Explanation:

Ideal gas law:

PV = nRT

where P is absolute pressure,

V is volume,

n is number of moles,

R is universal gas constant,

and T is absolute temperature.

a) Given:

P = 1.20×10⁵ Pa

V = 1.00 L = 1.00×10⁻³ m³

T = 25.8 °C = 298.95 K

PV = nRT

(1.20×10⁵ Pa) (1.00×10⁻³ m³) = n (8.314 m³ Pa / mol / K) (298.95 K)

n = 0.0483 mol

b) Given:

P = 1.013×10⁵ Pa

V = 2.00 L = 2.00×10⁻³ m³

n = 0.0483 mol

PV = nRT

(1.013×10⁵ Pa) (2.00×10⁻³ m³) = (0.0483 mol) (8.314 m³ Pa / mol / K) T

T = 505.73 K

T = 232 °C

What is the current produced by the solar cells of a pocket calculator through which 4.00 C of charge passes in 4.00 hr? Give your answer in mA.

Answers

The average current passing through a device is given by:

I = Q/Δt

I is the average current

Q is the amount of charge that has passed through the device

Δt is the amount of elapsed time

Given values:

Q = 4.00C

Δt = 4.00hr = 14400s

Plug in the values and solve for I:

I = 4.00/14400

I = 0.000277777778A

I = 0.278mA

Final answer:

The current produced by the solar cells of a pocket calculator through which 4.00 C of charge passes in 4.00 hours is 0.278 milliamperes.

Explanation:

The current produced by the solar cells of a pocket calculator when 4.00 C of charge passes through it in 4.00 hours can be calculated using the formula for electric current I = Q / t, where I is the current in amperes, Q is the charge in coulombs, and t is the time in seconds.

To find the current in milliamperes (mA), first convert the time to seconds:

4.00 hours × 3600 seconds/hour = 14400 seconds.

Next, use the formula to calculate current:

I = 4.00 C / 14400 s = 0.00027778 A,

which is equivalent to 0.278 mA

After falling from rest at a height of 32.3 m, a 0.556 kg ball rebounds upward, reaching a height of 22.1 m. If the contact between ball and ground lasted 1.62 ms, what average force was exerted on the ball?

Answers

Answer:

F = 15771.6 N

Explanation:

Initial velocity of ball just before it will collide is given as

[tex]v_i = \sqrt{2gh_1}[/tex]

[tex]v_i = \sqrt{2(9.81)(32.2)}[/tex]

[tex]v_i = 25.13 m/s[/tex]

now for final speed of rebound we have

[tex]v_f = \sqrt{2gh_2}[/tex]

[tex]v_f = \sqrt{2(9.81)(22.1)}[/tex]

[tex]v_f = 20.82 m/s[/tex]

now the average force is given as

[tex]F = \frac{mv_f - mv_i}{\Delta t}[/tex]

[tex]F = \frac{0.556(20.82 + 25.13)}{1.62 \times 10^{-3}}[/tex]

[tex]F = 15771.6 N[/tex]

A circular coil has a radius r and N turns and is in a uniform magnetic field that depends only on time, B = B(t). The angle of the coil is θ to the direction of the field and the total curcuit has resistance R. Find an expression for the current I.

Answers

Answer:

(N x π x r^2 x Cosθ) / R x dB(t) / dt

Explanation:

radius = r , Number of turns = N, B = B(t), Angle = θ, Resistance = R

induced emf = rate of change of magnetic flux

e  = - N x dΦ / dt

e = - N x d(B A Cosθ) / dt

e = - N x A x Cosθ x dB(t) / dt

e = - N x π x r^2 x Cosθ x dB(t) / dt

where, negative sign shows the direction of induced emf in the coil.

induced current, i = induced emf / resistance

i = - (N x π x r^2 x Cosθ) / R x dB(t) / dt

A cylindrical blood vessel is partially blocked by the buildup of plaque. At one point, the plaque decreases the diameter of the vessel by 59.0%. The blood approaching the blocked portion has speed V0. Just as the blood enters the blocked portion of the vessel, what is its speed V, expressed as a multiple of V0?

Answers

Final answer:

Using the principle of continuity for incompressible fluids, if the diameter of a blood vessel is reduced by 59.0% due to plaque, the speed of the blood just as it enters this section will be approximately 2.44 times its initial speed.

Explanation:

The subject of the question falls under the topic of fluid flow in physics, specifically concerning the principle of continuity for incompressible fluids. This principle, often applied in fluid dynamics, suggests that in an area of steadily flowing fluid, the mass passing through one cross-section in a unit of time equals the mass passing through other sections.

Given this principle, if the cross-sectional area of the blood vessel decreases due to plaque buildup, the speed of the blood flow must increase accordingly to maintain a steady flow rate. If the diameter of the vessel decreases by 59.0%, the cross-sectional area A, which is proportional to the square of the diameter (A ~ D²), will be reduced to 0.41 of its original value (because (1 - 59/100)² = 0.41). Therefore, the speed V would be 1/0.41, or approximately 2.44 times the original speed V0.

So, if the blood vessel's diameter is reduced by 59.0%, then just as the blood enters the blocked portion of the vessel, its speed V will be 2.44 times the initial speed V0.

Learn more about Fluid dynamics here:

https://brainly.com/question/11937154

#SPJ3

Other Questions
What would be the best topic sentence for the following paragraph? _________ He believes that by simply passing laws preventing the homeless from being in front of local businesses that they will just go away. This is foolish. The homeless need a place to go. His plan does not give them any options. He is not solving the problem of the homeless; he is just finding new ways to ignore it. A. My opponents plan for dealing with our citys homeless problem is flawed. B. My opponent has an interesting idea on how to deal with the problem of the homeless. C. The homeless problem has been ignored for too long. D. The homeless problem in our city is not easy to fix. Companies that manufacture identical items through a series of uniform production steps use ________ to determine the cost per unit produced. a) a job order costing system b) a process costing system c) both of these systems d) neither of these systems Rhodium has an atomic radius of 0.1345 nm and a density 12.41g/cm^3. De-termine if it comes in FCC or BCC structure. If it requires 35.0 milliliters of 0.50 molar NaOH to neutralize 25.0 milliliters of HCl, what is the concentration of the HCl solution? (3 points)Balanced equation: NaOH + HCl yields NaCl + H2O0.36 M HCl0.70 M HCl1.1 M HCl1.4 M HCl A man steps out of a plane at a height of 4,000m above the ground falls 2,000m very quickly and then opens his parachute and slowly falls the remaining 2000m to the ground what height above the ground would be the best Choice for a reference point Im confused. Please help? How can 65% be broken down with friendly percents to find 65% of a number?25% + 25% + 10%25% + 10% + 10% + 10% + 10%50% + 10%50% + 25% why do densities of haloalkanes decrease when the size of alkyl group increases?when the alkyl grp increases, the van der waals force between polar molecules becomes stronger, so shouldnt the molecules pack closer to each other and the density increase? Early man was nomadic. Why did early man move so much? See page 3 of the lesson. What are some reasons we move today?(3-4 sentence answer please) Two cars are travelling with the same speed and the drivers hit the brakes at the same time. The deceleration of one car is a quarter that of the other. By what factor do the distances required for two cars to come to a stop differ? What is the specific latent heat of fusion of ice if it takes 863 kJ to convert 4.6 kg of ice into water at 0 C? From a jar of pennies, 1290 are drawn, marked, and returned to the jar. After mixing,a sample of 200 pennies is drawn and it was noticed that 50 were marked. Use thisinformation to predict how many pennies are in the jar.od to the pain after misinga) 1,490b) 258,000c) 5,160 Find a if b=5 and c=8cm Graphs are representations of equations.A. TrueB. False How did disease impact encounters and exchanges between European explorers and the American Indians? Bethany wrote the equation X+ (x+2)+(+4)= 91 when she was told that the sum of three consecutive odd integers had asum of 91. Which statement about her equation is true?Bethany is correct because consecutive odd integers will each have a difference of two.Bethany is correct because there are three xs in the equation and three is an odd number so it represents the sum of oddnumbers.Bethany is incorrect because 2 and 4 are even numbers, she should use 1 and 3 in their place.Bethany is incorrect because consecutive integers always increase by 1 each time, not by 2. Halloween: A Special CelebrationWho doesnt like playing pranks on people or eating candy? Halloween is the one day each year when its OK to play tricks on others and get loads of sweet treats. People in the United States and in other countries celebrate Halloween by dressing in costumes, attending parties, and going trick-or-treating.Halloween is celebrated on October 31. This is the day before the religious holiday All Saints Day, which was once known as All Hallows. October 31 was often called All Hallows Eve. Over time, this name was shortened to Halloween. All Saints Day marks the memory of saints and other people who have died. At first, the celebration consisted of a prayer service dedicated to the dead. The prayer service was followed by a small offering at the dead persons tomb or grave. People traditionally spent the day praying and mourning for the souls of those who had died.However, Halloween is celebrated differently today. Dressed like witches, wizards, and goblins, children go from house to house trick-or-treating for candy. They also participate in Halloween activities such as carving pumpkins, bobbing for apples, and watching scary movies.Halloween celebrations arent limited to kids. Many adults celebrate by dressing in costume to attend Halloween parties. Others walk through haunted houses and other scary places.Halloween is more than a one-day holiday. The celebration can continue throughout the month of October. Its a holiday that allows people of all ages to dress up, go to haunted places, and play pranks. Its not serious or sad, unlike the traditional celebrations. For this reason, many people enjoy Halloween celebrations more these days.3Select the correct answer.Read the passage. What kind of informative essay is it?A. cause and effect essayB. persuasive essayC. definition essayD. compare and contrast essay Which of the following is an exothermic reaction?A) melting iceB) iron rustingC) dissolving sugar in waterD) dissolving ammonium nitrate in water Sternberg and colleagues have described expertise, imaginative thinking, venturesome personality, intrinsic motivation, and creative environment as key components of _________ intelligence. The U.S. Center for Disease Control reports that the mean life expectancy was 47.6 years for whites born in 1900 and 33.0 years for nonwhites. Suppose that you randomly survey death records for people born in 1900 in a certain county. Of the 124 whites, the mean life span was 45.3 years with a standard deviation of 12.7 years. Of the 82 nonwhites, the mean life span was 34.1 years with a standard deviation of 15.6 years. Conduct a hypothesis test to see if the mean life spans in the county were the same for whites and nonwhites.