A uniformly accelerated car passes three equally spaced traffic signs. The signs are separated by a distance d = 25 m. The car passes the first sign at t = 1.3 s, the second sign at t = 3.9 s, and the third sign at t = 5.5 s.

(a) What is the magnitude of the average velocity of the car during the time that it is moving between the first two signs?
(b) What is the magnitude of the average velocity of the car during the time that it is moving between the second and third signs?
(c) What is the magnitude of the acceleration of the car?

Answers

Answer 1

The average velocity between the first two signs is 9.1 m/s, between the second and third signs is 10.4 m/s, and the car's acceleration is approximately 0.26 m/s².

To solve for the average velocity and acceleration of the car passing three equally spaced traffic signs, we can use the kinematic equations for uniformly accelerated motion.

Part a: average velocity between the first two signs

The average velocity is calculated by dividing the displacement (distance between the signs) by the time interval: vavg1,2 = d /
[tex](t_2 - t_1)[/tex]. Substituting the given values, we have vavg1,2 = 25 m / (3.9 s - 1.3 s), resulting in an average velocity of 9.1 m/s.

Part b: average velocity between the second and third signs

Similarly, for the average velocity between the second and third signs: vavg2,3 = d / ([tex]t_3 - t_2[/tex]). Using the given times, we calculate vavg2,3 = 25 m / (5.5 s - 3.9 s), giving an average velocity of 10.4 m/s.

Part c: magnitude of the acceleration

To find the acceleration, we can use the velocities we just calculated, and the time between the signs. We can set up an equation for motion for the time intervals. As initial velocity v0 for the second interval is the final velocity of the first interval, we get v0 = vavg1,2 and final velocity v = vavg2,3. Then we can use the equation v = v0 + a[tex](t_3 - t_2)[/tex] to find the acceleration. Rearranging for a, we have a = [tex](v - v_0) / (t_3 - t_2)[/tex]. After calculating, we find that the acceleration is approximately 0.26 m/s².


Related Questions

A ball is thrown down vertically with an initial speed of 20 m/s from a height of 60 m. Find (a) its speed just before it strikes the ground and (b) how long it takes for the ball to reach the ground. Repeat (a) and (b) for the ball thrown directly up from the same height and with the same initial speed.

Answers

Answer:

Explanation:

Ball is thrown downward:

initial velocity, u = - 20 m/s (downward)

height, h = - 60 m

Acceleration due to gravity, g = - 9.8 m/s^2 (downward)

(a) Let the speed of the ball as it hits the ground is v.

Use third equation of motion

[tex]v^{2}=u^{2}+2as[/tex]

[tex]v^{2}=(-20)^{2}+2\times 9.8 \times 60[/tex]

v = 39.69 m/s

(b) Let t be the time taken

Use First equation of motion

v = u + a t

- 39.69 = - 20 - 9.8 t

t = 2 second

Now the ball is thrown upwards:

initial velocity, u = 20 m/s (upward)

height, h = - 60 m

Acceleration due to gravity, g = - 9.8 m/s^2 (downward)

(c) Let the speed of the ball as it hits the ground is v.

Use third equation of motion

[tex]v^{2}=u^{2}+2as[/tex]

[tex]v^{2}=(-20)^{2}+2\times 9.8 \times 60[/tex]

v = 39.69 m/s

(d) Let t be the time taken

Use First equation of motion

v = u + a t

- 39.69 = + 20 - 9.8 t

t = 6.09 second

You throw a ball upward with an initial speed of 4.3 m/s. When it returns to your hand 0.88 s later, it has the same speed in the downward direction (assuming air resistance can be ignored). What was the average acceleration vector of the ball? Express your answer using two significant figures.

Answers

Answer:

The acceleration is -9.8 m/s²

Explanation:

Hi there!!

When you throw a ball upward, there is a downward acceleration that makes the ball return to your hand. This acceleration is produced by gravity.

The average acceleration is calculated as the variation of the speed over time. In this case, we know the time and the initial and final speed. Then:

acceleration = final speed - initial speed/ elapsed time

acceleration = -4.3 m/s - 4.3 m/s / 0.88 s

acceleration = -9.8 m/s²  

Final answer:

The average acceleration vector would be 0 m/s² due to the upward (negative) and downward (positive) accelerations cancelling. However, the average magnitude of acceleration regardless of direction is 9.8 m/s², which is simply the acceleration due to gravity.

Explanation:

To answer your question about the average acceleration vector of a ball that was thrown upward, we can use the concept of free fall in physics. When you throw a ball upward, it initially slows down due to earth's gravitational pull until it stops at its highest point, then it starts accelerating downward due to gravity, until it reaches your hand again.

The acceleration when the ball is going upward will be the opposite of the acceleration when it's coming downward because they are in opposite directions but magnitude will be the same. We can assume the acceleration due to gravity as -9.8 m/s² (negative indicating upward direction) and when it's coming down it will be 9.8 m/s² (positive indicating downward direction).

So over the course of its flight (0.88s), the average acceleration would be ((-9.8)+(9.8))/2 = 0 m/s². However, this may not be what you're looking for as this is the averaged vector sum of the accelerations upward and downward.

If you are asking about the average magnitude of acceleration regardless of direction (in magnitude) it would be the average of the absolute values of the accelerations, which would be the gravitational acceleration g = 9.8 m/s².

Learn more about Average Acceleration of a Thrown Ball here:

https://brainly.com/question/32255841

#SPJ3

Light travels at a speed of close to 3 x 10^5 km/s in vacuum. Given that it takes light 8 min and 19 s to travel the distance from the center of the Earth to the center of the Sun, how far away is the Sun from the Earth? (Astronomers use this as a "distance unit" called 1 Astronomical Unit or 1 au)

Answers

Answer:

1497×10⁵ km

Explanation:

Speed of light in vacuum = 3×10⁵ km/s

Time taken by the light of the Sun to reach the Earth = 8 min and 19 s

Converting to seconds we get

8×60+19 = 499 seconds

Distance = Speed × Time

[tex]\text{Distance}=3\times 10^5\times 499\\\Rightarrow \text{Distance}=1497\times 10^5\ km[/tex]

1 AU = 1497×10⁵ km

The Sun is 1497×10⁵ km from Earth

Question #1: Consider Eratosthenes's experiment to measure the size of the Earth. Suppose the Earth were a smaller planet -- but the sun were still directly overhead in Syene at noon on the Summer Solstice, and it was still 500 miles from Syene to Alexandria. Would the shadow of the stick in Alexandria at noon on the Summer Solstice have been longer, shorter, or the same as it was on our Earth? Briefly explain your reasoning.

Answers

Answer:

It would have been longer.

Explanation:

Lets assume the Sun angle = θ

Distance between Syene and Alexandria = D

Circumference of Earth = C

As per Eratosthenes' calculations,

[tex]\frac{\theta}{360} =\frac{D}{C}[/tex]

From the above equation it is evident that if the circumference decreases value of θ will increase which implies that the shadow length would be longer as compared to that on the Earth.

Find the volume of a cylinder of height 10 cm if its base is a square of side 4 cm

Answers

Answer:

[tex]Volume=160 cm^3[/tex]

Explanation:

The volume of the cylinder is given by the area of the base multiplied by the height.

In this case:

Height:

[tex]h = 10 cm\\[/tex]

Base area = area of the square ([tex]area=side*side=side^2[/tex])

the side of the square is:

[tex]side=4cm[/tex]

thus, the area of the base:

[tex]area=(4cm)^2 = 16 cm^2[/tex]

Now we multiply this quantities, to find the volume:

[tex]Volume= 16 cm^2*10cm=160 cm^3[/tex]

An irregular object of mass 3 kg rotates about an axis, about which it has a radius of gyration of 0.2 m, with an angular acceleration of 0.5 rad.s?. The magnitude of the applied torque is: a) 0.30 N.m b) 3.0 x 102 N.m C) 0.15 N.m d) 7.5 x 102 N.m e) 6.0 x 102 N.m.

Answers

Answer:

0.06 Nm

Explanation:

mass of object, m = 3 kg

radius of gyration, k = 0.2 m

angular acceleration, α = 0.5 rad/s^2

Moment of inertia of the object

[tex]I = mK^{2}[/tex]

I = 3 x 0.2 x 0.2 = 0.12 kg m^2

The relaton between the torque and teh moment off inertia is

τ = I α

Wheree, τ is torque and α be the angular acceleration and I be the moemnt of inertia

τ = 0.12 x 0.5 = 0.06 Nm

A person is standing on a level floor. His head,
uppertorso, arms, and hands together weigh 438 N and have a center
ofgravity that is 1.28 m above the floor. His upper legs weigh 144
Nand have a center of gravity that is 0.760 m above the
floor.Finally, his lower legs and feet together weigh 87 N and
havea center of gravity that is 0.250 m above the floor. Relative
tothe floor, find the location of the center of gravity for
theentire body.

Answers

Answer:

The location of the center of gravity for the entire body, relative to the floor is 1.03 m

Explanation:

To find the center of gravity of a system of particles, we use that

[tex]R_{cog} = \frac{r_{1}*m_{1}+r_{2}*m_{2}+...+r_{n}*m_{n}}{M}[/tex]

where R is the vector center of gravity of the system, formed by n particles, and n masses.

In this case, for a person standing on the floor and being their body divided in three sectors, each one with a weight and an altitud in a specific point (center of gravity of the body sector), instead of mass we have every "particle" weight in Newtons (force instead of mass), being each "particle" in the formula, a sector of the body.

On the other hand, we use only magnitude for the calculation, because the gravity force is vertical to the floor, so instead of our vector formula, we use it in the vertical direction as a magnitude formula. Thus

[tex]Y_{cog} = \frac{y_{1}*W_{1}+y_{2}*W_{2}+y_{3}*W_{3}}{Wt}[/tex]

where Y is the center of gravity, y=1, 2, 3 is every "sector point" altitude from the floor, W=1, 2, 3 is every weight of a body "sector", and Wt is the sum of the three weights.

In this way we replace in our formula with the correspondent values

[tex]Y_{cog} = \frac{1.28m*438N+0.76m*144N+0.25m*87N}{669N}[/tex]

obtaining our result

[tex]Y_{cog}=1.03 m[/tex]

A sky diver with a mass of 70kg jumps from an aircraft. The aerodynamic drag force acting on the sky diver is known to be Fd=kV^2, where k=0.25N*s^2/m^2. Determine the maximum speed of free fall for the sky diver and the speed reached after 100m of fall. Plot the speed of the sky diver as a function of time and as a function of distance fallen

Answers

Answer:

[tex]v_{max}=52.38\frac{m}{s}[/tex]

[tex]v_{100}=33.81[/tex]

Explanation:

the maximum speed is reached when the drag force and the weight are at equilibrium, therefore:

[tex]\sum{F}=0=F_d-W[/tex]

[tex]F_d=W[/tex]

[tex]kv_{max}^2=m*g[/tex]

[tex]v_{max}=\sqrt{\frac{m*g}{k}} =\sqrt{\frac{70*9.8}{0.25}}=52.38\frac{m}{s}[/tex]

To calculate the velocity after 100 meters, we can no longer assume equilibrium, therefore:

[tex]\sum{F}=ma=W-F_d[/tex]

[tex]ma=W-F_d[/tex]

[tex]ma=mg-kv_{100}^2[/tex]

[tex]a=g-\frac{kv_{100}^2}{m}[/tex] (1)

consider the next equation of motion:

[tex]a = \frac{(v_{x}-v_0)^2}{2x}[/tex]

If assuming initial velocity=0:

[tex]a = \frac{v_{100}^2}{2x}[/tex] (2)

joining (1) and (2):

[tex]\frac{v_{100}^2}{2x}=g-\frac{kv_{100}^2}{m}[/tex]

[tex]\frac{v_{100}^2}{2x}+\frac{kv_{100}^2}{m}=g[/tex]

[tex]v_{100}^2(\frac{1}{2x}+\frac{k}{m})=g[/tex]

[tex]v_{100}^2=\frac{g}{(\frac{1}{2x}+\frac{k}{m})}[/tex]

[tex]v_{100}=\sqrt{\frac{g}{(\frac{1}{2x}+\frac{k}{m})}}[/tex] (3)

[tex]v_{100}=\sqrt{\frac{9.8}{(\frac{1}{2*100}+\frac{0.25}{70})}}[/tex]

[tex]v_{100}=\sqrt{\frac{9.8}{(\frac{1}{200}+\frac{1}{280})}}[/tex]

[tex]v_{100}=\sqrt{\frac{9.8}{(\frac{3}{350})}}[/tex]

[tex]v_{100}=\sqrt{1,143.3}[/tex]

[tex]v_{100}=33.81[/tex]

To plot velocity as a function of distance, just plot equation (3).

To plot velocity as a function of time, you have to consider the next equation of motion:

[tex]v = v_0 +at[/tex]

as stated before, the initial velocity is 0:

[tex]v =at[/tex] (4)

joining (1) and (4) and reducing you will get:

[tex]\frac{kt}{m}v^2+v-gt=0[/tex]

solving for v:

[tex]v=\frac{ \sqrt{1+\frac{4gk}{m}t^2}-1}{\frac{2kt}{m} }[/tex]

Plots:

Suppose 1 kg of Hydrogen is converted into Helium. a) What is the mass of the He produced? b) How much energy is released in this process?

Answers

Answer:

a) m = 993 g

b) E = 6.50 × 10¹⁴ J

Explanation:

atomic mass of hydrogen = 1.00794

4 hydrogen atom will make a helium atom = 4 × 1.00794 = 4.03176

we know atomic mass of helium = 4.002602

difference in the atomic mass of helium = 4.03176-4.002602 = 0.029158

fraction of mass lost = [tex]\dfrac{0.029158}{4.03176}[/tex]= 0.00723

loss of mass for 1000 g = 1000 × 0.00723 = 7.23

a) mass of helium produced = 1000-7.23 = 993 g (approx.)

b) energy released in the process

E = m c²

E = 0.00723 × (3× 10⁸)²

E = 6.50 × 10¹⁴ J

Answer:

(a) 992.87 g

(b) [tex]6.419\times 10^{14} J[/tex]

Solution:

As per the question:

Mass of Hydrogen converted to Helium, M = 1 kg = 1000 g

(a) To calculate mass of He produced:

We know that:

Atomic mass of hydrogen is 1.00784 u

Also,

4 Hydrogen atoms constitutes 1 Helium atom

Mass of Helium formed after conversion:

[tex]4\times 1.00784 = 4.03136 u[/tex]

Also, we know that:

Atomic mass of Helium is 4.002602 u

The loss of mass during conversion is:

4.03136 - 4.002602 = 0.028758 u

Now,

Fraction of lost mass, M' = [tex]\frac{0.028758}{4.03136} = 0.007133 u[/tex]

Now,

For the loss of mass of 1000g = [tex]0.007133\times 1000[/tex] = 7.133 g

Mass of He produced in the process:

[tex]M_{He} = 1000 - 7.133 = 992.87 g[/tex]

(b) To calculate the amount of energy released:

We use Eintein' relation of mass-enegy equivalence:

[tex]E = M'c^{2}[/tex]

[tex]E = 0.007133\times (3\times 10^{8})^{2} = 6.419\times 10^{14} J[/tex]

A 6.89-nC charge is located 1.76 m from a 4.10-nC point charge. (a) Find the magnitude of the electrostatic force that one charge exerts on the other. (b) Is the force attractive or repulsive?

Answers

Answer: a) 8.2 * 10^-8 N or 82 nN and b) is repulsive

Explanation: To solve this problem we have to use the Coulomb force for two point charged, it is given by:

[tex]F=\frac{k*q1*q2}{d^{2}}[/tex]

Replacing the dat we obtain F=82 nN.

The force is repulsive because the points charged have the same sign.

The electric field at point P due to a point charge Q a distance R away from P has magnitude E. In order to double the magnitude of the field at P, you could The electric field at point P due to a point charge Q a distance R away from P has magnitude E. In order to double the magnitude of the field at P, you could double the charge to 2Q and at the same time reduce the distance to R/2. reduce the distance to R/4. double the charge to 2Q. reduce the distance to R/2. double the distance to 2R.

Answers

Answer:

Double the charge to 2Q

Explanation:

The magnitude of a electric field caused by a charge Q at a distance R can be find by the following expression:

[tex]E = K\frac{Q}{R^2}[/tex]

Where K is the Coulomb constant.

As the relationship between the charge and the electric fiel is proportional, by simply doubling the charge, you would double the magnitude of the electric field.

Notice that the distance affects the magnitude of the electric field by the inverse square. So if you half the distance, the magnitude of the field will quadruple.

To double the electric field's magnitude at point P from a point charge Q at distance R, double the charge to 2Q while keeping the distance R unchanged. Option B is the correct option.

To double the magnitude of the electric field at point P due to a point charge Q a distance R away from P, you can follow Coulomb's law. Electric field (E) is directly proportional to the charge (Q) and inversely proportional to the square of the distance (R) between the point charge and the observation point.

If you double the charge to 2Q while keeping the distance R the same, the new electric field magnitude at point P will be double the original E. This is because E ∝ Q. Other options like reducing the distance to R/2 or R/4, or doubling the distance to 2R, would not result in a doubling of the field magnitude but rather lead to different field strengths according to the inverse square law, and altering both the charge and distance simultaneously is not necessary to achieve this specific goal. Option B is the correct option.

To learn more about charge ,visit this link:

https://brainly.com/question/34758769

#SPJ12

The appropriate question is :

The electric field at point P due to a point charge Q a distance R away from P has magnitude E. In order to double the magnitude of the field at P, you could The electric field at point P due to a point charge Q a distance R away from P has magnitude E. In order to double the magnitude of the field at P, you could double the charge to 2Q and at the same time reduce the distance to R/2 OR

A) reduce the distance to R/4.

B) double the charge to 2Q.

C)reduce the distance to R/2.

D) double the distance to 2R.

A non conducting sphere of radius 0.04 m has a charge of 5.0 × 10^-9 C deposited on it. CalculateThe magnitude of the electric field at 0.02m from the center of the sphere

Answers

Answer:

The electric field at a distance r = 0.02 m is 14062.5 N/C.

Solution:

Refer to fig 1.

As per the question:

Radius of sphere, R = 0.04 m

Charge, Q = [tex]5.0\times 10^{- 9} C[/tex]

Distance from the center at which electric field is to be calculated, r = 0.02 m

Now,

According to Gauss' law:

[tex]E.dx = \frac{Q_{enclosed}}{\epsilon_{o}}[/tex]

Now, the charge enclosed at a distance r is given by volume charge density:

[tex]\rho = \frac{Q_{enclosed}}{area}[/tex]

[tex]\rho = \frac{Q_{enclosed}}{\frac{4}{3}\pi R^{3}}[/tex]

Also, the charge enclosed Q' at a distance r is given by volume charge density:

[tex]\rho = \frac{Q'_{enclosed}}{\frac{4}{3}\pi r^{3}}[/tex]

Since, the sphere is no-conducting, Volume charge density will be constant:

Thus

[tex]\frac{Q_{enclosed}}{\frac{4}{3}\pi R^{3}} = \frac{Q'_{enclosed}}{\frac{4}{3}\pi r^{3}}[/tex]

Thus charge enclosed at r:

[tex]Q'_{enclosed} = \frac{Q_{enclosed}}{\frac{r^{3}}{R^{3}}[/tex]

Now, By using Gauss' Law, Electric field at r is given by:

[tex]4\pi r^{2}E = \frac{Q_{enclosed}r^{3}}{\epsilon_{o}R^{3}}[/tex]

Thus

[tex]E = \frac{Q_{enclosed}r}{4\pi\epsilon_{o}R^{3}}[/tex]

[tex]E = \frac{(9\times 10^{9})\times 5.0\times 10^{- 9}\times 0.02}{0.04^{3}}[/tex]

E = 14062.5 N/C

A closed system consisting of 2 lb of a gas undergoes a process during which the relation between pressure and volume is pVn = constant. The process begins with p1 = 15 lbf/in.2, ν1 = 1.25 ft3/lb and ends with p2 = 60 lbf/in.2, ν2 = 0.5 ft3/lb. Determine (a) the volume, in ft3, occupied by the gas at states 1 and 2 and (b) the value of n.

Answers

Answer:

V1=2.5ft3

V2=1ft3

n=1.51

Explanation:

PART A:

the volume of each state is obtained by multiplying the mass by the specific volume in each state

V=volume

v=especific volume

m=mass

V=mv

state 1

V1=m.v1

V1=2lb*1.25ft3/lb=2.5ft3

state 2

V2=m.v2

V2=2lb*0.5ft3/lb=   1ft3

PART B:

since the PV ^ n is constant we can equal the equations of state 1 and state 2

P1V1^n=P2V2^n

P1/P2=(V2/V1)^n

ln(P1/P2)=n . ln (V2/V1)

n=ln(P1/P2)/ ln (V2/V1)

n=ln(15/60)/ ln (1/2.5)

n=1.51

If you can read the bottom row of your doctor's eye chart, your eye has a resolving power of one arcminute, equal to 1.67×10^−2 degrees . If this resolving power is diffraction-limited, to what effective diameter of your eye's optical system does this correspond? Use Rayleigh's criterion and assume that the wavelength of the light is 540 nm . Express your answer in millimeters to three significant figures.

Answers

Answer:  

2.26 mm.

Explanation:

According to Rayleigh criterion , angular rosolution of eye is given by the expression

Angular resolution ( in radian ) = 1.22 λ / D

λ wave length of light, D is diameter of the eye

Given

angular resolution in degree = 1.67 x 10⁻²

= 1.67 x 10⁻² x π / 180 radian ( 180 degree = π radian )

= 29.13 x 10⁻⁵ radian

λ = 540 x 10⁻⁹ m

Put these values in the expression

29.13 x 10⁻⁵ = 1.22 x 540 x 10⁻⁹ / D

D = [tex]\frac{1.22\times540\times10^{-9}}{29.13\times10^{-5}}[/tex]

D = 2.26 mm.

Final answer:

The effective diameter of an eye's optical system that corresponds to a resolving power of one arcminute, calculated using Rayleigh's criterion and the given values of resolving power and wavelength of light, is approximately 2.27 mm.

Explanation:

The effective diameter of an eye's optical system that corresponds to a resolving power of one arcminute can be determined using Rayleigh's criterion for diffraction limit and the given values of the resolving power and wavelength of light.

Rayleigh's criterion states that the minimum resolvable angle for a diffraction-limited system is θmin = 1.22*λ/D where λ is the wavelength of light and D is the diameter of the optical system. Given that the resolving power of the eye is 1.67×10^−2 degrees and the wavelength of light is 540 nm, we can rearrange Rayleigh's formula to solve for D.

Converting 1.67×10^−2 degrees to radians gives us 0.00029 rad. Plugging in the values into Rayleigh's formula and solving for D gives us D = 1.22*λ/θmin. Substituting λ=540*10^−9 m and θmin=0.00029 into the equation, we get D = 2.27 mm to three significant figures.

Learn more about Eye Resolving Power here:

https://brainly.com/question/32064639

#SPJ12

Given vectors D (3.00 m, 315 degrees wrt x-axis) and E (4.50 m, 53.0 degrees wrt x-axis), find the resultant R= D + E. (a) Write R in vector form. (b) Write R showing the magnitude and direction in degrees.

Answers

Answer:

R = ( 4.831 m , 1.469 m ) Magnitude of R = 5.049 mDirection of R relative to the x axis= 16°54'33'

Explanation:

Knowing the magnitude and directions relative to the x axis, we can find the Cartesian representation of the vectors using the formula

[tex]\vec{A}= | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )[/tex]

where [tex]| \vec{A} |[/tex] its the magnitude and θ.

So, for our vectors, we will have:

[tex]\vec{D}= 3.00 m \ ( \ cos(315) \ , \ sin (315) \ )[/tex]

[tex]\vec{D}=  ( 2.121 m , -2.121 m )[/tex]

and

[tex]\vec{E}= 4.50 m \ ( \ cos(53.0) \ , \ sin (53.0) \ )[/tex]

[tex]\vec{E}= ( 2.71 m , 3.59 m )[/tex]

Now, we can take the sum of the vectors

[tex]\vec{R} = \vec{D} + \vec{E}[/tex]

[tex]\vec{R} = ( 2.121 \ m , -2.121 \ m ) + ( 2.71 \ m , 3.59 \ m )[/tex]

[tex]\vec{R} = ( 2.121 \ m  + 2.71 \ m , -2.121 \ m + 3.59 \ m ) [/tex]

[tex]\vec{R} = ( 4.831 \ m , 1.469 \ m ) [/tex]

This is R in Cartesian representation, now, to find the magnitude we can use the Pythagorean theorem

[tex]|\vec{R}| = \sqrt{R_x^2 + R_y^2}[/tex]

[tex]|\vec{R}| = \sqrt{(4.831 m)^2 + (1.469 m)^2}[/tex]

[tex]|\vec{R}| = \sqrt{23.338 m^2 + 2.158 m^2}[/tex]

[tex]|\vec{R}| = \sqrt{25.496 m^2}[/tex]

[tex]|\vec{R}| = 5.049 m[/tex]

To find the direction, we can use

[tex]\theta = arctan(\frac{R_y}{R_x})[/tex]

[tex]\theta = arctan(\frac{1.469 \ m}{4.831 \ m})[/tex]

[tex]\theta = arctan(0.304)[/tex]

[tex]\theta = 16\°54'33''[/tex]

As we are in the first quadrant, this is relative to the x axis.

A ball is dropped from rest at the top of a 6.10 m
tallbuilding, falls straight downward and collides inelastically
withthe ground, and bounces back. The ball loses 10% of itskinetic
energy every time it collides with the ground. Howmany bounces can
the ball make and still reach a windowsill that is2.38 m above the
ground?

Answers

Answer:

n = 5 approx

Explanation:

If v be the velocity before the contact with the ground and v₁ be the velocity of bouncing back

[tex]\frac{v_1}{v}[/tex] = e ( coefficient of restitution ) = [tex]\frac{1}{\sqrt{10} }[/tex]

and

[tex]\frac{v_1}{v} = \sqrt{\frac{h_1}{6.1} }[/tex]

h₁ is height up-to which the ball bounces back after first bounce.

From the two equations we can write that

[tex]e = \sqrt{\frac{h_1}{6.1} }[/tex]

[tex]e = \sqrt{\frac{h_2}{h_1} }[/tex]

So on

[tex]e^n = \sqrt{\frac{h_1}{6.1} }\times \sqrt{\frac{h_2}{h_1} }\times... \sqrt{\frac{h_n}{h_{n-1} }[/tex]

[tex](\frac{1}{\sqrt{10} })^n=\frac{2.38}{6.1}[/tex]= .00396

Taking log on both sides

- n / 2 = log .00396

n / 2 = 2.4

n = 5 approx

The ball can bounce approximately 8 times before it reaches the height of 2.38 meters after accounting for a 10% energy loss each collision.

This problem involves a ball undergoing inelastic collisions, losing 10% of its kinetic energy with each bounce, and determining how many times it can bounce to still reach a windowsill 2.38 m high.

First, let's calculate the initial potential energy (PEinitial) of the ball when it is dropped from a height (hinitial) of 6.10 m:

PEinitial = mghinitial

where, g = 9.8 m/s² (acceleration due to gravity)

As it falls, this entire potential energy converts into kinetic energy (KEinitial) at the ground:

KEinitial = PEinitial = mghinitial

Upon each bounce, the ball loses 10% of its kinetic energy. Therefore, it retains 90% of its kinetic energy:

KEnew = 0.9 × KEprevious

To find out how high it can bounce after each loss of energy, convert kinetic energy back into potential energy:

PE = KE = mgh

After each bounce, the height the ball can reach is calculated by applying the 90% retention factor:

hnew = 0.9 × hprevious

Starting with h0 = 6.10 m:

Next height (h1) = 0.9 × 6.10 m = 5.49 mNext height (h2) = 0.9 × 5.49 m = 4.94 mNext height (h3) = 0.9 × 4.94 m = 4.45 mContinue this process until hn is less than 2.38 m:

The number of bounces can be calculated using the formula: hn = 6.10 × (0.9)n, where n is the number of bounces. Set hn = 2.38 m and solve for n:

2.38 = 6.10 × (0.9)n

Divide both sides by 6.10:

0.39 ≈ (0.9)n

Taking the natural log (ln) of both sides:

ln(0.39) = n × ln(0.9)

Finally, solving for n:

n ≈ ln(0.39) / ln(0.9) ≈ 8

Therefore, the ball can bounce approximately 8 times and still reach the windowsill that is 2.38 m above the ground.

Suppose that, while lying on a beach near the equator of a far-off planet watching the sun set over a calm ocean, you start a stopwatch just as the top of the sun disappears. You then stand, elevating your eyes by a height H = 1.43 m, and stop the watch when the top of the sun again disappears. If the elapsed time is it = 11.9 s, what is the radius r of the planet to two significant figures? Notice that duration of a solar day at the far-off planet is the same that is on Earth.

Answers

Answer:

R=3818Km

Explanation:

Take a look at the picture. Point A is when you start the stopwatch. Then you stand, the planet rotates an angle α and you are standing at point B.

Since you travel 2π radians in 24H, the angle can be calculated as:

[tex]\alpha =\frac{2*\pi *t}{24H}[/tex]  t being expressed in hours.

[tex]\alpha =\frac{2*\pi *11.9s*1H/3600s}{24H}=0.000865rad[/tex]

From the triangle formed by A,B and the center of the planet, we know that:

[tex]cos(\alpha )=\frac{r}{r+H}[/tex]  Solving for r, we get:

[tex]r=\frac{H*cos(\alpha) }{1-cos(\alpha) } =3818Km[/tex]

The temperature of 1 m^3 of water is decreased by 10°C. If this thermal energy is used to lift the water vertically against gravity, what is the change in height of the center of mass?

Answers

Answer:

h = 4271.43 m

Explanation:

given,

Volume of the water = 1 m³

temperature decrease by = 10°C

heat removed from water

Q = m c ΔT                            

Q = ρ V c ΔT                            

   = 1000 × 1 × 4186 × 10

   = 4.186 × 10⁷ J

energy is used to do work to move the water against its weight

Q = force  × displacement

4.186 × 10⁷ J =  m g × h                    

4.186 × 10⁷ J =  1000 × 1 × 9.8 × h                

h = 4271.43 m                                

hence, the change in height of is equal to h = 4271.43 m

When an object is thrown upwards and reaches its maximum height its speed is: a. Greater than the initial
b. Less than the initial
c. Same as the initial
d. Zero

Answers

Answer:

Option d

Explanation:

When we throw an object in the upward direction, we provide it with certain initial velocity due to which it covers a certain distance up to the maximum height.

While the object is moving in the upward direction, its velocity keeps on reducing due to the acceleration due to gravity which acts vertically downwards in the opposite direction thus reducing its velocity.

So, the maximum height attained by the object is the point where this upward velocity of the body becomes zero and after that the object starts to fall down.

An electron passes location < 0.02, 0.04, -0.06 > m and 5 us later is detected at location < 0.02, 1.62,-0.79 > m (1 microsecond is 1x10 65). (Express your answers in vector form.) Part 1 (a) What is the average velocity of the electron? Vavg = < > m/s Attempts: Unlimited SAVE FOR LATER SUBMIT ANSWER Part 2 (b) If the electron continues to travel at this average velocity, where will it be in another 9 us? 7 = < > m

Answers

Final answer:

The electron's average velocity is found to be (0 m/s, 316,000 m/s, -146,000 m/s), and after another 9 microseconds, it will be at the position (0.02 m, 4.464 m, -2.104 m).

Explanation:

To calculate the average velocity of an electron, we use the formula:

Vavg = (rf - ri) / Δt, where rf is the final position, ri is the initial position, and Δt is the time interval between the positions.

Given the initial position (0.02 m, 0.04 m, -0.06 m) and the final position (0.02 m, 1.62 m, -0.79 m), with a time difference of 5 microseconds (μs), which is 5 x 10-6 seconds:

The position change in vector form is

Δr = (0.02 m - 0.02 m, 1.62 m - 0.04 m, -0.79 m - (-0.06 m))

= (0 m, 1.58 m, -0.73 m).

Thus, the average velocity is

Vavg = Δr / Δt

= (0 m, 1.58 m, -0.73 m) / (5 x 10-6 s)

= (0 m/s, 316,000 m/s, -146,000 m/s)

The electron's new position after another 9 μs, moving with the same average velocity, is calculated by:

rnew = rf + Vavg × Δtnew

Here, Δtnew is 9 μs, which is 9 x 10-6 seconds, so:

rnew = (0.02 m, 1.62 m, -0.79 m) + (0 m/s, 316,000 m/s, -146,000 m/s) × (9 x 10-6 s)

= (0.02 m, 1.62 m + (2.844 m), -0.79 m - (1.314 m))

= (0.02 m, 4.464 m, -2.104 m).

The gauge pressure in your car tires is 2.40 x 10^5 N/m^2 at a temperature of 35.0°C when you drive it onto a ferry boat to Alaska. What is their gauge pressure (in atm) later, when their temperature has dropped to −42.0°C? (Assume that their volume has not changed.)

Answers

Answer:

The gauge pressure is [tex]1.8\times10^{5}\ N/m^2[/tex]

Explanation:

Given that,

Gauge pressure of car tires [tex]P_{1}=2.40\times10^{5}\ N/m^2[/tex]

Temperature [tex]T_{1}=35.0^{\circ}C = 35.0+273=308 K[/tex]

Dropped temperature [tex]T_{2}= -42.0^{\circ}C=273-42=231 K[/tex]

We need to calculate the gauge pressure P₂

Using relation pressure and temperature

[tex]\dfrac{P_{1}}{T_{1}}=\dfrac{P_{2}}{T_{2}}[/tex]

Put the value into the formula

[tex]\dfrac{2.40\times10^{5}}{308}=\dfrac{P_{2}}{231}[/tex]

[tex]P_{2}=\dfrac{2.40\times10^{5}\times231}{308}[/tex]

[tex]P_{2}=180000 = 1.8\times10^{5}\ N/m^2[/tex]

Hence, The gauge pressure is [tex]1.8\times10^{5}\ N/m^2[/tex]

Earth orbits around the Sun at an average speed of 30 km/s. How far does the Earth move in a year (3.16 x 107 s) as it revolves around the Sun? Express your answer in kilometers using the correct number of significant figures

Answers

Final answer:

The Earth moves 9.48 × 10⁸ kilometers in a year as it revolves around the Sun, calculated by multiplying the average speed of 30 km/s by the time of one year, 3.16 × 10⁷ seconds.

Explanation:

To calculate the distance that Earth moves in a year as it revolves around the Sun, we can use the formula for distance traveled, which is distance = speed × time. Given that Earth orbits around the Sun at an average speed of 30 kilometers per second (km/s) and the time it takes for one orbit is 3.16 × 107 seconds, the calculation would be:

30 km/s × 3.16 × 107 s = distance

Distance = 30 × 3.16 × 107 km

Distance = 94.8 × 107 km

Distance = 9.48 × 108 km

The Earth moves 9.48 × 108 kilometers in a year as it revolves around the Sun, using the correct number of significant figures.

A massless spring is attached to a support at one end and has a 2.0 μC charge glued to the other end. A -4.0 μC charge is slowly brought near. The spring has stretched 1.2 cm when the charges are 2.2 cm apart. What is the spring constant of the spring? Express your answer with the appropriate units.

Answers

Final answer:

The spring constant of the spring is -1.376 N/m.

Explanation:

To find the spring constant of the spring, we can use Hooke's Law, which states that the force exerted by a spring is directly proportional to its displacement from its equilibrium position. In this case, the displacement of the spring is 1.2 cm, and the charges are 2.2 cm apart. The force exerted by the spring can be calculated using the equation F = kx, where F is the force, k is the spring constant, and x is the displacement.

Given that the displacement (x) is 1.2 cm and the force exerted is caused by the electric force between the charges, which is given by Coulomb's Law, we can write the equation:

F = kx = k(1.2 cm) = (k/100 cm) * 1.2 cm = k/83.33

Similarly, the electric force between the charges is given by Coulomb's Law: F = kq1q2/r^2, where k is the electrostatic constant, q1 and q2 are the charges, and r is the distance between them. In this case, the charges are 2.2 cm apart and have magnitudes of 2.0 μC and -4.0 μC, respectively.

When the charges are 2.2 cm apart, we can calculate the electric force:

F = k(2.0 μC)(-4.0 μC)/(2.2 cm)^2 = (-8.0 kμC^2)/(4.84 cm^2) = (-8.0 k)/(4.84 cm^2) μC^2

Equating the force exerted by the spring to the electric force, we have:

k/83.33 = (-8.0 k)/(4.84 cm^2) μC^2

Solving for k:

k/83.33 = (-8.0 k)/(4.84 cm^2) μC^2

k * (4.84 cm^2)/(83.33) = -8.0 k * μC^2

(4.84 cm^2)/(83.33) = -8.0 μC^2

k = (-8.0 μC^2) * (83.33)/(4.84 cm^2) = -137.6 μC^2/cm^2 = -1.376 N/m

Therefore, the spring constant of the spring is -1.376 N/m.

Learn more about spring constant here:

https://brainly.com/question/14159361

#SPJ12

The fastest server in women's tennis is Sabine Lisicki, who recorded a serve of 131 mi/h (211 km/h) in 2014. Suppose that the acceleration of the ball was constant during the contact with the racket. Part A If her racket pushed on the ball for a distance of 0.15 m, what was the acceleration of the ball during her serve?

Answers

Final answer:

Using the formula for acceleration, a = (v^2) / 2d, and the given velocity and acceleration distance, the acceleration of the tennis ball during Lisicki's serve was approximately 11368 m/s². The force exerted by the racket is generally higher than the force due to gravity during this action.

Explanation:

To calculate the acceleration of the tennis ball during Sabine Lisicki's serve, we can use the formula for acceleration: a = (v^2) / 2d, where 'v' corresponds to the final velocity and 'd' represents the distance over which the ball accelerated.

In this case, the final velocity 'v' is 211 km/h (converted to m/s gives us approximately 58.6 m/s), and Lisicki's racquet was in contact with the ball, causing it to accelerate over a distance 'd' of 0.15 m. Plugging these values into the formula gives us: a = (58.6 m/s)^2 / 2(0.15 m), which equals about 11368 m/s².

The average force exerted by the racket can be understood through the equation F = ma, a case of Newton's second law of motion. However, in this scenario, the force due to gravity is negligible as it's much smaller than the force exerted by the racket. The main focus here is the force exerted by the racket which made such a high acceleration possible.

Learn more about Acceleration of Tennis Ball here:

https://brainly.com/question/37026078

#SPJ3

f the electric field is zero at a particular point, must the electric potential be zero at the same point? Explain

Answers

Answer:

No

Explanation:

As we know that the electric field nullity does not define that the electric potential will be zero at that point.

For example consider the two positive charge at the mid point of these charge electric field is zero but potential is finite.The electric potential has two contribution means it is positive if charges are positive and it is negative if charges are negative.

The only two forces acting on a body have magnitudes of 20 N and 35 N and directions that differ by 80°. The resulting acceleration has a magnitude of 20 m/s^2. What is the mass of the body? O 2.4kg O 2.2kg O 2.7kg O 3.1kg

Answers

Answer:

b) 2.2 kg

Explanation:

Net force acting on an object is the sum of the  two forces acting on the body.

The net force is calculated using the parallelogram law of vectors.

F =[tex]\sqrt{{A^{2}} + B^{2}+2 A B cos \theta}[/tex]

Here A = 20 N , B = 35 N and θ =80°

Net Force = F = 43.22 N

Acceleration = a = 20 m/s/s

Since F = ma, m = F/a = 43.22 / 20 = 2.161 kg = 2.2 kg

The car starts from rest and accelerates with an acceleration of 2 m/s^2 for 5 s. It then travels at a constant speed for 20 s, before decelerating at -5 m/s^2 until it reaches zero speed. How much distance did the car cover during this journey.

Answers

Answer:

Total distance covered during the journey is 235 m

Solution:

As per the question:

Initial velocity, v = 0 m/s

Acceleration, a = [tex]2 m/s^{2}[/tex]

Time, t = 5 s

Now,

For this, we use eqn 2 of motion:

[tex]d = vt + \farc{1}{2}at^{2}[/tex]

[tex]d = 0.t + \farc{1}{2}\times 2\times 5^{2} = 25 m[/tex]

The final speed of car after t = 5 s is given by:

v' = v + at

v' = 0 + 2(5) = 10 m/s

Now, the car travels at constant speed of 10 m/s for t' = 20 s with a = 0:

[tex]d' = vt + \farc{1}{2}at^{2}[/tex]

[tex]d' = 10\times 20 + \farc{1}{2}\times 0\times 20^{2} = 25 m[/tex]

d' = 200 m

Now, the car accelerates at a= - 5 [tex]m/s^{2}[/tex] until its final speed, v" = 0 m/s:

[tex]v"^{2} = v'^{2} + 2ad"[/tex]

[tex]0 = {10}^{2} + 2\times (- 5)d"[/tex]

[tex]100 = 10d"[/tex]

d" = 10 m

Total distance covered = d + d' + d"  = 25 + 200 + 10 = 235 m

Water has a mass per mole of 18.0 g/mol, and each water molecule (H20) has 10 electrons. (a) How many electrons are there in one liter (1.00 x 10 m ) of water?

Answers

Answer:

total number of electron in 1 litter is 3.34 × [tex]10^{26}[/tex] electron

Explanation:

given data

mass per mole = 18 g/mol

no of electron = 10

to find out

how many electron in 1 liter of water

solution

we know molecules per gram mole is 6.02 ×[tex]10^{23}[/tex] molecules

no of moles is 1

so

total number of electron in water is = no of electron ×molecules per gram mole × no of moles

total number of electron in water is = 10 × 6.02 ×[tex]10^{23}[/tex] × 1

total number of electron in water is = 6.02×[tex]10^{24}[/tex] electron

and

we know

mass = density × volume    ..........1

here we know density of water is 1000 kg/m

and volume = 1 litter = 1 × [tex]10^{-3}[/tex] m³

mass of 1 litter = 1000 × 1 × [tex]10^{-3}[/tex]

mass = 1000 g

so

total number of electron in 1 litter =  mass of 1 litter × [tex]\frac{molecules per gram mole}{mass per mole}[/tex]

total number of electron in 1 litter =  1000 × [tex]\frac{6.02*10{24}}{18}[/tex]

total number of electron in 1 litter is 3.34 × [tex]10^{26}[/tex] electron

A 70kh man jumping from a window lands in an elevated
firerescue net 11.0 m below the window. He momentarily stops when
hehas stretched the net by 1.50 m. Assuming that mechanicalenergy
is conserved during this process and the net functions likean ideal
spring, find the leastic potential energy of the net whenit is
stretched by 1.50 m.

Answers

Answer:

potential energy of net is 8.58 kJ

Explanation:

given data

mass m = 70 kg

height h = 11 m

stop distance x = 1.50 m

to find out

potential energy of net

solution

we know here man eventually stop

so elastic potential energy of net = change in potential energy of man body

so equation will be

potential energy of net = m×g×h    ...................1

here m is mass and h is total height = ( h+ x)  

height = 11 + 1.5 = 12.5 m and g is 9.8

so put here value in equation 1

potential energy of net = m×g×h

potential energy of net = 70×9.8×12.5

potential energy of net = 8575 J

so potential energy of net is 8.58 kJ

A student is walking with a constant speed of ????????1meters per second along High Street and sees a puddle ????????1 meters ahead of her. A bus driver is driving parallel to the student along High Street as well. At the moment the bus is ????????2meters behind the student, the bus driver decides he wants to splash he student with water by driving over the puddle as the student walks past. Determine the expression for the speed that the bus must have in terms of the given variables such that the bus and the student reach the puddle at the same time to splash the student.

Answers

Answer:

The expression is

[tex]v= v_{student} ( 1 + \frac{d_{bus \ to \ the \ student}}{d_{student \ to \ puddle}} )[/tex]

The speed must be 3 m/s

Explanation:

We know that speed is:

[tex]v= \frac{distance}{time}[/tex].

So, to find the speed for the bus, we need to know:

a. How far the bus is from the puddle.b. In how much time will the student reach the puddle.

Lets call [tex]v_{student}[/tex] the speed of the student, and [tex]d_{student \ to \ puddle}[/tex] the distance from the student to the puddle.

We can obtain the time taking

[tex]v_{student}= \frac {d_student \ to \ puddle}{t}[/tex]

as t must be the time that the student will take to reach the puddle:

[tex]t= \frac {d_{student \ to \ puddle}}{v_{student}}[/tex]

The bus is at a distance [tex]d_{bus \ to \ the \ student}[/tex] behind the student, so, the total distance that the bus must travel to the puddle is:

[tex]d_{bus \ to \ the \ puddle} = d_{bus \ to \ the \ student} + d_{student \ to \ puddle}[/tex]

Taking all this togethes, the formula must be:

[tex]v= \frac{d_{bus \ to \ the \ puddle}}{t}[/tex].

[tex]v= \frac{d_{bus \ to \ the \ student} + d_{student \ to \ puddle}}{\frac {d_{student \ to \ puddle}}{v_{student}}}[/tex].

[tex]v= v_{student} \frac{d_{bus \ to \ the \ student} + d_{student \ to \ puddle}}{d_{student \ to \ puddle}}[/tex].

[tex]v= v_{student} (\frac{d_{bus \ to \ the \ student}}{d_{student \ to \ puddle}} + \frac{d_{student \ to \ puddle}}{d_{student \ to \ puddle}} )[/tex].

[tex]v= v_{student} ( 1 + \frac{d_{bus \ to \ the \ student}}{d_{student \ to \ puddle}} )[/tex].

And this is the formula we are looking for.

Taking the values from the problem, we find

[tex]v= 1 \frac{m}{s} ( 1 + \frac{2 m}{1 m})[/tex]

[tex]v= 1 \frac{m}{s} ( 1 + 2)[/tex]

[tex]v= 3 \frac{m}{s}[/tex]

Other Questions
In an LAN domain, _______________ is similar to a hub but can filter traffic, a ______________ connects LANs, or a LAN and a WAN, and a ______________ is a software or hardware device that filters traffic in and out of a LAN. Label the following sentence parts.S=SubjectV=VerbIO=Indirect ObjectDO=Direct ObjectShelley madeDonna a newskirt. Which would be the MOST appropriate topic for a narrative essay? A)My Trip to New York City B)How to Pass the State Driver's Test Eliminate C)An Explanation of the Boston Tea Party D)Why You Should Vote Perot for President A heat pump has a work input of 2 kW and provides 7 kW of net heat transfer to heat a house. The system is steady, and there are no other work or heat interactions. Is this a violation of the first law of thermodynamics? Select one: a. Yes b. No What is the slope of the line represented by the equation y = -x-3? Okay, let's say back in my fleet-footed days (my twenties--when I was also forty pounds lighter! EEK!) I could run 3 miles in 18 minutes. Actually, my fastest time was 17:25--stud! Calculate my miles per hour for running 3 miles in 18 minutes. (Now I'm doing great to run 3 kilometers in 18 minutes!) A jet lands with a speed of 100 m/s and can accelerate uniformly at a rate of -5.0 m/s^2 as it comes to rest. What is the minimum length runway to land this plane? A. 1000 mB. 20 mC. 675 mD. 500 m 2a - 14 - 7b + 10Select ALL coefficients from the expression above. I NEED AN ANWSER ASAP What is the image point of (9,8) after a translation right 4 units and up 2 units? Use the drop-down menu to complete the sentence.Egypts Black Land was caused by A. the damming of the Nile RiverB. pollution created by farmers C. the desert surrounding the Nile D. yearly flooding the Nille Urea is an organic compound widely used as a fertilizer. Its solubility in water allows it to be made into aqueous fertilizer solutions and applied to crops in a spray. H2N-CO-NH2 What is the maximum theoretical number of water molecules with which one urea molecule can hydrogen bond? (Exact whole number required.) Grade 6,7, and 8 at a middle school each have 180 students. The student council is throwing a school dance and they want to know what Theme to have for the dance. Since the student council cannot ask everyone they will Survey a group of students. Which sample can best help the council to draw conclusions about the preferences of all the students in the school.A. 6 students from each gradeB. 25 students from each gradeC. 6 students from the entire schoolD. 25 students from the entire school Find the difference. 12 (21) = _____ 33 9 33 9 You do a Gram stain on the Gram standard culture and all you seearered bacteria. What can you conclude?A. You may have decolorized too long.B. The culture could contain Staphylococci that are older than24hoursC. You may have forgotten to add the mordant (iodine)D. The culture contains Gram-negative bacteria.E. Answer choices a, b, and c. If you measured a pressure difference of 50 mm of mercury across a pitot tube placed in a wind tunnel with 200 mm diameter, what is the velocity of air in the wind tunnel? What is the Reynolds number of the air flowing in the wind tunnel? Is the flow laminar or turbulent? Assume air temperature is 25C. A drunken sailor stumbles 580 meters north, 530 meters northeast, then 480 meters northwest. What is the total displacement and the angle of the displacement? (Assume east is the +x-direction and north is the +y-direction.) a) What's the magnitude? b) What's the direction? (In degrees and counterclockwise to the x-axis.) Hull House was begun by this woman to help working class people with training and educationSojourner TruthElizabeth StantonJane AddamsClara Barton Round the following number to the indicated place. 0.0600609 to hundred-thousandths calculate hydrochloric acid (umol)in 200 ul of a0.5173Msolution of acid? Consider the quadratic function f(x)=x^2+x+30Determine the following:The smallest xx-intercept is x= The largest xx-intercept is x=The yy-intercept is y=