An airplane flies 200 km due west from city A to city B and then 275 km in the direction of 26.0° north of west from city B to city C. (a) In straight-line distance, how far is city C from city A?
Relative to city A, in what direction is city C?
(c) Why is the answer only approximately correct?

Answers

Answer 1
Final answer:

The straight-line distance from city A to city C is approximately 458.80 km. The direction from city A to city C is 14.9° north of west. The approximation is due to ignoring Earth's curvature.

Explanation:

To solve this problem, we will use the laws of vector addition as airplanes movements are vector quantities as it involves both magnitude (distance) and direction. Initially, the airplane flies 200 km west. Then, it changes its direction 26.0° north of west and flies an additional 275 km.

When we decompose the second segment of the flight into its westward and northward components, we can use trigonometric principles. The horizontal (westward) distance is 275 km * cos(26.0°) = 245.56 km. Adding that to the 200 km the airplane flew initially gives us a total westward distance of 445.56 km. The vertical (northward) distance is 275 km * sin(26.0°) = 118.40 km.

To find the straight-line distance between City A and City C, we apply the Pythagorean theorem: √[(445.56 km)² + (118.4 km)²] = 458.80 km. To find the direction, we take the arctan of the northward distance over the westward distance: arctan(118.4 km / 445.56 km) = 14.9° north of west.

It's only approximately correct because we ignore the curvature of the Earth, which would slightly modify the distances and angles involved.

Learn more about Vector Addition here:

https://brainly.com/question/35874968

#SPJ12

Answer 2
Final answer:

The straight-line distance from city A to city C is approximately 460 km and the direction is 15° north of west. The answer is only an approximation because we've considered a flat plane, ignoring the spherical nature of the Earth.

Explanation:

The question is asking for the linear distance and direction from city A to city C, which can be solved through vector addition and trigonometric calculations in physics. The displacement from A to B is 200 km west. The displacement from B to C is 275 km, 26.0° north of west. These can be seen as components of a right triangle, and by applying the Pythagorean theorem, the straight-line distance, or the hypotenuse, can be calculated.

First, we derive the north and west components of the 275 km using cosine and sine respectively as the motion is angled. The westward motion is 275cos(26) = 244 km. Add this to the 200 km westward motion to get a total westward motion of 444 km. The northward motion is 275sin(26) = 121 km.

Then, we apply Pythagorean theorem. √(444^2 + 121^2) ≈ 460 km. This is the straight-line distance from city A to city C.

For the direction, we find the angle, using tan^(-1)(121/444) ≈ 15° north of west.

The answer is only approximately correct because in real situation we have to take into account the spherical nature of the Earth, but here we've considered a flat plane for simplicity.

Learn more about Vector Addition here:

https://brainly.com/question/35874968

#SPJ6


Related Questions

A speed skater moving across frictionless ice at 8.4 m/s hits a 5.7 m -wide patch of rough ice. She slows steadily, then continues on at 6.5 m/s. What is her acceleration on the rough ice?

Answers

Answer:

Acceleration, [tex]a=-2.48\ m/s^2[/tex]

Explanation:

Initial speed of the skater, u = 8.4 m/s

Final speed of the skater, v = 6.5 m/s

It hits a 5.7 m wide patch of rough ice, s = 5.7 m

We need to find the acceleration on the rough ice. The third equation of motion gives the relationship between the speed and the distance covered. Mathematically, it is given by :

[tex]v^2-u^2=2as[/tex]

[tex]a=\dfrac{v^2-u^2}{2s}[/tex]

[tex]a=\dfrac{(6.5)^2-(8.4)^2}{2\times 5.7}[/tex]

[tex]a=-2.48\ m/s^2[/tex]

So, the acceleration on the rough ice [tex]-2.48\ m/s^2[/tex] and negative sign shows deceleration.

A girl is helping her brother slide their dog m = 25kg along an icy frictionless sidewalk. The boy is pulling a rope T = 10N tied to the dogs collar and the girl is pushing with 7N of force. What is the Net force on the dog and it's acceleration?

Answers

Answer:

0.68 m/s²

Explanation:

Given:

Mass of the dog,  m = 25 kg

Tension in the rope = 10 N

Force applied by the girl on the dog = 7 N

Now,

since the boy is pulling the dog and the girl is pushing the dog

Thus,

The net force on the dog = 10 N + 7 N = 17 N

also,

Net force on the dog = Mass × Acceleration

thus,

25 kg × Acceleration = 17 N

or

Acceleration = [tex]\frac{\textup{17 N}}{\textup{25 kg}}[/tex]

or

Acceleration = 0.68 m/s²

Which of the following statements is/are true? Select all correct answers. An orbital is the probability distribution function describing the volume in which we are most likely to find an electron. The emission spectrum of a particular element is always the same and can be used to identify the element. The uncertainty principle states that we can never know both the exact location and speed of an electron. Part of the Bohr model proposed that electrons in the hydrogen atom are located in "stationary states" or particular orbits around the nucleus.

Answers

Answer:

The emission spectrum is always the same and can be used to identify the element and part of the Bohr model proposed that electrons in the hydrogen are located in particular orbits around the nucleos are True.

Explanation:

The Niels Bohr and quantic mecanic theorys are both based on the study of atomics spectrums. The atomic spectrum is a characteristic pattern of a light wavelenght emited wich is unique to each element.

For example, if we put some low pressure hydrogen in a glass tube and in the tp of the glass we apply a voltage big enough to produce a electric current in the hydrogen gas, the tube its going to emit light wich have a color dependig of the gas element in the interior. If we observe this light with a spectrometer we are going to see shining lines and each one of this lines have a wavelenght and diferent colors. This lines are called emission spectrum and the wavelength of that spectrum are unique to eache element.

Summering up, we can identify elements using the emission spectrum because any element produces the same spectrum than other element.

 According to Niels Bhor theory  the electron only can be in especific discret ratios to the nucleus. Where this electron moves himself in circukar orbits under the influence of the Coulomb attraction force.

Consider two displacements, one of magnitude 15 m and another of magnitude 20 m. What angle between the directions of this two displacements give a resultant displacement of magnitude (a) 35 m, (b) 5 m, and (c) 25 m.

Answers

Answer:

a) 0°

b) 180°

c) 90°

Explanation:

Hello!

To solve this question let a be the vector whose length is 15 m and b the vector of length 20 m

So:

|a | = 15

|b | = 20

Since we are looking for the angle between the vectors we need to calculate the length of the sum of the two vectors, this is:

[tex]|a+b|^{2} = |a|^{2} + |b|^{2} + 2 |a||b|cos(\theta)[/tex]

Now we replace the value of the lengths:

[tex]|a+b|^{2} = 15^{2} + 20^{2} + 2*15*20*cos(\theta)[/tex]

[tex]|a+b|^{2} = 625 + 600*cos(\theta)[/tex] --- (1)

Now, if:

a) |a+b| = 35

First we can see that 20 + 15 = 35, so the angle must be 0, lets check this:

[tex]35^{2} = 625 + 600*cos(\theta)[/tex]

[tex]1225 = 625 + 600*cos(\theta)[/tex]

[tex]600 =  600*cos(\theta)[/tex]

[tex]1= cos(\theta)[/tex]

and :

[tex]\theta = arccos(1)[/tex]

      θ = 0

b) |a+b|=5

From eq 1 we got:

[tex]\theta = arccos(\frac{|a+b|^{2}-625}{600})[/tex]   --- (2)

[tex]\theta = arccos(\frac{|a+b|^{2}-625}{600})[/tex]

[tex]\theta = arccos(-1)[/tex]

  θ = π     or    θ = 180°

c) |a+b|=25

[tex]\theta = arccos(\frac{|25|^{2}-625}{600})[/tex]

[tex]\theta = arccos(-1)[/tex]

  θ = π/2     or    θ = 90°

Final answer:

In vector addition, an angle of 0° between two vectors gives a resultant of 35 m, an angle of 180° gives a resultant of 5 m, and the angle for a resultant of 25 m can be found using the Law of Cosines.

Explanation:

The question involves the concept of vector addition and the use of trigonometry to determine the resultant displacement when two vectors are combined at various angles. The displacement vectors have magnitudes of 15 m and 20 m, and we are interested in finding the angles that would result in resultant displacements of 35 m, 5 m, and 25 m, respectively.

For (a) a resultant displacement of 35 m, the two vectors must be added in the same direction. This implies that the angle between them is 0°.

For (b) a resultant displacement of 5 m, the two vectors must be in exactly opposite directions. Since the difference in magnitudes is 5 m, this means that the larger vector (20 m) partially cancels out the smaller vector (15 m). Hence, the angle between them is 180°.

For (c) a resultant displacement of 25 m, we can use the Law of Cosines to determine the angle:

c2 = a2 + b2 - 2ab cos(θ)

Where a = 15 m, b = 20 m, and c = 25 m. Solving this equation will give us the value of θ.

A nonconducting container filled with 25 kg of water at 23°C is fitted with a stirrer, which is made to turn by gravity acting on a weight of mass 32 kg. The weight falls slowly through a distance of 5 m in driving the stirrer. Assume that all work done on the weight is transferred to the water and that the local acceleration of gravity is 9.8 m·s−2, determine:
(a) The amount of work done on the water.
(b) The internal-energy change of the water.
(c) The final temperature of the water, for which Cp =4.18 kJ/kgC.
(d) The amount of heat that must be removed from the water to return it to it initial temperature.

Answers

Explanation:

Given that,

Weight of water = 25 kg

Temperature = 23°C

Weight of mass = 32 kg

Distance = 5 m

(a). We need to calculate the amount of work done on the water

Using formula of work done

[tex]W=mgh[/tex]

[tex]W=32\times9.8\times5[/tex]

[tex]W=1568\ J[/tex]

The amount of work done on the water is 1568 J.

(b). We need to calculate the internal-energy change of the water

Using formula of internal energy

The change in internal energy of the water equal to the amount of the  work done on the water.

[tex]\Delta U=W[/tex]

[tex]\Delta U=1568\ J[/tex]

The  change in internal energy is 1568 J.

(c). We need to calculate the final temperature of the water

Using formula of the change internal energy

[tex]\Delta U=mc_{p}\Delta T[/tex]

[tex]\Delta U=mc_{p}(T_{2}-T_{1})[/tex]

[tex]T_{2}=T_{1}+\dfrac{\Delta U}{mc_{p}}[/tex]

[tex]T_{2}=23+\dfrac{1568}{25\times4.18\times10^{3}}[/tex]

[tex]T_{2}=23.01^{\circ}\ C[/tex]

The final temperature of the water is 23.01°C.

(d). The amount of heat removed from the water to return it to it initial temperature is the change in internal energy.

The amount of heat is 1568 J.

Hence, This is the required solution.

Final answer:

The work done on the water is 1568 Joules, which is also the internal-energy change of the water. The final temperature of the water is 23.015°C and to return the water to its initial temperature, 1568 Joules of heat must be removed.

Explanation:

(a) The amount of work done on the water is calculated using the formula for gravitational potential energy which depends on the weight's height, mass and acceleration due to gravity. Therefore, work done= mass × gravity × height = 32 kg × 9.8 m·s−2 × 5 m = 1568 Joules.

(b) As per the Law of Conservation of Energy, the work done on the water is converted completely into the internal energy of the water, so the internal-energy change of the water is 1568 Joules.

(c) The final temperature of the water can be calculated using the formula q = m × c × Δt, where 'q' is heat-transfer, 'm' is mass, 'c' is specific heat capacity and 'Δt' is change in temperature. Rearranging, we find Δt = q /(m × c). Substituting the known values gives Δt = 1568 J /(25 kg × 4.18 kJ/kgC) = 0.015 °C. Adding this to the initial temperature, we find the final temperature of the water is 23.015°C.

(d) To return the water to its initial temperature, the heat equal to the increase in internal energy must be removed. Hence, the amount of heat to be removed from the water = 1568 Joules.

Learn more about Energy Conversion here:

https://brainly.com/question/20458806

#SPJ3

If the wavelength of an electron is 4.63 x 10^−7 m, how fast is it moving?

Answers

Answer:

it move with velocity 1571 m/s

Explanation:

given data

wavelength λ = 4.63 × [tex]10^{-7}[/tex] m

to find out

how fast is it moving

solution

we will use here de Broglie wavelength equation

that is

wavelength λ = [tex]\frac{h}{mv}[/tex]    ..........1

here h is planck constant = 6.626068 × [tex]10^{-34}[/tex]

and m is mass of electron i.e = 9.10938188 × [tex]10^{-31}[/tex]

and v is velocity

put all value we find velocity  in equation 1

wavelength λ = [tex]\frac{h}{mv}[/tex]  

v = [tex]\frac{6.626068*10^{-34}}{9.10938188*10^{-31}*4.63*10^{-7}}[/tex]

v =  1571.035464

so it move with velocity 1571 m/s

Answer:

[tex]v=1.57*10^{3}\frac{m}{s}[/tex]

Explanation:

As DeBroglie equation proved by Davisson-Germer experiment says, the wavelength of an electron is related with its velocity with the equation:

λ = [tex]\frac{h}{mv}[/tex]

where m is the mass of the electron [tex]m=9.11*10^{-31}kg[/tex], h is the Planck´s constant [tex]h=6.626*10^{-34}J.s[/tex] and v its velocity.

Solving the equation for the velocity of the electron, we have:

v = h/mλ

And replacing the values:

[tex]v=\frac{6.626*10^{-34}J.s}{(9.11*10^{-31}Kg)*(4.63*10^{-7}m)}[/tex]

[tex]v=1570.9\frac{m}{s}[/tex]

[tex]v=1.57*10^{3}\frac{m}{s}[/tex]

A bullet has a mass of 8 grams and a muzzle velocity of 340m/sec. A baseball has a mass of 0.2kg and is thrown by the pitcher at 40m/sec. What is the momentum of the baseball? What is the momentum of the bullet?

Answers

Answer:

Momentum of bullet

[tex]P = 2.72 kg m/s[/tex]

momentum of baseball

[tex]P = 8 kg m/s[/tex]

Explanation:

As we know that momentum is defined as the product of mass and velocity

here we know that

mass of the bullet = 8 gram

velocity of bullet = 340 m/s

momentum of the bullet is given as

[tex]P = mv[/tex]

[tex]P = (\frac{8}{1000})(340)[/tex]

[tex]P = 2.72 kg m/s[/tex]

Now we have

mass of baseball = 0.2 kg

velocity of baseball = 40 m/s[/tex]

momentum of baseball is given as

[tex]P = (0.2)(40)[/tex]

[tex]P = 8 kg m/s[/tex]

If the Earth’s crust contained twice as much iron as it does, would atmospheric oxygen buildup have been slowed down or sped up during the past 2.5 billion years?

What would the consequence of this have been for the evolution of aerobic respiration, the ozone layer, green plants, and animals?

Answers

No oxygen levels do to secretion of atmosphere

A light year is defined as the distance that light can travel in 1 year. What is the value of 1 light year in meter? Show your complete work. [Note: light travels 3 x 10^8 m in 1s.]

Answers

Answer:

d=9.462×10^15 meters

Explanation:

Relation between distance, temps and velocity:

d=v*t

t=1year*(365days/1year)*/(24hours/1day)*(3600s/1h)=31536000s

So:

1 light year=d=3*10^8m/s*3.154*10^7s=9.462×10^15 meters

An airplane in the process of taking off travels with a speed of 80 m/s at an angle of 15° above the horizontal. What is the ground speed of the airplane? O 80 m/s O 21 m/s O 77 m/s O 2.6 m/s

Answers

Answer:

Option C

Explanation:

given,

velocity of airplane = 80 m/s

angle with the horizontal = 15°

speed of the ground= ?

when the plane is taking off the horizontal component of the velocity is v cosθ

so,      

        ground speed of the airplane is = [tex]v\times cos\theta[/tex]

                                                              = [tex]80 \times cos 15^0[/tex]

                                                           v  =  77.27 m/s

horizontal velocity of the air plane comes out to be 77.27 m/s ≅ 77 m/s

so, the correct option is Option C

The force of attraction between a -130.0 C and +180.0 C charge is 8.00 N. What is the separation between these two charges in meter rounded to three decimal places? (k = 1/470 - 9.00 10°N.m2/C2 1uC = 106C)

Answers

Answer:

distance between the charges is 5.12 × 10⁶ m

Explanation:

charges q₁ = -130.0 C                

              q₂ = 180 C                  

force between the charges = 8 N

force between two charge                              

   [tex]F = \dfrac{k q_1q_2}{r^2}[/tex]

value of  K =8.975 × 10⁹ N.m²/C²

    [tex]8 = \dfrac{8.975 \times 10^{9}\times 130 \times 180}{r^2}[/tex]

    [tex]r^2 = \dfrac{8.975 \times 10^{9}\times 130 \times 180}{8}[/tex]

    [tex]r^2 =2.625 \times 10^{13} [/tex]

    r = 5.12 × 10⁶  m                                          

hence, distance between the charges is 5.12 × 10⁶ m.

1 microgram equals how many milligrams?

Answers

Answer: 1 microgram is equal to 0.001 miligrams

Explanation: The factor micro is equal 10^-3 while the factor mili is equal to 10^-3 so to converte the micro to mile we have to multiply by 0.001.

It has been said that in his youth George Washington threw a silver dollar across a river. Assuming that the wide, (a) what minimum initial speed river was 75 m was necessary to get the coin across the river and b) how long was the coin in flight?

Answers

Answer:

(a) 27.1 m/s

(b) 3.9 second

Explanation:

Let the speed is u.

Maximum horizontal range, R = 75 m

The range is maximum when the angle of projection is 45°.

(a) Use the formula for the maximum horizontal range

[tex]R=\frac{u^{2}}{g}[/tex]

[tex]75=\frac{u^{2}}{9.8}[/tex]

u = 27.1 m/s

(b) Let the time of flight is T.

Use the formula for the time of flight

[tex]T=\frac{2uSin\theta}{g}[/tex]

[tex]T=\frac{2\times 27.1 \times Sin45}{9.8}[/tex]

T = 3.9 second

Answer:

A and B

Explanation:

A parachutist descending at a speed of 15.1 m/s loses a shoe at an altitude of 41.2 m. What is the speed of the shoe just before it hits the ground? The acceleration due to gravity is 9.81 m/s^2. When does the shoe reach the ground? Answer in units of s.

Answers

Final answer:

To find the speed at which the shoe hits the ground, we use the equation v = √(u²+2as). To determine the time it takes for the shoe to hit the ground, we use the formula t = √(2h/g). Substituting the given values into these equations, we can find the speed at which the shoe hits the ground and the time it takes to do so.

Explanation:

The question is both a physics problem related to gravity and the free fall of an object. First, we need to find the final velocity of the shoe when it hits the ground. To calculate this, we can use the following equation from physics: v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Since the shoe starts from the initial velocity of the parachutist (15.1 m/s), the acceleration a is the acceleration due to gravity (9.81 m/s²), and it falls a distance of 41.2m, we will need to use the equation v = √(u²+2as) to solve for v.

Next, to determine when the shoe hits the ground, we use the equation for time in free fall: t = √(2h/g), where h is the height (41.2 m), and g is acceleration due to gravity (9.81 m/s²). Substituting the given values, we can find the times when the shoe will hit the ground.

Learn more about Physics of Gravity and Free Fall here:

https://brainly.com/question/29769460

#SPJ3

500 elves currently live in the great elf kingdom. The elves are very prolific, with a birth rate of 20% per year. The elves also live for a long time, so the death rate per year is only 5% of the population. in Addition, 55 new elves per year are coming into the kingdom due to a volcanic eruption in the not-so-great elf kingdom. Use a mass balance to determine the accumulation rate.

Answers

Answer:

The yearly accumulation for the current year is 130

Explanation:

Accumulation is defined as

input - output = accumulation

The accumulation rate is accumulation per unit of time (in this case a year)

The accumulation rate will then be the amount of births, plus the amount of immigrants minus the amount of deaths.

ar = 500*0.2 + 55 - 0.05*500

ar = 100 + 55 - 25

ar = 130

Suppose you are sitting on a rotating stool holding a 2 kgmass
in each outstretched hand. If you suddenly drop the masses,will
your angular velocity increase, decrease, or stay the same?Please
Explain.

Answers

Answer:Increase

Explanation:

Given

You are holding 2 kg mass in each outstreched hand

If the masses are dropped then Moment of inertia will decease by [tex]2mr^2[/tex]

Where m=2 kg

r=length of stretched arm

Since angular momentum is conserved therefore decrease in Moment of inertia will result in increase of angular velocity

as I[tex]\omega [/tex]=constant

I=Moment of inertia

[tex]\omega [/tex]=angular velocity

A charge q1= 3nC and a charge q2 = 4nC are located 2m apart. Where on the line passing through these charges is the total electric field zero?

Answers

Answer:

Explanation:

Electric field due to a charge Q at a point d distance away is given by the expression

E = k Q / d , k is a constant equal to 9 x 10⁹

Field due to charge = 3 X 10⁻⁹ C

E = E = [tex]\frac{9\times 10^9\times3\times10^{-9}}{d^2}[/tex]

Field due to charge = 4 X 10⁻⁹ C

[tex]E = [tex]\frac{9\times 10^9\times4\times10^{-9}}{(2-d)^2}[/tex]

These two fields will be equal and opposite to make net field zero

[tex]\frac{9\times 10^9\times3\times10^{-9}}{d^2}[/tex] = [tex][tex]\frac{9\times 10^9\times4\times10^{-9}}{(2-d)^2}[/tex][/tex]

[tex]\frac{3}{d^2} =\frac{4}{(2-d)^2}[/tex]

[tex]\frac{2-d}{d} =\frac{2}{1.732}[/tex]

d = 0.928

Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.116 N when their center-to-center separation is 65.4 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0273 N. Of the initial charges on the spheres, with a positive net charge, what was (a) the negative charge on one of them and (b) the positive charge on the other? (Assume the negative charge has smaller magnitude.)

Answers

Answer:

Part a)

[tex]q_1 = -1.47 \times 10^{-6} C[/tex]

Part b)

[tex]q_2 = 3.75 \times 10^{-6} C[/tex]

Explanation:

Let the charge on two spheres is q1 and q2

now the force between two charges are

[tex]F = \frac{kq_1q_2}{r^2}[/tex]

[tex]0.116 = \frac{(9\times 10^9)(q_1)(q_2)}{0.654^2}[/tex]

[tex]q_1 q_2 = 5.51 \times 10^{-12}[/tex]

now when we connect then with conducting wire then both sphere will equally divide the charge

so we will have

[tex]q = \frac{q_1-q_2}{2}[/tex]

now we have

[tex]0.0273 = \frac{(9\times 10^9)(\frac{q_1- q_2}{2})^2}{0.654^2}[/tex]

[tex]q_1 - q_2 = 2.28\times 10^{-6} C[/tex]

now we will have

Now we can solve above two equations

Part a)

negative charge on the sphere is

[tex]q_1 = -1.47 \times 10^{-6} C[/tex]

Part b)

positive charge on the sphere is

[tex]q_2 = 3.75 \times 10^{-6} C[/tex]

A man strikes one end of a thin rod with a hammer. The speed of sound in the rod is 15 times the speed of sound in air. A woman, at the other end with her ear close to the rod, hears the sound of the blow twice with a 0.12 s interval between; one sound comes through the rod and the other comes through the air alongside the rod. If the speed of sound in air is 343 m/s, what is the length of the rod?

Answers

Answer:

44.1 m

Explanation:

Given:

[tex]V_a[/tex] = speed of sound in air = 343 m/s[tex]V_r[/tex] = speed of sound in the rod = [tex]15V_a[/tex][tex]\Delta t[/tex] = times interval between the hearing the sound twice = 0.12 s

Assumptions:

[tex]l[/tex] = length of the rod[tex]t[/tex] = time taken by the sound to travel through the rod [tex]T[/tex] = time taken by the sound to travel to through air to the same point = [tex]t+\Delta t = t+0.12\ s[/tex]

We know that the distance traveled by the sound in a particular medium is equal to the product of the speed of sound in that medium and the time taken.

For traveling sound through the rod, we have

[tex]l=V_r t\\\Rightarrow t = \dfrac{l}{V_r}[/tex]..........eqn(1)

For traveling sound through the air to the women ear for traveling the same distance, we have

[tex]l=V_aT\\\Rightarrow l=V_a(t+0.12)\\\Rightarrow l=V_a(\dfrac{l}{V_r}+0.12)\,\,\,\,\,\,(\textrm{From eqn (1)})\\\Rightarrow l=V_a(\dfrac{l}{15V_a}+0.12)\\\Rightarrow l=\dfrac{l}{15}+0.12V_a\\\Rightarrow l-\dfrac{l}{15}=0.12V_a\\\Rightarrow \dfrac{14l}{15}=0.12V_a\\\Rightarrow l = \dfrac{15}{14}\times 0.12V_a\\\Rightarrow l = \dfrac{15}{14}\times 0.12\times 343\\\Rightarrow l = \dfrac{15}{14}\times 0.12\times 343\\\Rightarrow l = 44.1\ m[/tex]

Hence, the length of the rod is 44.1 m.

Final answer:

The length of the rod can be calculated using the difference in hearing times and the speed of sound in the rod and air. Using the formula for distance (speed x time), and given that the speed of sound in the rod is 15 times the speed of sound in air, the length of the rod is found to be approximately 41.16 meters.

Explanation:

In this problem, we know that the speed of sound in the rod is 15 times the speed of sound in the air, and that the woman hears the sound of the strike twice with a 0.12 second gap. The first sound is transmitted through the rod and the second, through the air. Therefore, we can use this information to conclude that the difference in time is the amount of time it takes for the sound to travel the length of the rod in air after it already traveled through the rod.

The speed of sound in the rod is 15 times the speed of sound in air, which is given as 343 m/s. So, the speed of sound in the rod is 15 * 343 = 5145 m/s.

We are looking for the distance travelled, which is the length of the rod. We can find the distance by using the formula distance = speed x time. In this case we are calculating distance as time taken for sound to travel through air minus the time taken to travel through the rod. Therefore, the length of the rod can be calculated to be 343 m/s * 0.12 s = 41.16 meters.

Learn more about Speed of Sound here:

https://brainly.com/question/35989321

#SPJ3

Calculate the individual positive plate capacity in motive power cell that has 15 plates and a copa of 595 Ah A. 110 Ah B. 75 Ah C. 90 Ah D. 85 Ah

Answers

Answer:

The individual positive plate capacity is 85 Ah.

(D) is correct option.

Explanation:

Given that,

Number of plates = 15

Capacity = 595 Ah

We need to calculate the individual positive plate capacity in motive power cell

We have,

15 plates means 7 will make pair of positive and negative.

So, there are 7 positive cells individually.

The capacity will be

[tex]capacity =\dfrac{power}{number\ of\ cells}[/tex]

Put the value into the formula

[tex]capacity =\dfrac{595}{7}[/tex]

[tex]capacity =85\ Ah[/tex]

Hence, The individual positive plate capacity is 85 Ah.

Answer:

SDFGHJKL

Explanation:

A basketball player is running at 4.80 m/s directly toward the basket when he jumps into the air to dunk the ball. He maintains his horizontal velocity. (a) What vertical velocity (in m/s) does he need to rise 0.650 meters above the floor? _______m/s (b) How far (in m) from the basket (measured in the horizontal direction) must he start his jump to reach his maximum height at the same time as he reaches the basket?_______m

Answers

Answer:

a) 3.56m/s

b) 1.73m

Explanation:

We have to treat this as a parabolic motion problem:

we will use the next formulas:

[tex]V=Vo+a*t\\Vy^2=Vyo^2+2*a*Y\\X=Vox*t[/tex]

we first have to calculate the initial velocity of the basketball player:

[tex]Vy^2=Vyo^2+2*a*Y\\0^2=Vyo^2+2*(-9.8)*(0.650)\\Vyo=\sqrt{2*9.8*0.650} \\Vyo=3.56 m/s[/tex]

the final velocity is zero when he reaches the maximun height.

To answer the second part we need to obtain the time to reach the maximun height, so:

[tex]V=Vo+a*t\\\\0=3.56+(-9.8)*t\\t=0.36 seconds[/tex]

Now having that time, let's find the distance on the X axis, the X axis behaves as constant velocity movement, so:

[tex]X=Vox*t\\X=4.80*0.36\\X=1.73m[/tex]

ou drag your feet on a carpeted floor on a dry day and the carpet acquires a net positive charge. a. Will you have an electron deficiency or an excess of electrons?
b. If the load acquired has a magnitude of 2.15 nC, how many elecrtrons were transferred?

Answers

Answer:

1) We will have excess of electrons

2) The number of electrons transferred equals [tex]1.343\times 10^{10}[/tex]

Explanation:

Part a)

Since we know that the charge transfer occurs by the transfer of electrons only as it is given that the carpet has acquired a positive charge it means that it has lost some of the electron's since electrons are negatively charged and if a neutral body looses negative charge it will become positively charged. The electron's that are lost by the carpet will be acquired by the feet of the human thus making us negatively charged.Hence we will gain electrons making us excess in electrons.

Part b)

From charge quantinization principle we have

[tex]Q=ne[/tex]

where

Q = charge of body

n = no of electrons

e = fundamental charge

Applying values in the above equation we get

[tex]2.15\times 10^{-9}C=n\times 1.6\times 10^{-19}C\\\\\therefore n=\frac{2.15\times 10^{-9}C}{1.6\times 10^{-19}C}=1.343\times 10^{10}[/tex]

An inflatable raft (unoccupied) floats down a river at an approximately constant speed of 5.6 m/s. A child on a bridge, 71 m above the river, sees the raft in the river below and attempts to drop a small stone onto the raft. The child releases the stone from rest. In order for the stone to hit the raft, what must be the horizontal distance between the raft and the bridge when the child releases the stone?

Answers

Answer:

21.28 m

Explanation:

height, h = 71 m

velocity of raft, v = 5.6 m/s

let the time taken by the stone to reach to raft is t.

use second equation of motion for stone

[tex]h = ut + \frac{1}{2}at^{2}[/tex]

u = 0 m/s, h = 71 m, g = 9.8 m/s^2

71 = 0 + 0.5 x 9.8 x t^2

t = 3.8 s

Horizontal distance traveled by the raft in time t

d = v x t = 5.6 x 3.8 = 21.28 m

Assuming that a rabbit runs at a speed of 12.0 meters per second. How far would the rabbit travel in 11.5 seconds? A hiker takes a hiking trip around the camp. He first travels 5.10 km in one hour at a constant speed. He then travels 16.5 km in two hours at a different constant speed and reaches a ranch tower. What is the average speed of the hiker for the entire trip?

Answers

Answer:

(A). The rabbit travel the distance 138 m.

(B). The average speed of the hiker for the entire trip is 7.2 km/h.

Explanation:

Given that,

Speed = 12.0 m

Time = 11.5 second

(A). We need to calculate the distance

Using formula of distance

[tex]d=v\times t[/tex]

[tex]d =12.0\times11.5[/tex]

[tex]d=138\ m[/tex]

The rabbit travel the distance 138 m.

(B). Given that,

Distance = 5.10 km

Time = 1 hours

Distance 16.5 km

Time = 2 hours

We need to calculate the average speed of the hiker for the entire trip

Using formula of average speed

[tex]v=\dfrac{D}{T}[/tex]

Where, D = Total distance

T = Total time

Put the value into formula

[tex]v=\dfrac{5.10+16.5}{1+2}[/tex]

[tex]v=7.2\ km/h[/tex]

The average speed of the hiker for the entire trip is 7.2 km/h.

Hence, This is the required solution.

A car is going 7 m/s when it begins to accelerate. Sixty meters further down the road, the car is going 24 m/s. a) What was the acceleration of the car? b) How much time did the change from 7 m/s to 24 m/s take?

Answers

Answer:

acceleration = 4.4 m/s²

time is 3.86 s

Explanation:

given data

initial speed = 7 m/s

final speed = 24 m/s

distance = 60 m

to find out

acceleration and time when change speed change

solution

we will apply here equation of motion for acceleration

v²-u² = 2×a×s   .................1

here v is final speed and u is initial speed and s is distance and a is acceleration

put here all these value

24²-7² = 2×a×60

so

a = 4.4

acceleration = 4.4 m/s²

and

now find time by equation of motion

v = u +at

put her value

24 = 7 + 4.4 (t)

t = 3.86

so time is 3.86 s

Find the electric energy density between the plates of a 225-μF parallel-plate capacitor. The potential difference between the plates is 365 V , and the plate separation is 0.200 mm .

Answers

Answer:

Energy density will be 14.73 [tex]J/m^3[/tex]

Explanation:

We have given capacitance [tex]C=225\mu F=225\times 10^{-6}F[/tex]

Potential difference between the plates = 365 V

Plate separation d = 0.200 mm [tex]0.2\times 10^{-3}m[/tex]

We know that there is relation between electric field and potential

[tex]E=\frac{V}{d}[/tex], here E is electric field, V is potential and d is separation between the plates

So [tex]E=\frac{V}{d}=\frac{365}{0.2\times 10^{-3}}=1825000N/C[/tex]

Energy density is given by [tex]E=\frac{1}{2}\varepsilon _0E^2=\frac{1}{2}\times 8.85\times 10^{-12}\times (1.825\times 10^6)^2=14.73J/m^3[/tex]

An object is originally moving at a constant velocity of 8 m/s in the -x direction. It moves at this constant velocity for 3 seconds. Then, a constant acceleration of 7 m/s2 is applied to it in the +x direction for 9 seconds. What is the total distance covered by this object in meters? Please give a detailed explanation.

Answers

Answer:

244.64m

Explanation:

First, we find the distance traveled with constant velocity. It's simply multiplying velocity time the time that elapsed:

[tex]x = V*t = -8\frac{m}{s} *3s = -24m[/tex]

After this, the ball will start traveling with a constant acceleration motion. Due to the fact that the acceleration is the opposite direction to the initial velocity, this motion will have 2 phases:

1. The velocity will start to decrease untill it reaches 0m/s.

2. Then, the velocity will start to increase at the rate of the acceleration.

The distance that the ball travels in the first phase can be found with the following expression:

[tex]v^2 = v_0^2 + 2a*d[/tex]

Where v is the final velocity (0m/s), v_0 is the initial velocity (-8m/s) and a is the acceleration (+9m/s^2). We solve for d:

[tex]d = \frac{v^2 - v_0^2}{2a} = \frac{(0m/s)^2 - (-8m/s)^2}{2*7m/s^2}= -4.57m[/tex]

Now, before finding the distance traveled in the second phase, we need to find the time that took for the velocity to reach 0:

[tex]t_1 = \frac{v}{a} = \frac{8m/s}{7m/s^2} = 1.143 s[/tex]

Then, the time of the second phase will be:

[tex]t_2 = 9s - t_1 = 9s - 1.143s = 7.857s[/tex]

Using this, we using the equations for constant acceleration motion in order to calculate the distance traveled in the second phase:

[tex]x = \frac{1}{2}a*t^2 + v_0*t + x_0[/tex]

V_0, the initial velocity of the second phase, will be 0 as previously mentioned. X_0, the initial position, will be 0, for simplicity:

[tex]x = \frac{1}{2}*7\frac{m}{s^2}*t^2 + 0m/s*t + 0m = 216.07m[/tex]

So, the total distance covered by this object in meters will be the sum of all the distances we found:

[tex]x_total = 24m + 4.57m + 216.07m = 244.64m[/tex]

A test charge of +4 µC is placed halfway between a charge of +6 µC and another of +2 µC separated by 20 cm. (a) What is the magnitude of the force (in N) on the test charge?
(b) What is the direction of this force (away from or toward the +6 µC charge)?
a. away from the +6 µC charge or
b. toward the +6 µC charge

Answers

Answer:

(a) Magnitude: 14.4 N

(b) Away from the +6 µC charge

Explanation:

As the test charge has the same sign, the force that the other charges exert on it will be a repulsive force. The magnitude of each of the forces will be:

[tex]F_e = K\frac{qq_{test}}{r^2}[/tex]

K is the Coulomb constant equal to 9*10^9 N*m^2/C^2, q and qtest is the charge of the particles, and r is the distance between the particles.

Let's say that a force that goes toward the +6 µC charge is positive, then:

[tex]F_e_1 = K\frac{q_1q_{test}}{r^2}=-9*10^9 \frac{Nm^2}{C^2} \frac{6*10^{-6}C*4*10^{-6}C}{(0.1m)^2} =-21.6 N[/tex]

[tex]F_e_2 = K\frac{q_2q_{test}}{r^2}=9*10^9 \frac{Nm^2}{C^2} \frac{2*10^{-6}C*4*10^{-6}C}{(0.1m)^2} =7.2 N[/tex]

The magnitude will be:

[tex]F_e = -21.6 + 7.2 = -14.4 N[/tex], away from the +6 µC charge

Time dilation: A missile moves with speed 6.5-10 m/s with respect to an observer on the ground. How long will it take the missile's clock to fall behind the ground observer's clock by 1 millisecond? Hint: use the binomial formula:(1+x)a1+ ax.

Answers

Answer:

The time taken by missile's clock is [tex]4.6\times 10^{6} s[/tex]

Solution:

As per the question:

Speed of the missile, [tex]v_{m = 6.5\times 10^{3}} m/s[/tex]

Now,

If 'T' be the time of the frame at rest then the dilated time as per the question is given as:

T' = T + 1

Now, using the time dilation eqn:

[tex]T' = \frac{T}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}[/tex]

[tex]\frac{T'}{T} = \frac{1}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}[/tex]

[tex]\frac{T + 1}{T} = \frac{1}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}[/tex]

[tex]1 + \frac{1}{T} = \frac{1}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}[/tex]

[tex]1 + \frac{1}{T} = (1 + (\frac{v_{m}}{c})^{2})^{- \frac{1}{2}}[/tex]         (1)

Using binomial theorem in the above eqn:

We know that:

[tex](1 + x)^{a} = 1 + ax[/tex]

Thus eqn (1) becomes:

[tex]1 + \frac{1}{T} = 1 - \frac{- 1}{2}.\frac{v_{m}^{2}}{c^{2}}[/tex]

[tex]T = \frac{2c^{2}}{v_{m}^{2}}[/tex]

Now, putting appropriate values in the above eqn:

[tex]T = \frac{2(3\times 10^{8})^{2}}{(6.5\times 10^{3})^{2}}[/tex]

[tex]T = 4.6\times 10^{6} s[/tex]

On a hot summer day in the state of Washington while kayaking, I saw several swimmers jump from a railroad bridge into the Snohomish River below. The swimmers stepped off the bridge, and I estimated that they hit the water 1.50 s later. a.) How high was the bridge?
b.) How fast were the swimmers moving when they hit the water?
c.) What would the swimmer's drop time be if the bridge were twice as high?

Answers

Final answer:

The bridge was approximately 11.01 meters high. The swimmers were moving at a speed of around 14.72 m/s when they hit the water. If the bridge were twice as high, the drop time would be about 2.12 seconds.

Explanation:

The subject in question involves principles of physics, specifically gravitational acceleration. When an object is dropped, it falls under the influence of gravity. This is usually around 9.81 m/s2 on Earth. Using the formula for motion d=1/2gt^2, where d is the distance or height, g is the acceleration due to gravity, and t is the time it takes for the object to fall.

a.) For calculation of the bridge's height, plug in the values of time (t=1.5s) and gravity (g=9.81m/s^2) into the equation, we get d=1/2*(9.81)*(1.5)^2 = 11.01 meters. The height of the bridge from which they jumped is approximately 11 meters.

 

b.) To calculate how fast the swimmers were moving when they hit the water, we can use the equation v=gt, where v is the velocity or speed. Plugging in the values, we get v=(9.81)*(1.5) = 14.72 m/s. So, the swimmers were moving at about 14.7 meters per second when they hit the water.

c.) If the bridge were twice as high, the time of drop would be found using the equation t= sqrt(2d/g), where d is now twice the original distance = 2*11.01 = 22.02 meters. Substituting the given values, we get t= sqrt(2(22.02)/9.81) = 2.12 seconds. The swimmer's drop time would be approximately 2.12 seconds.

Learn more about Gravitational Acceleration here:

https://brainly.com/question/30429868

#SPJ12

Other Questions
Add the following(This is just a filler so i can post this) In primary hyposecretion of thyroid hormones A. Levels of thyroid hormones in the blood decrease B. Levels of TRH in the blood decrease. C. Levels of TSH in the blood decrease. D. All of the above are true. E. None of the above is true ________also known as cooperative federalism, it developed during the New Deal and is characterized by the federal government's becoming more intrusive in what was traditionally states' powers The majority of glaciers on planet earth are in either or regions An American begins to take an interest in the culture of India and starts wearing saris and bindis in public. Another American likes to wear elaborate feathered headdresses to music festivals. These individuals are engaging in what social scientists call A single little brown bat can eat up to 1,000 mosquitoes in a single hour.express in scientific notation how many mosquitoes a little brown bat might eat in 10.5 Which correctly describes a difference between the male and femalereproductive systems? A. Only females produce gametesB. Males have a monthly cycle.C. Only males are fertile.D. Females produce gametes less often. Write one line of code to print animals, an array of Animal objects. To make a greeting card, Bryce used 1/8 sheet of red paper, 3/8 sheet of green paper, and 7/8 sheet of white paper. How many sheets of paper did Bryce use? Two mercury manometers, one open-end and the other sealed-end, are attached to an air duct. The reading on the open-end manometer is 25 [mm] and that on the sealed-end manometer is 800 [mm]. Determine the absolute pressure in the duct, the gauge pressure in the duct, and the atmospheric pressure, all in (mm Hg). What is the difference between proximate causes and ultimate causes? Provide an example of each. A group of nursing students are preparing a presentation for a health fair illustrating what happens to the body during pregnancy. Which structure will the students point out is influenced the most by hormones to prepare for conception? Solve this equation use pemdas 4x(5+82) What is the volume of 65.4cm (Find the number of days in a month) Write a program that prompts the user to enter the month and year and displays the number of days in the month. For example, if the user entered month 2 and year 2000, the program should display that February 2000 has 29 days. If the user entered month 3 and year 2005, the program should display that March 2005 has 31 days In the C++ instruction, cookies = number % children; given the following declaration statement: int number = 38, children = 4, cookies; what is the value of cookies after the execution of the statement? 4. Which of the two figures below has the lesser volume?5. Which of the two figures below has the greater volume? The Constitution expanded the role of the national government, balancing the powers reserved for the states with those needed for a stronger and more effective national government. What was innovative about this concept, which came to be known as federalism? Correct Answer(s) A freight train has a mass of 1.5 X 10^7 kg. If thelocomotivecan exert a constant pull of 7.5 X1^5 N, how long does ittake toincrease the speed of the train from rest to 80 km/h? it is best to withhold unpopular opinions (strongly agree or disagree