A woman stands on a scale in a moving elevator. Her massis
60.0 kg and the combined mass of the elevator and scale is
anadditional 815 kg. Starting from rest, the elevatoraccelerates
upward. During the acceleration, there is tensionof 9410 N in the
hoisting cable. What does the scale readduring the
acceleration?

Answers

Answer 1

Answer:

Explanation:

Combined mass = 815 + 60 = 875 kg

Net weight acting downwards

= 875 x 9.8

= 8575 N

Tension in the string acting upwards

= 9410

Net upward force = 9410 - 8575

= 835 N

Acceleration

Force / mass

a = 835 / 875

a = .954 ms⁻²

Since the elevator is going up with acceleration a

Total reaction force on the woman from the ground

= m ( g + a )

60 ( 9.8 + .954)

= 645.25 N.

Reading of scale = 645.25 N


Related Questions

A 4.0 µC point charge and a 3.0 µC point charge are a distance L apart. Where should a third point charge be placed so that the electric force on that third charge is zero? (Use the following as necessary: L.)

Answers

Answer:

Q must be placed at 0.53 L

Explanation:

Given  data:

q_1 = 4.0 μC , q_2 = 3.0μC

Distance between charge is L

third charge q be placed at  distance x cm from q1

The force by charge q_1 due to q is

[tex]F1 = \frac{k q q_1}{x^2}[/tex]

[tex]F1 = \frac{k q ( 4.0 μC )}{ x^2}[/tex]                  ----1

The force by charge q_2 due to q is

[tex]F2 =  \frac{k q q_2}{(L-x)^2}[/tex]

[tex]F2 = \frac{kq (3.0 μC)}{(L-x)^2}[/tex]                   --2

we know that net electric force is equal to zero

F_1 = F_2

[tex]\frac{k q ( 4.0 μC )}{x^2}   =\frac{k q ( 3.0 μC )}{(l-x)^2}[/tex]

[tex]\frac{4}{3}*(L-x)^2 = x^2[/tex]

[tex]x = \sqrt{\frac{4}{3}*(L - x)[/tex]

[tex]L-x = \frac{x}{1.15}[/tex]

[tex]L = x + \frac{x}{1.15} = 1.86 x[/tex]

x = 0.53 L

Q must be placed at 0.53 L

Final answer:

The third charge should be placed either between the two charges or on the extended line of the two charges to make the electric force on that charge zero. The exact position depends on the charges involved and can be calculated using the principle of superposition and Coulomb's Law.

Explanation:

The problem deals with the principle of superposition in electrostatics and the force on a charge due to other charges nearby. The force on any charge due to a number of other charges is simply the vector sum of the forces due to individual charges. Starting from this principle, we can try to figure out where the third charge must be placed so that the net force on it is zero.

The two possible positions along the line of the charges are on either side of the two given charges, let's call them 4.0 µC (charge_1) and 3.0 µC (charge_2). These positions can be calculated using the formula of force between two point charges (Coulomb's Law): F = k(q1 x q2)/r² where F is force, k is Coulomb's constant, q1 and q2 are charges and r is distance between charges.

 

Learn more about Electric Force here:

https://brainly.com/question/20935307

#SPJ11

Which, if any, of the following statements concerning the work done by a conservative force is NOT true? All of these statements are true. It can always be expressed as the difference between the initial and final values of a potential energy function. None of these statements are true. It is independent of the path of the body and depends only on the starting and ending points. When the starting and ending points are the same, the total work is zero.

Answers

Final answer:

The false statement among the provided ones about conservative forces is 'None of these statements are true'. Conservative forces rely on the starting and ending points, not the path taken, and the work done on any closed path is always zero. These forces also have a close relationship with potential energy.

Explanation:

The statements provided about conservative forces generally hold true however the false statement is 'None of these statements are true', as all other statements presented are indeed accurate. A conservative force is a type of force where the work done is independent of the path. That is, the work it does only depends on the starting and ending points, not the route taken. This implies that during any closed path or loop, the total work done by a conservative force is zero.

Consider a simple example, such as the gravitational force. If you lift an object to a certain height and then back to its original position, the total work done by the gravitational force is zero as the starting and ending points are the same.

An important concept related to the conservative force is potential energy. When work is done against a conservative force, potential energy is accumulated. Conversely, the component of a conservative force, in a particular direction, equals the negative of the derivative of the potential energy for that force, with respect to a displacement in that direction.

Learn more about Conservative Forces here:

https://brainly.com/question/31849659

#SPJ12

If the electron has a speed equal to 9.10 x 10^6 m/s, what is its wavelength?

Answers

Answer:

[tex]\lambda=8.006\times 10^{-11}\ m[/tex]

Explanation:

Given that,

The speed of an electron, [tex]v=9.1\times 10^6\ m/s[/tex]

We need to find the wavelength of this electron. It can be calculated using De -broglie wavelength concept as :

[tex]\lambda=\dfrac{h}{mv}[/tex]

h is the Planck's constant

[tex]\lambda=\dfrac{6.63\times 10^{-34}}{9.1\times 10^{-31}\times 9.1\times 10^6}[/tex]

[tex]\lambda=8.006\times 10^{-11}\ m[/tex]

So, the wavelength of the electron is [tex]8.006\times 10^{-11}\ m[/tex]. Hence, this is the required solution.

a bicyclist is riding to the left with a velocity of 14m/s after a steady gust of wind that lasts 3.5m/s the bicyclist its moving to the left with a velocity of 21m/s

Answers

Final answer:

To find the speed and direction of the wind as observed by a stationary observer when a cyclist is traveling southeast along a road and there is a wind blowing from the southwest, we can use vector addition. By breaking down the velocities of the cyclist and the wind into their components and adding them together, we can determine that the speed of the wind is 15 km/h in the direction of 135°.

Explanation:

The question is asking for the speed and direction of the wind as observed by a stationary observer when a cyclist is traveling southeast along a road at 15 km/h and there is a wind blowing from the southwest at 25 km/h. To calculate the speed and direction of the wind, we can use vector addition. The velocity of the cyclist is given as 15 km/h in the southeast direction. The velocity of the wind is given as 25 km/h in the southwest direction. To find the speed and direction of the wind, we need to add the velocities of the cyclist and the wind.

We can represent the velocity vectors as follows:

Velocity of cyclist = 15 km/h (southeast)

Velocity of wind = 25 km/h (southwest)

To add these vectors, we can break them down into their components:

Velocity of cyclist = 15 km/h * sin(45°) (south) + 15 km/h * cos(45°) (east)

Velocity of wind = 25 km/h * sin(225°) (south) + 25 km/h * cos(225°) (west)

Adding the components of the velocities:

Velocity of cyclist + Velocity of wind = (15 km/h * sin(45°) + 25 km/h * sin(225°)) (south) + (15 km/h * cos(45°) + 25 km/h * cos(225°)) (east)

Calculating the components:

Velocity of cyclist + Velocity of wind = (-10.61 km/h) (south) + (-10.61 km/h) (east)

To find the speed and direction of the wind, we can use the Pythagorean theorem and trigonometry:

Speed of wind = sqrt((-10.61 km/h)^2 + (-10.61 km/h)^2) = 15 km/h

Direction of wind = atan2((-10.61 km/h), (-10.61 km/h)) = 135°

Therefore, the speed of the wind as observed by the stationary observer is 15 km/h in the direction of 135°.

Explain why two equipotential lines cannot cross each other.

Answers

Answer:

Explained

Explanation:

Equipotential lines cannot cross each other because. The equipotential at a given point in space is has single value of potential throughout. If two equipotential lines intersect with each other, that would mean two values of potential, that would not mean equipotential line. Hence two equipotential lines cannot cross each other.

Final answer:

Equipotential lines are imaginary lines that connect points with the same electric potential. Two equipotential lines cannot cross each other because that would mean two different points on the same line have the same electric potential, which is not possible.

Explanation:

Equipotential lines are imaginary lines that connect points with the same electric potential. Two equipotential lines cannot cross each other because that would mean two different points on the same line have the same electric potential, which is not possible.

For example, imagine a hill with contour lines representing lines of equal height. If two contour lines were to cross each other, it would mean that two different points on the hill have the same height, which is not possible.

In electricity, the electric potential difference between two points on an equipotential line is zero. If two equipotential lines were to cross, it would create a contradiction, as the potential difference between the two points of intersection would be both zero and non-zero.

Learn more about Electric potential here:

https://brainly.com/question/32897214

#SPJ6

Two spheres are cut from a certain uniform rock. One has radius 4.10 cm. The mass of the other is eight times greater.

Answers

Final answer:

The volume of the larger sphere is eight times greater than that of the smaller sphere, and since their masses are proportional to their volumes for objects of uniform density, we can find the radius of the larger sphere to be twice that of the smaller sphere with a radius of 4.10 cm, resulting in a radius of 8.20 cm for the larger sphere.

Explanation:

The question concerns a comparison of the volumes of two spheres made from the same uniform rock. Since the mass of one sphere is eight times greater than the other, and since mass is proportional to volume for objects with uniform density, we can deduce that the volume of the larger sphere is also eight times greater than the smaller sphere. Given that the volume of a sphere (V) is calculated as V = (4/3)πR³, where R is the radius, we understand that because the volumes are proportional to the cube of the radii, we can calculate the radius of the larger sphere if we know the radius of the smaller one. Specifically, if the radius of the smaller sphere is 4.10 cm and its volume is V, then the volume of the larger sphere is 8V, and its radius is 2 times that of the smaller sphere since 2³ equals 8. Therefore, the radius of the larger sphere is 2 × 4.10 cm = 8.20 cm.

If a wave vibrates up and down twice each second and travels a distance of 20 m each second and travels a distance of 20 m each second, what is its frequency? Its wave speed?

Answers

Answer:

Frequency is 0.5 Hz and the wave speed is 10 m/s.

Explanation:

As we know that frequency is defined as the how many times the no of cycles repeat in one second so if the wave is vibrating up and down  twice during 1 second then the frequency in 1 second is

[tex]f=\frac{1}{2} hz\\F=0.5hz[/tex]

Therefore frequency is 0.5 Hz.

Now the distance of wawe in each second is,

[tex]d=20m[/tex]

Now the wave velocity is,

[tex]v=fd[/tex]

Here, f is frequency, d is the distance, v is the wave velocity.

Substitute all the variables

[tex]v=0.5\times 20\\v=10m/s[/tex]

Therefore the wave speed is 10 m/s.

Final answer:

In the given question, the wave's frequency is 2 Hertz (Hz), which means it oscillates twice per second. The wave speed, or distance covered by the wave per second, is identified as 20 m/s. These are fundamental concepts in the Physics of wave mechanics.

Explanation:

In this question, we're dealing with the topics of wave frequency and wave speed. The frequency of a wave relates to how many cycles of the wave occur per unit of time - in this case, the wave is oscillating twice per every second, meaning that its frequency is 2 Hertz (Hz).

The wave speed is the speed at which the wave is travelling. Given that the wave travels a distance of 20 m each second, the speed of the wave is 20 m/s (meters per second).

It's important to note that these two properties are interconnected. In general, the speed of a wave (v) is calculated by multiplying its wavelength (λ) by its frequency (f). So, using the relationship v = λf, the properties of a wave can be determined if the other two are known.

Learn more about Wave Mechanics here:

https://brainly.com/question/24459019

#SPJ3

A container is filled to the brim with 1.5 L of mercury at 20°C. As the temperature of the container and mercury is increased to 55°C, a total of 7.8 mL of mercury spill over the brim of the container. Determine the linear expansion coefficient of the material that makes up the container.

Answers

Answer:

The linear expansion coefficient of the material is [tex]4.952\times10^{-5}\ K^{-1}[/tex]

Explanation:

Given that,

Volume = 1.5 l

Temperature = 20°C

Increased temperature = 55°C

Volume = 7.8 mL

We need to calculate the linear expansion coefficient of the material

Using formula of  linear expansion

[tex]\Delta V=V_{0}\beta \Delta T[/tex]

[tex]\Delta V=V_{0}(3\alpha \Delta T)[/tex]

[tex]\alpha =\dfrac{\Delta V}{3V_{0}\Delta T}[/tex]

Put the value into the formula

[tex]\alpha=\dfrac{7.8\times10^{-3}}{3\times1.5\times(55-20)}[/tex]

[tex]\alpha=0.00004952[/tex]

[tex]\alpha=4.952\times10^{-5}\ K^{-1}[/tex]

Hence, The linear expansion coefficient of the material is [tex]4.952\times10^{-5}\ K^{-1}[/tex]

A student walks (2.9±0.1)m, stops and then walks another (3.9 ±0.2)m in the same directionWith the given uncertainties, what is the smallest distance the student could possibly be from the starting point?

Answers

Answer:

The smallest distance the student that the student could be possibly be from the starting point is 6.5 meters.

Explanation:

For 2 quantities A and B represented as

[tex]A\pm \Delta A[/tex] and [tex]B\pm \Delta B[/tex]

The sum is represented as

[tex]Sum=(A+B)\pm (\Delta A+\Delta B)[/tex]

For the the values given to us the sum is calculated as

[tex]Sum=(2.9+3.9)\pm (0.1+0.2)[/tex]

[tex]Sum=6.8\pm 0.3[/tex]

Now the since the uncertainity inthe sum is [tex]\pm 0.3[/tex]

The closest possible distance at which the student can be is obtained by taking the negative sign in the uncertainity

Thus closest distance equals [tex]6.8-0.3=6.5[/tex]meters

A charge 4q is at the origin, and a charge of -3q is on the positive x-axis at x = a. Where would you place a third charge so it would experience zero net electric force? (Note: Either enter your answer as an unevaluated expression, e.g., (3/2 + sqrt(3))a, or if evaluated, use 2 decimal places.) Your expression should be in terms of the given variable.

Answers

Answer:

6.45 a

Explanation:

Charge on O, q1 = 4q

Charge on A, q2 = - 3 q

OA = a

Let the net force is zero at point P, where AP = x , let a charge Q is placed at P.

The force on point P due to the charge q1 = The force on point P due to the  

                                                                          charge q2

By using Coulomb's law

[tex]\frac{Kq_{1}Q}{OP^{2}}=\frac{Kq_{2}Q}{AP^{2}}[/tex]

[tex]\frac {K4qQ}{(a+x)^{2}}= \frac {K3qQ}{x^{2}}[/tex]

[tex]\frac{a+x}{x}=\sqrt{\frac{4}{3}}[/tex]

[tex]\frac{a+x}{x}=1.155[/tex]

a + x = 1.155 x

0.155 x = a

x = 6.45 a

Thus, the force is zero at x = 6.45 a.

A total charge of 4.70 is distributed on two metal spheres. When the spheres are 10 cm apart, they each feel a repulsive force of 4.7 x 10^11 N. How much charge is on the sphere and which has the lower amount of charge?

Answers

Answer:0.114 C

Explanation:

Given

Total 4.7 C is distributed in two spheres

Let [tex]q_1[/tex] and [tex]q_2[/tex] be the charges such that

[tex]q_1+q_2=4.7[/tex]

and Force between charge particles is given by

[tex]F=\frac{kq_1q_2}{r^2}[/tex]

[tex]4.7\times 10^11=\frac{9\times 10^9\times q_1\cdot q_2}{0.1^2}[/tex]

[tex]q_1\cdot q_2=0.522[/tex]

put the value of [tex]q_1[/tex]

[tex]q_2\left ( 4.7-q_2\right )=0.522[/tex]

[tex]q_2^2-4.7q_2+0.522=0[/tex]

[tex]q_2=\frac{4.7\pm \sqrt{4.7^2-4\times 1\times 0.522}}{2}[/tex]

[tex]q_2=0.114 C[/tex]

thus [tex]q_1=4.586 C[/tex]

A glider moves along an air track with constant acceleration a. It is projected from the start of the track (x = 0 m) with an initial velocity of v0. At time t = 8s, it is at x = 100 cm and is moving along the track at velocity vt = − 0.15 m/s. Find the initial velocity v0 and the acceleration a.

Answers

Answer:

vo = 0.175m/s

a = -0.040625 m/s^2

Explanation:

To solve this problem, you will need to use the equations for constant acceleration motion:

[tex]x = \frac{1}{2}at^2 +v_ot+x_o \\v_f^2 - v_o^2 = 2(x-x_o)a[/tex]

In the first equation you relate final position with the time elapsed, in the second one, you relate final velocity at any given position. In both equations, you will have both the acceleration a and the initial velocity vo as variables. We can simplify with the information we have:

1. [tex]x = \frac{1}{2}at^2 +v_ot+x_o\\0.1m = \frac{1}{2}a(8s)^2 +v_o(8s)+0m \\0.1 = 32a + 8v_o[/tex]

2. [tex]v_f^2 - v_o^2 = 2(x-x_o)a\\(-0.15m/s)^2 - v_o^2 = 2(0.1m-0m)a\\0.0225 - v_o^2 = 0.2a\\a = \frac{0.0225 - v_o^2}{0.2} = 0.1125 - 5v_o^2[/tex]

Replacing in the first equation:

[tex]0.1 = 32(0.1125 - 5v_o^2) + 8v_o\\0.1 = 3.6 - 160v_o^2 + 8v_o\\160v_o^2 - 8v_o - 3.5 = 0[/tex]

[tex]v_0 = \frac{-(-8) +- \sqrt{(-8)^2 - 4(160)(-3.5)}}{2(160)} \\ v_o = 0.175 m/s | -0.125 m/s[/tex]

But as you are told that the ball was projected om the air track, it only makes sense for the velocity to be positive, otherwise it would have started moving outside the air track, so the real solution is 0.175m/s. Then, the acceleration would be:

[tex]a = 0.1125 - 5v_o^2\\a = -0.040625  m/s^2[/tex]

two punds of water vapor at 30 psia fill the 4ft3 left chmaber of a partitioned system. The right chmaber has twice the volume of the left and is initially evacuated. Detrmine the pressure of water after the paertiion has been removed nd enough heat has been transfered so that the temperature of the water is 40F.

Answers

Answer:

pressure of water will be 49.7 atm

Explanation:

given data

pressure = 30 psi = 2.04 atm

water = 2 pound = 907.18

mole of water vapor = 907.19 /2 = 50.4 mole

volume = 4 ft³ = 113.2 L

temperature = 40 F = 277.59 K

to find out

pressure of water

solution

we will apply here ideal gas condition

that is

PV = nRT  .......................1

put here all value and here R = 0.0821 , T temperature and V volume and P pressure and n is no of mole

and we get here temperature

PV = nRT  

2.04 × 113.2 = 50.4×0.0821×T

solve it and we get

T = 55.8 K

so we have given right chamber has twice the volume of the left chamber i.e

volume = twice of volume + volume

volume = 2(113.2) + 113.2

volume = 339.6 L

so from equation 1 pressure will be

PV = nRT

P(339.6) = 50.4 × ( 0.0821) × (277.59)

P = 3.3822 atm = 49.7 atm

so pressure of water will be 49.7 atm

A glass vessel that can be repeatedly filled with precisely the same volume of liquid is called a pycnometer. A certain pycnometer, when empty and dry, weighed 25.296 g. When filled with water at 25 oC the pycnometer and water weighed 34.914 g. When filled with a liquid of unknown composition the pycnometer and its contents weighed 33.485 g. At 25 oC the density of water is 0.9970 g/ml. What is the density of the unknown liquid?

Answers

Answer:

density of liquid 0.848 g/ml

Explanation:

from the information given in the question

mass of water = 34.914 - 25.296 = 9.618 g

volume of pycnometer = volume of water

which will be equal to [tex]= \frac{ mass}{density}[/tex]

[tex]= \frac{9.618}{0.9970} = 9.646 ml[/tex]

mass of liquid =33.485-25.296 = 8.189 ml

density of liquid[tex]= \frac{mass}{volum\ of\ liquid}[/tex]

                           = [tex]\frac{8.189}{9.646} =0.848 g/ml[/tex]

Two 1.0 g spheres are charged equally and placed 2.2 cm apart. When released, they begin to accelerate at 180 m/s^2 . What is the magnitude of the charge on each sphere?

Answers

Answer:

[tex]q=9.83\times 10^{-8}\ C[/tex]

Explanation:

Given that,

Mass of the two spheres, m₁ = m₂ = 1 g = 0.001 kg

Distance between spheres, d = 2.2 cm = 0.022 m

Acceleration of the spheres when they are released, [tex]a=180\ m/s^2[/tex]

Let q is the charge on each spheres. The force due to motion is balanced by the electrostatic force between the spheres as :

[tex]ma=k\dfrac{q^2}{d^2}[/tex]

[tex]q=\sqrt{\dfrac{mad^2}{k}}[/tex]

[tex]q=\sqrt{\dfrac{0.001\times 180\times (0.022)^2}{9\times 10^9}}[/tex]

[tex]q=9.83\times 10^{-8}\ C[/tex]

So, the magnitude of charge on each sphere is [tex]9.83\times 10^{-8}\ C[/tex]. Hence, this is the required solution.

Final answer:

To find the magnitude of the charge on the spheres, we utilize Coulomb's Law and Newton's Second Law, set up an equation, and solve for the charge q. Ensure consistency in the units while solving.

Explanation:

To find the magnitude of the charge on the spheres, we start by using Coulomb's Law, which is expressed as F = k*q1*q2/r^2. Here, F is the force, k is Coulomb's constant (8.99 * 10^9 N m^2/C^2), q1 and q2 are the charges, and r is the separation. Given that the spheres are charged equally (q1 = q2), we can refer to them just as q.

The spheres start accelerating once released, and the only force in operation is the electrostatic force. Thus, according to Newton's second law (F = ma), the force can also be expressed as F = 2*(mass*acceleration) because two spheres are involved.

By equating both expressions for F, we have 2*(mass*acceleration) = k*q^2/r^2. From this equation, we can solve for q = sqrt((2*mass*acceleration*r^2)/k). Substituting given values, we have q = sqrt((2 * 1.0 g * 180 m/s^2 * (2.2 cm)^2)/(8.99 * 10^9 N m^2/C^2)).

Remember to convert grams to kilograms and centimeters to meters to maintain consistency in the units while solving.

Learn more about Electrostatic Force here:

https://brainly.com/question/31042490

#SPJ3

A car enters a freeway with initial velocity of 15.0 m/s and with con stant rate of acceleration, reaches a velocity of 22.5 m/s in a time interval of 3.50 s. a) Determine the value of the car's acceleration. b) Determine the distance traveled by the car in this 3.50 s time interval. c) Determine the average velocity of the car over this 3.50 s time interval.

Answers

Answer:

a) The acceleration is 2.14 m/s^{2}

b) The distance traveled by the car is 65.61 m

c) The average velocity is 18.75 m/s

Explanation:

Using the equations that describe an uniformly accelerated motion:

a) [tex]a=\frac{v_f - v_o}{t} =\frac{22.5m/s - 15.0 m/s}{3.50s}[/tex]

b) [tex]d= d_0 + v_0 t + \frac{1}{2} a t^{2} = 0 +15.0 x 3.5 + \frac{2.14x3.50^{2} }{2} = 65.61 m[/tex]

c) [tex]v_m =\frac{d}{t}=\frac{65.61}{3.5}  =18.75 m/s[/tex]

A traveler covers a distance of 217 miles in a time of 8 hours 32 minutes. (a) What is the average speed for this trip?

Answers

Answer:

Average speed, v = 11.37 m/s

Explanation:

Given that,

The distance covered by the traveler, d = 217 miles = 349228 meters

Time taken, [tex]t = 8\ hours \ 32\ minutes =8\ h+\dfrac{32}{60}\ h=8.53\ h[/tex]

or t = 30708 s

We need to find the average speed for this trip. The average speed is given by :

[tex]v=\dfrac{d}{t}[/tex]

[tex]v=\dfrac{349228\ m}{30708\ s}[/tex]  

v = 11.37 m/s

So, the average speed for this trip is 11.37 m/s. Hence, this is the required solution.

The Mariana Trench in the western Pacific Ocean includes the greatest known ocean depth at approximately 6.8 miles. The atmosphere exerts a pressure of 14.7 lbf/in.2 at the ocean surface. Modeling the ocean seawater as static and assuming constant local acceleration of gravity of 32.1 ft/s2 and constant seawater density of 64.2 lb/ft3 , determine the absolute pressure, in lbf/in.2 , at this depth

Answers

Final answer:

The absolute pressure at the bottom of the Mariana Trench is calculated by adding the atmospheric pressure to the hydrostatic pressure due to the water column, resulting in approximately 509,367.85 lbf/in.².

Explanation:

To calculate the absolute pressure at the bottom of the Mariana Trench, we start by understanding that pressure in a static fluid increases linearly with depth. The increase in pressure, ΔP, due to the water column can be calculated using the formula ΔP = ρgh, where ρ is the density of seawater, g is the acceleration due to gravity, and h is the depth. Given the constants, ρ = 64.2 lb/ft³, g = 32.1 ft/s², and h = 6.8 miles (35,856 ft), we first convert the depth into feet as pressure calculations require consistent units. The calculation is as follows: ΔP = 64.2 lb/ft³ * 32.1 ft/s² * 35,856 ft = 73,346,473.6 lb/ft². Converting this to lbf/in.², we divide by 144 (since 1 ft² = 144 in.²), resulting in ΔP approximately 509,353.15 lbf/in.². Adding the atmospheric pressure of 14.7 lbf/in.² at the surface, the absolute pressure at the bottom of the Mariana Trench in lbf/in.² is approximately 509,367.85 lbf/in.².

The absolute pressure at the depth of the Mariana Trench is approximately [tex]\(7.42 \times 10^9 \, \text{lbf/in}^2\),[/tex]calculated using the hydrostatic pressure formula.

To find the absolute pressure at the depth of the Mariana Trench, we can use the hydrostatic pressure formula:

[tex]\[ P = P_0 + \rho \cdot g \cdot h \][/tex]

Where:

-  P is the absolute pressure at the depth,

-  P0  is the atmospheric pressure at the surface (given as 14.7 lbf/in²),

-  rho  is the density of seawater (given as 64.2 lb/ft³),

-  g  is the acceleration due to gravity (given as 32.1 ft/s²), and

-  h  is the depth of the trench (given as 6.8 miles).

First, let's convert the depth from miles to feet:

[tex]\[ 6.8 \text{ miles} \times 5280 \text{ ft/mile} = 35904 \text{ ft} \][/tex]

Now, we can plug in the values into the formula:

[tex]\[ P = 14.7 \text{ lbf/in}^2 + (64.2 \text{ lb/ft}^3) \times (32.1 \text{ ft/s}^2) \times (35904 \text{ ft}) \][/tex]

Let's calculate this value.

To find the absolute pressure at the depth of the Mariana Trench, we'll first calculate the pressure due to the water column using the hydrostatic pressure formula:

[tex]\[ P = P_0 + \rho \cdot g \cdot h \][/tex]

Where:

- [tex]\( P_0 = 14.7 \, \text{lbf/in}^2 \)[/tex] is the atmospheric pressure at the surface,

-[tex]\( \rho = 64.2 \, \text{lb/ft}^3 \)[/tex] is the density of seawater,

- [tex]\( g = 32.1 \, \text{ft/s}^2 \)[/tex] is the acceleration due to gravity, and

- [tex]\( h = 6.8 \, \text{miles} \times 5280 \, \text{ft/mile} = 35904 \, \text{ft} \)[/tex]is the depth of the trench in feet.

Plugging in the values:

[tex]\[ P = 14.7 + (64.2 \times 32.1 \times 35904) \][/tex]

Let's calculate this.

[tex]\[ P = 14.7 + (64.2 \times 32.1 \times 35904) \][/tex]

[tex]\[ P = 14.7 + (64.2 \times 32.1 \times 35904) \][/tex]

[tex]\[ P = 14.7 + (206368.8 \times 35904) \][/tex]

[tex]\[ P = 14.7 + 7417798272 \][/tex]

[tex]\[ P ≈ 7417798286.7 \, \text{lbf/in}^2 \][/tex]

Therefore, the absolute pressure at the depth of the Mariana Trench is approximately [tex]\( 7.42 \times 10^9 \, \text{lbf/in}^2 \).[/tex]

A 200g of iron at 120 degrees and a 150 g piece of copper at -50 degrees are dropped into an insulated beaker containing 300 g of ethyl alcohol at 20 degrees. What is the final temperature?

Answers

Final answer:

The final temperature can be calculated using the principle of conservation of energy. Using the formulas Q = mcΔT and Q = mcΔT, we can find the heat lost by the iron and the heat gained by the ethyl alcohol. The final temperature of all 3 substances are, T_f = 12.08 °C.

Explanation:

To calculate the final temperature of the substances, we can use the principle of conservation of energy. The heat gained by one substance is equal to the heat lost by another substance. First, we calculate the heat lost by the iron using the formula Q = mcΔT, where Q is the heat lost, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. Then, we calculate the heat gained by the ethyl alcohol using the same formula. Finally, we use the principle of conservation of energy to find the final temperature.

We have:

Iron: m = 200 g, c = 452 J/g °C, Ti = 120 °CCopper: m = 150 g, c = 387 J/g °C, Ti = -50 °CEthyl alcohol: m = 300 g, c = 2.30 J/g °C, Ti = 20 °C

Using the formula Q = mcΔT, we can calculate:

Heat lost by iron: Qiron = (200 g)(452 J/g °C)(120 °C - T_f)Heat gained by ethyl alcohol: Qethyl alcohol = (300 g)(2.30 J/g °C)(T_f - 20 °C)

Since the heat lost by the iron is equal to the heat gained by the ethyl alcohol, we can set up the equation:

(200 g)(452 J/g °C)(120 °C - T_f) = (300 g)(2.30 J/g °C)(T_f - 20 °C)

To solve for T_f, we can simplify and rearrange the equation:

(90400 - 452T_f) J = (T_f- 13800) J

Combining like terms:

13800 J = 1142T_f J

Dividing both sides by 1142:

T_f = 12.08 °C

Learn more about Calculating final temperature using conservation of energy here:

https://brainly.com/question/34640456

#SPJ3

Suppose you exert a 400-N force on a wall but the wall does not move. The work you are doing on the wall is : unknown, because the mass of the wall is not given
zero, because the wall is not moving
3920 J
400 J

Answers

Answer:

W = 0 :The work done on the wall is zero,because the wall is not moving

Explanation:

Work theory

Work is the product of a force applied to a body and the displacement of the body in the direction of this force.

W= F*d Formula (1)

W: Work (Joules) (J)

F: force applied (N)

d=displacement of the body (m)

The work is positive (W+) if the force goes in the same direction of movement.

The work is negative (W-)if the force goes in the opposite direction to the movement

Data

F= 400-N

d= 0

Problem development

We apply formula (1) to calculate the work done on the wall:

W= 400*0

W=0

Which is true concerning the acceleration due to Earth's gravity (ge) ? It decreases with increasing altitude. B. It is different for different objects in free fall. C. It is a fundamental quantity. D. It increases with increasing altitude. E. all of these

Answers

Answer:

Option A decreases with increase in altitude

Explanation:

This can be explained as the value of gravitational acceleration, 'g' is not same everywhere.

It has its maximum value at poles of the Earth and minimum on its equator.

Thus a person will weigh more at poles than equator.

This variation is in accordance to:

[tex]g = \frac{GM_{E}}{radius^{2}}[/tex]

Thus the gravitational acceleration changes as inverse square of the Radius of the Earth.

Thus as we move away from the Earth's center, gravitational acceleration, g decreases.

A jetliner rolls down the runway with constant acceleration from rest, it reaches its take off speed of 250 km/h in 1 min. What is its acceleration? Express in km/h^2, does this result make sense?

Answers

Answer:

Acceleration, [tex]a=14970.05\ km/h^2[/tex]

Explanation:

Given that,

Initially, the jetliner is at rest, u = 0

Final speed of the jetliner, v = 250 km/h

Time taken, t = 1 min = 0.0167 h

We need to find the acceleration of the jetliner. The mathematical expression for the acceleration is given by :

[tex]a=\dfrac{v-u}{t}[/tex]

[tex]a=\dfrac{250}{0.0167}[/tex]

[tex]a=14970.05\ km/h^2[/tex]

So, the acceleration of the jetliner is [tex]14970.05\ km/h^2[/tex]. Hence, this is the required solution.

A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to provide a 2-V voltage. Sketch the circuit. Assuming exact-valued resistors, what output voltage (measured to ground) and equivalent output resistance result? If the resistors used are not ideal but have a ±5% manufacturing tolerance, what are the extreme output voltages and resistances that can result?

Answers

Answer:

circuit sketched in first attached image.

Second attached image is for calculating the equivalent output resistance

Explanation:

For calculating the output voltage with regarding the first image.

[tex]Vout = Vin \frac{R_{2}}{R_{2}+R_{1}}[/tex]

[tex]Vout = 5 \frac{2000}{5000}[/[tex]

[tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V[/tex]

For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.

so.

[tex]R_{out} = R_{2} || R_{1}\\R_{out} = 2000||3000 = \frac{2000*3000}{2000+3000} = 1200[/tex]

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.  

if the -5% is applied to both resistors the Voltage is still 5V because the quotient  has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:

[tex]Vout = 5 \frac{1900}{4900}\\Vout = 5 \frac{19}{49} = 1.93 V[/tex]

[tex]Vout = 5 \frac{2100}{5100}\\Vout = 5 \frac{21}{51} = 2.05 V[/tex]

[tex]R_{out} = R_{2} || R_{1}\\R_{out} = 1900||2850= \frac{1900*2850}{1900+2850} = 1140[/tex]

[tex]R_{out} = R_{2} || R_{1}\\R_{out} = 2100||3150 = \frac{2100*3150 }{2100+3150 } = 1260[/tex]

so.

[tex]V_{out} = {1.93,2.05}V\\R_{1} = {1900,2100}\\R_{2} = {2850,3150}\\R_{out} = {1140,1260}[/tex]

A banked circular highway is designed for traffic moving
at60km/h. The radius of the curve is 200m. Traffic ismoving along
the highway at 40km/h on a rainy day. What isthe minimum
coefficient of friction between tires and road thatwill allow cars
to negotiate the turn without sliding off theroad?

Answers

Answer:

0.063

Explanation:

velocity of the car, v = 40 km/h = 11.11 m/s

radius, r = 200 m

Let the coefficient of friction is μ.

The coefficient of friction relates to the velocity on banked road is given by

[tex]\mu =\frac{v^{2}}{rg}[/tex]

where, v is the velocity, r be the radius of the curve road and μ is coefficient of friction.

By substituting the values, we get

[tex]\mu =\frac{11.11^{2}}{200\times 9.8}[/tex]

μ = 0.063

Three identical 6.0-kg cubes are placed on a horizontal frictionless surface in contact with one another. The cubes are lined up from left to right and a 36-N force is applied to the left side of the left cube causing all three cubes to accelerate to the right. If the cubes are each subject to a frictional force of 6.0 N, what is the magnitude of the force exerted on the right cube by the middle cube in this case

Answers

Answer:

Force exerted on the right cube by the middle cube:

F= 12.02N : in the positive direction of the x axis( +x)

Explanation:

We apply Newton's second law for forces in the direction of the x-axis.

∑Fx= m*a

∑Fx:  algebraic sum of forces ( + to the right, - to the left)

m: mass

a: acceleration

Forces (x) in total mass : Newton's second law

We apply Newton's first law for forces in the direction of the y-axis.

∑Fx= mt*a   , mt: total mass = 6*3= 18 kg

36-6= 18*a

[tex]a=\frac{36-6}{18} = 1.67 \frac{m}{s}[/tex]

Forces (y) in total mass : Newton's first law

∑Fy= 0

Nt-Wt=0   , Nt=Wt

Nt: total normal   ,  Wt= total Weight: mt*g  , g: acceleration due to gravity

Wt=18*9,8=176.4 N

Nt=176.4 N

Calculation of the coefficient of kinetic friction

μk=Ff/Nt Ff: friction force = 6 N

μk=6/176.4 = 0.034

Forces (x) on the first block (on the right): Newton's second law

∑Fx= m₁*a

F-Ff₁= 6*1.67 , Equation  (1)

F:Force exerted on the right cube by the middle cube

Ff₁= μk*N₁ , N₁=W₁ = 9.8*6= 58.8 N

Ff₁= 0.034*58.8 = 2 N

In the  Equation  (1):

F-2= 10.02

F= 2+10.02= 12.02N

F= 12.02N

The sun is 60° above the horizon. Rays from the sun strike the still surface of a pond and cast a shadow of a stick that is stuck in the sandy bottom of the pond. If the stick is 19 cm tall, how long is the shadow?

Answers

Answer:

shadow length 7.67 cm

Explanation:

given data:

refractive index of water is 1.33

by snell's law we have

[tex]n_{air} sin30 =n_{water} sin\theta[/tex]

[tex]1*0.5 = 1.33*sin\theta[/tex]

solving for[tex] \theta[/tex]

[tex]sin\theta = \frac{3}{8}[/tex]

[tex]\theta = sin^{-1}\frac{3}{8}[/tex]

[tex]\theta =  22 degree[/tex]

from shadow- stick traingle

[tex]tan(90-\theta) = cot\theta = \frac{h}{s}[/tex]

[tex]s = \frac{h}{cot\theta} = h tan\theta[/tex]

s = 19tan22 = 7.67 cm

s = shadow length

The calculated shadow length is approximately 10.97 cm.

To determine the length of the shadow cast by the stick, we can use basic trigonometry.

Specifically, we'll use the tangent function, which is defined as the ratio of the opposite side to the adjacent side in a right-angled triangle.

Given:

The height of the stick (opposite side) is 19 cm.The angle of elevation of the sun is 60°.

The formula for tangent is:

tan(θ) = opposite / adjacent

Here, the opposite side is the height of the stick, and the adjacent side is the length of the shadow. Thus, we can rearrange this formula to solve for the length of the shadow (adjacent side):

adjacent = opposite / tan(θ)

Substituting the given values:

adjacent = 19 cm / tan(60°)

We know that tan(60°) is √3 or approximately 1.732.

So:

adjacent = 19 cm / 1.732 ≈ 10.97 cm

Therefore, the length of the shadow cast by the stick is approximately 10.97 cm.

At the same moment, one rock is dropped and one is thrown downward with an initial velocity of 29m/s from the top of a building that is 300 m tall. How much earlier does the thrown rock strike the ground? Neglect air resistance. Please show all work and formulas used thanks

Answers

Answer:

The thrown rock strike 2.42 seconds earlier.

Explanation:

This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

[tex]x=vo*t+\frac{1}{2} a*t^2\\where\\x=distance\\vo=initial velocity\\a=acceleration[/tex]

So now we have an equation and unkown value.

for the thrown rock

[tex]\frac{1}{2}(9.8)*t^2+29*t-300=0[/tex]

for the dropped rock

[tex]\frac{1}{2}(9.8)*t^2+0*t-300=0[/tex]

solving both equation with the quadratic formula:

[tex]\frac{-b\±\sqrt{b^2-4*a*c} }{2*a}[/tex]

we have:

the thrown rock arrives on t=5.4 sec

the dropped rock arrives on t=7.82 sec

so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)

Final answer:

The thrown rock hits the ground approximately 1.89 seconds earlier than the dropped rock when released simultaneously from a height of 300 meters.

Explanation:

To determine how much earlier the thrown rock strikes the ground compared to the dropped rock, we need to use the kinematic equation Projectile motion that relates displacement (Δx), initial velocity (vi), acceleration (a), and time (t): Δx = vi * t + 0.5 * a * t₂.

Since we're dealing with gravity, acceleration due to gravity (a) is 9.8 m/s². For the rock that is dropped, the initial velocity (vi) is 0 m/s, while the rock thrown downward has an initial velocity of 29 m/s.

First, we'll find the time it takes for the dropped rock to hit the ground:

0 = vi * t + 0.5 * a * t₂ - Δx0 = 0 * t + 0.5 * 9.8 * t₂ - 3000 = 4.9 * t₂ - 300t₂ = 61.22t ≈ √61.22 ≈ 7.83 seconds

Next, we use the same equation to find the time for the thrown rock:

0 = vi * t + 0.5 * a * t₂ - Δx0 = 29 * t + 0.5 * 9.8 * t₂ - 3000 = 29 * t + 4.9 * t₂ - 300

This forms a quadratic equation in the form of at₂ + bt + c = 0. To solve for t, we use the quadratic formula. We only need the positive root since time cannot be negative:

t = (-b ± √(b2 - 4ac))/(2a)t ≈ (5.94 seconds)

Finally, the difference in time between when the two rocks hit the ground is:

Time difference = Time for dropped rock - Time for thrown rockTime difference ≈ 7.83 s - 5.94 s ≈ 1.89 seconds

Therefore, the thrown rock hits the ground approximately 1.89 seconds earlier than the dropped rock.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ2

Two point charges are located on the x-axis. One has a charge of 1.77 μC and is located at x = 0.0 m, and the other has a charge of -4.09 μC and is located at x = 15.1 m. At what location on the x-axis (other than at infinity) would the electric force on a third point charge of 3.32 μC be zero?

Answers

Answer:

x = -29.032m

Explanation:

Since the third charge is positive, it cannot be between the other two charges, because it would be repelled by the positive one and attracted by the negative one, so the electric force would never be zero.

This leaves only two options: To the left of the positive one or to the right of the negative one.

If it was located on the right of the negative charge, the force of the positive charge would be weaker because of both the distance is larger and its charge is smaller than the negative charge. So, there is no point the would make the result force equal zero.

This means that the third charge has to be at the left of the positive charge. With this in mind, we make the calculations:

[tex]F_{13}=K*\frac{Q_{1}*Q_{3}}{d^{2}} =F_{23}=K*\frac{Q_{2}*Q_{3}}{(x_{2}+d)^{2}}[/tex]

Replacing the values of Q1=1.77, Q2=4.09, X2=15.1, we solve for d and get two possible results:

d1 = 29.032m   and d2 = -5.99m

Since we assumed in our formula that the third charge was on the left of the positive charge, the distance d has to be positive so that our final result can be a negative position. This is X = -d

This way, we get:

X = -29.032m

A world-class sprinter accelerates to his maximum speed in 3.8 s. He then maintains this speed for the remainder of a 100-m race, finishing with a total time of 9.3 s . What is the runner's average acceleration during the first 3.8 s ?
What is his average acceleration during the last 5.5 s ?
What is his average acceleration for the entire race?

Answers

Answer:

Explanation:

Given

sprinter achieve maximum speed in 3.8 sec

Let v be the maximum speed and a be the acceleration in first 3.8 s

[tex]a=\frac{v-0}{3.8}[/tex]

distance traveled in this time span

[tex]x=ut+\frac{1}{2}at^2[/tex]

here u=0

[tex]x=\frac{1}{2}\times \frac{v-0}{3.8}\times 3.8^2[/tex]

[tex]x=\frac{3.8}{2}v[/tex]

remaining distance traveled in 9.3-3.8 =5.5 s

[tex]100-x=v\times 5.5[/tex]

put value of x

[tex]100-\frac{3.8}{2}v=5.5v[/tex]

100=1.9v+5.5v

100=7.4v

[tex]v=\frac{100}{7.4}=13.51 m/s[/tex]

Thus average acceleration in first 3.8 sec

[tex]a_{avg}=\frac{0+a}{2}[/tex]

and [tex]a=\frac{13.51}{3.8}=3.55 m/s^2[/tex]

[tex]a_{avg}=\frac{3.55}{2}=1.77 m/s^2[/tex]

Average acceleration during last 5.5 sec will be zero as there is no change in velocity.

Average acceleration for the entire race[tex]=\frac{13.51}{9.3}=1.45 m/s^2[/tex]

Final answer:

The average acceleration in the first 3.8 seconds would be the final speed divided by 3.8 s. During the next 5.5 seconds, the average acceleration is zero because there is no change in velocity. The average acceleration for the entire race can be calculated as the final velocity divided by total time.

Explanation:

The average acceleration is calculated by the change in velocity divided by the change in time. In this case, for the first 3.8 seconds, the sprinter was accelerating, so the average acceleration was the final speed (which we do not know yet) divided by 3.8 s. However, in the remaining 5.5 seconds, the sprinter did not accelerate or decelerate, so the average acceleration is zero.

For the first part, we first need to calculate the steady speed. This is given by the distance covered (100 m minus the distance covered in first 3.8 seconds) divided by the time for this (5.5 seconds). We will assume a uniform acceleration in the first 3.8 seconds. His average speed in this period will then be half his maximum speed. So, maximum speed = (2 * distance in first 3.8 secs) / 3.8. Finally, the average acceleration for entire race can be calculated by the total change in velocity (which is the final velocity) divided by the total time (which is 9.3 s).

Learn more about average acceleration here:

https://brainly.com/question/33442003

#SPJ3

Magnetic field is measured in SI units of a tesla (T), and a current through a wire generates a field around the wire. The largest fields that we can make with most normal conducting materials carrying current are limited by the resistance of the wire and are around 1 tesla. For comparison, Earth's magnetic field is roughly 50 micro tesla You may have heard of a field unit called a gauss. It takes 10,000 G to make 1 T. What would be the maximum force on a wire 0.1 m long carrying a current of 80 A in a uniform magnetic field of 1 T? 8 N when the wire is perpendicular to the field
80 N when the wire is perpendicular to the field
8 N when the wire is parallel to the field
80 N when the wire is parallel to the field

Answers

Answer:

The answer is 8 N

Explanation:

The Lorentz force for a current carrying wire is

f = I * L x B

So, for magnetic forces to manifest the current must not be parallel to the magnetic field. So the cases where the wire is parallel to the field would result in a force of zero applied on the wires  by the magnetic field because the cross product becomes zero.

For the perpendicular cases:

f = I * L * B

f = 80 * 0.1 * 1 = 8 N

Other Questions
Translate the following mRNA: 5'AUGGCGAACUGCGAGUGA3' a. Ser-Glu-Arg-Gin-Ala-Val b. Met-Ala-Gin-Arg-Glu-Ser c. Val-Ala-GIn-Arg-Glu-Ser d. Met-Ala -Asn-Cys-Glu Sailors refer to the area where ships powered only by sails frequently get stuck as the (doldrums-trade winds-horse latitudes.) This area is at (90-0-60) degrees latitude. (1 point) A street light is at the top of a 25 ft pole. A 4 ft tall girl walks along a straight path away from the pole with a speed of 6 ft/sec. At what rate is the tip of her shadow moving away from the light (ie. away from the top of the pole) when the girl is 45 ft away from the pole? A cartoon in the text shows two people watching television. On the screen are the words "Economic growth indicators are up, led by car repairs, divorce costs, open-heart surgeries, and toxic waste cleanups." The cartoon illustrates the: a) Difficulty in measuring social welfare. b) Difference between GDP and national income. c) Problem of measuring the difference in wealth between the United States and other nations. d) Difference between GDP and NDP. Wealthy romans dominated politics during the Pax Romana because Seventeen less than eight times a number is equal to 11 more than six times the number.What is the number? Find a power series solution of the differential equation y" + 4xy = 0 about the ordinary point x = 0. Limit of a line: Which statements are true and which are false? Justify your answer.Please help me out. I have a test and I'm completely lost. I have the basic idea of limits, but I'm not sure if I'm doing this correctly. Two point charges are fixed on the y axis: a negative point charge q1 = -27 C at y1 = +0.21 m and a positive point charge q2 at y2 = +0.35 m. A third point charge q = +9.0 C is fixed at the origin. The net electrostatic force exerted on the charge q by the other two charges has a magnitude of 23 N and points in the +y direction. Determine the magnitude of q2. A sample of helium gas has a volume of 1.50 L at 159 K and 5.00 atm. When the gas is compressed to 0.200 L at 50.0 atm, the temperature increases markedly. What is the final temperature? Enter your answer in the provided box. K At the beginning of a basketball game, a referee tosses the ball straight up with a speed of 7.79 m/s. A player cannot touch the ball until after it reaches its maximum height and begins to fall down. What is the minimum time that a player must wait before touching the ball? Question 1(Multiple Choice Worth 3 points)(03.04 MC) Which part of the water cycle would follow step C in the diagram shown?A diagram of the water cycle. Point A is in the clouds, point B is liquid water falling from clouds, point C is water in a lake, and point D is water from the lake turning into gas in the atmosphere. Transpiration Condensation Evaporation PrecipitationQuestion 2(Multiple Choice Worth 3 points)(03.04 MC) Which of the following should be included in a family communication plan? A directory of relatives' phone numbers A list of favorite foods and beverages A note to your favorite loved one A strategy for getting better gradesQuestion 3(Multiple Choice Worth 3 points)(03.04 LC) When water changes from a liquid on Earth's surface to a gas in the atmosphere, this is known as transpiration condensation evaporation precipitationQuestion 4(Multiple Choice Worth 3 points)(03.04 MC) What is one possible effect of a hurricane in Florida? Avalanche Drought Storm surge WildfireQuestion 5(Multiple Choice Worth 3 points)(03.04 LC) Which of the following is a type of natural disaster that has impacted Florida? Avalanche Typhoon Volcano WildfireQuestion 6 (True/False Worth 3 points)(03.04 LC) A communication plan can help family members stay in touch during an emergency. True False What is the final stage of cellular respiration? A bird flying at a height of 12 m doubles its speed as it descends to a height of 6.0 m. The kinetic energy has changed by a factor of : a) 2 b) 4 c) 1 d) 0.25 Because Jacob was the best high school catcher in the city. What is the best way to add the dependent clause above to sentence 3? A. Jacob helped because Jacob was the best high school catcher Will train every day for three months in the city. B. Because Jacob helped Will train every day for three months in the city Jacob was the best high school catcher. C. Because Jacob was the best high school catcher Jacob helped Will train every day in the city for three months. D. Jacob helped Will train every day for three months because Jacob was the best high school catcher in the city. One molecule of the spherically shaped, oxygencarrying protein in red blood cells, hemoglobin, has a diameter of 5.5 nm . What is this diameter in meters? Which of the following is not a valid SQL command? (Points : 2) UPDATE acctmanager SET amedate = SYSDATE WHERE amid = 'J500'; UPDATE acctmanager SET amname = UPPER(amname); UPDATE acctmanager SET amname = UPPER(amname) WHERE amid = 'J500'; UPDATE acctmanager WHERE amid = 'J500'; Which of the following statements describes the most likely selective pressure behind the evolution of feathers? a. Feathers assisted with the ability to climb into trees b. Feathers were used to help direct turning while in flight c. Feathers were used as part of a social display d. Feathers were used to collect food from burrows e. Feathers were used to help reduce water loss 1. Laura gave the clerk $20 for purchases of a$4.25 notebook and a $3.59 set of markers.How much change did she receive?A $12.16B $12.26 $13.16D $13.26 whats the definition of state