An algebra 2 test has 6 multiple choice questions with four
choices with one correct answer each. If we just randomly guess
on each of the 6 questions, what is the probability that you get
exactly 3 questions correct?

Answers

Answer 1

Answer:

1/64

Step-by-step explanation:

Each of the questions has 4 choices, making the chance to get the correct answer 1/4. So, to get 3 questions correct, you can use 1/4^3 to find the probability. So, the answer is 1/64.

Answer 2

The probability of exactly 3 questions are  correct is, [tex]\frac{1}{64}[/tex]

Probability :

In test every question has four choices with one correct answer.

So that, the probability of one question is correct  [tex]=\frac{1}{4}[/tex]

the probability of exactly 3 questions are  correct is,

                  [tex]P(E)=\frac{1}{4}*\frac{1}{4}*\frac{1}{4}\\ \\ P(E)=\frac{1}{64}[/tex]

The probability of exactly 3 questions are  correct is, [tex]\frac{1}{64}[/tex]

Learn more about the probability here:

https://brainly.com/question/25870256


Related Questions

We want to use this information to determine if there is an effect of friendship. In other words, is the mean price when buying from a friend the same as (or different from) the mean price when buying from a stranger? Assume the two groups have the same population standard deviation, and use significance level 0.05. Suppose that mu1 is the true mean price when buying from a friend and mu2 is the true mean price when buying from a stranger. (a) What are the null and alternative hypotheses?

Answers

Answer:

H0 : mu1 = mu2

Ha : mu1 ≠ mu2

Which means

Null hypothesis H0; the true mean price when buying from a friend mu1 and the true mean price when buying from a stranger mu2 is the same/equal

Alternative hypothesis Ha; the true mean price when buying from a friend mu1 and the true mean price when buying from a stranger mu2 is different (not equal)

Step-by-step explanation:

The null hypothesis (H0) tries to show that no significant variation exists between variables or that a single variable is no different than its mean(i.e it tries to prove that the old theory is true). While an alternative Hypothesis (Ha) attempt to prove that a new theory is true rather than the old one. That a variable is significantly different from the mean.

Therefore, for the case above;

H0 : mu1 = mu2

Ha : mu1 ≠ mu2

Which means

Null hypothesis H0; the true mean price when buying from a friend mu1 and the true mean price when buying from a stranger mu2 is the same/equal

Alternative hypothesis Ha; the true mean price when buying from a friend mu1 and the true mean price when buying from a stranger mu2 is different (not equal)

Solve the equation using the distributive property and properties of equality.
-5(a+3) =-55
What is the value of a?

A -14

B -8

C 8

D 14

Answers

The answer is c

Step-by-step explanation:

Answer:

answwr is c and i got it right

Step-by-step explanation:

The caffeine content (in mg) was examined for a random sample of 50 cups of black coffee dispensed by a new machine. The mean and the standard deviation were 110 mg and 7.1 mg respectively. Use the data to construct a 98% confidence interval for the mean caffeine content for cups dispensed by the machine. Interpret the interval!

Answers

Answer:

 We are 98% confident interval for the mean caffeine content for cups dispensed by the machine between 107.66 and 112.34 mg .

Step-by-step explanation:

Given -

The sample size is large then we can use central limit theorem

n = 50 ,  

Standard deviation[tex](\sigma)[/tex] = 7.1

Mean [tex]\overline{(y)}[/tex] = 110

[tex]\alpha =[/tex] 1 - confidence interval = 1 - .98 = .02

[tex]z_{\frac{\alpha}{2}}[/tex] = 2.33

98% confidence interval for the mean caffeine content for cups dispensed by the machine = [tex]\overline{(y)}\pm z_{\frac{\alpha}{2}}\frac{\sigma}\sqrt{n}[/tex]

                     = [tex]110\pm z_{.01}\frac{7.1}\sqrt{50}[/tex]

                      = [tex]110\pm 2.33\frac{7.1}\sqrt{50}[/tex]

       First we take  + sign

   [tex]110 + 2.33\frac{7.1}\sqrt{50}[/tex] = 112.34

now  we take  - sign

[tex]110 - 2.33\frac{7.1}\sqrt{50}[/tex] = 107.66

 We are 98% confident interval for the mean caffeine content for cups dispensed by the machine between 107.66 and 112.34 .

               

Final answer:

A 98% confidence interval for the mean caffeine content of cups dispensed by the machine is calculated using the sample mean, the standard deviation, and the Z-score for a 98% confidence level, leading to an interval of (107.72 mg, 112.28 mg). We can be 98% confident that the true mean caffeine content lies within this range.

Explanation:

To construct a 98% confidence interval for the mean caffeine content of cups dispensed by the machine, we use the provided sample mean (μ), which is 110 mg, and the standard deviation (s), which is 7.1 mg, of the 50 cups sampled. Since the sample size is 50, which is more than 30, we can use the Z-distribution as an approximation of the T-distribution for this confidence interval as the Central Limit Theorem suggests that the distribution of sample means will be normally distributed if the sample size is large enough. Using a Z-score for 98% confidence, which typically is approximately 2.33 (you would obtain the exact value from a Z-table), the margin of error (E) can be calculated using the formula E = Z * (s/√n), where n is the sample size (50 in this case).

The margin of error is then 2.33 * (7.1/√50), which equals approximately 2.28 mg. The 98% confidence interval is therefore the sample mean plus or minus the margin of error, which is 110 mg ± 2.28 mg or (107.72 mg, 112.28 mg).

The interpretation of this confidence interval is that we can be 98% confident that the true mean caffeine content of all cups of coffee dispensed by the machine falls between 107.72 mg and 112.28 mg.

The test statistic of zequals2.32 is obtained when testing the claim that pgreater than0.3. a. Identify the hypothesis test as being​ two-tailed, left-tailed, or​ right-tailed. b. Find the​ P-value. c. Using a significance level of alphaequals0.10​, should we reject Upper H 0 or should we fail to reject Upper H 0​?

Answers

Answer:

a) We need to conduct a hypothesis in order to test the claim that the true proportion p is greatr than 0.3, so then the system of hypothesis are.:  

Null hypothesis:[tex]p \leq 0.3[/tex]  

Alternative hypothesis:[tex]p > 0.3[/tex]  

Right tailed test

b) [tex]p_v =P(z>2.32)=0.0102[/tex]  

c) So the p value obtained was a very low value and using the significance level given [tex]\alpha=0.1[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 1% of significance the proportion of interest is higher than 0.3

Step-by-step explanation:

Part a: Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion p is greatr than 0.3, so then the system of hypothesis are.:  

Null hypothesis:[tex]p \leq 0.3[/tex]  

Alternative hypothesis:[tex]p > 0.3[/tex]  

Right tailed test

When we conduct a proportion test we need to use the z statisitc, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

For this case the statistic is given by [tex] z_{calc}= 2.32[/tex]

Part b: Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The next step would be calculate the p value for this test.  

Since is a right tailed test the p value would be:  

[tex]p_v =P(z>2.32)=0.0102[/tex]  

Part c

So the p value obtained was a very low value and using the significance level given [tex]\alpha=0.1[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 1% of significance the proportion of interest is higher than 0.3

Final answer:

The hypothesis test is right-tailed. The P-value should be assessed using a standard normal distribution, and if it is less than the significance level of α0.10, the null hypothesis should be rejected. However, the exact P-value for z=2.32 needs to be determined before a decision can be made.

Explanation:

The test statistic of z=2.32 is obtained when testing the claim that p>0.3. This indicates the hypothesis test in question is right-tailed, as the alternative hypothesis (Ha) suggests that the proportion is greater than 0.3 (p>0.3).

To determine the P-value, we look at the area to the right of our z-test statistic in the standard normal distribution. Given that our z-value is 2.32, the P-value would typically be found using a z-table or statistical software. However, the provided reference states that for a z-test value of 3.32, which seems to be a typo since our z-value is 2.32, the P-value would be 0.0103. We need to correct this and find the P-value for z=2.32, which we would expect to be larger than the P-value for z=3.32 since 2.32 is closer to the mean of the standard normal distribution.

P-value interpretation is critical when deciding whether to reject the null hypothesis (H0). In this case, if we use a significance level of α=0.10, we compare the P-value to this significance level. If the P-value is less than α, we reject H0; if it's greater, we fail to reject H0. Without the exact P-value for z=2.32, we cannot make a definitive decision, but typically, a z-value of 2.32 would result in a P-value less than 0.10, which leads to rejection of H0.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ3

A person has 5 tickets for a concert and she wants to invite 4 of her 8 best friends. How many choices does she have, if two of her friends do not get along and cannot be both invited?

Answers

Answer:

55

Step-by-step explanation:

Combinations formula is used to make choice of 'R' out of 'N' options =

N(C)R = N ! / [ R ! . (N-R)! ]

Total choices to choose 4 out of 8 friends = 8C4

= 8! / (4! 4!)  

= 70

Choices for calling them 2 together = 2C2 x 6C2

= 1 x [ 6! / (2! 4!)]

= 15

So : Number of choices that the 2 friends are not called together = Total choices - choices they are called together

= 70 - 15 = 55

If $5000 is invested at a rate of 3% interest compounded quarterly, what is the value of the investment in five years?
A=P(1+r/n)^nt

Answers

Answer:

$5,805.92

Step-by-step explanation:

Lets use the compound interest formula provided to solve this:

[tex]A=P(1+\frac{r}{n} )^{nt}[/tex]

P = initial balance

r = interest rate (decimal)

n = number of times compounded annually

t = time

First, change 3% into a decimal:

3% -> [tex]\frac{3}{100}[/tex] -> 0.03

Since the interest is compounded quarterly, we will use 4 for n. Lets plug in the values now:

[tex]A=5,000(1+\frac{0.03}{4})^{4(5)}[/tex]

[tex]A=5,805.92[/tex]

The value of the investment after 5 years will be $5,805.92

Investment value after 5 years, compounded quarterly at 3%, is approximately $5,805.83.

let's calculate step by step.

1. First, let's convert the annual interest rate to decimal form:

 [tex]\[ r = 3\% = \frac{3}{100} = 0.03 \][/tex]

2. Now, let's plug in the given values into the compound interest formula:

[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]

  where:

[tex]- \( P = $5000 \)\\ - \( r = 0.03 \)\\ - \( n = 4 \)\\ - \( t = 5 \)[/tex]

3. Substituting these values into the formula, we get:

[tex]\[ A = 5000 \left(1 + \frac{0.03}{4}\right)^{4 \times 5} \][/tex]

4. Simplifying inside the parentheses:

[tex]\[ A = 5000 \left(1 + 0.0075\right)^{20} \][/tex]

5. Calculating [tex]\( (1 + 0.0075) \):[/tex]

 [tex]\[ 1 + 0.0075 = 1.0075 \][/tex]

6. Now, raise [tex]\( 1.0075 \)[/tex]  to the power of [tex]\( 20 \):[/tex]

[tex]\[ (1.0075)^{20} \][/tex]

  Using a calculator,[tex]\( (1.0075)^{20} \)[/tex] is approximately [tex]\( 1.161166 \).[/tex]

7. Finally, multiply this result by [tex]\( 5000 \):[/tex]

 [tex]\[ A = 5000 \times 1.161166 \]\\ \[ A \approx 5,805.83 \][/tex]

So, the value of the investment in five years, compounded quarterly at a 3% interest rate, would be approximately $5,805.83.

here is complete question:-

"If $5000 is invested at a rate of 3% interest compounded quarterly, what is the value of the investment in five years?"

Question 2 of 10
2 Points
Which of the following is the solution to 4|x+32 8?

Answers

Is there anything to choose from
Is there anything to choose from

Suppose SAT Writing scores are normally distributed with a mean of 493 and a standard deviation of 108. A university plans to send letters of recognition to students whose scores are in the top 10%. What is the minimum score required for a letter of recognition

Answers

Answer:

The minimum score required for a letter of recognition is 631.24.

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 493, \sigma = 108[/tex]

What is the minimum score required for a letter of recognition

100 - 10 = 90th percentile, which is the value of X when Z has a pvalue of 0.9. So X when Z = 1.28.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]1.28 = \frac{X - 493}{108}[/tex]

[tex]X - 493 = 1.28*108[/tex]

[tex]X = 631.24[/tex]

The minimum score required for a letter of recognition is 631.24.

Answer:

[tex]b=493 +1.28*108=631.24[/tex]

The minimum score required for a letter of recognition would be 631.24

Step-by-step explanation:

Let X the random variable that represent the writing scores of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(493,108)[/tex]  

Where [tex]\mu=493[/tex] and [tex]\sigma=108[/tex]

On this questio we want to find a value b, such that we satisfy this condition:

[tex]P(X>b)=0.10[/tex]   (a)

[tex]P(X<b)=0.90[/tex]   (b)

Both conditions are equivalent on this case. We can use the z score again in order to find b.

As we can see on the figure attached the z value that satisfy the condition with 0.90 of the area on the left and 0.1 of the area on the right it's z=1.28. On this case P(Z<1.28)=0.9 and P(z>1.28)=0.1

If we use condition (b) from previous we have this:

[tex]P(X<b)=P(\frac{X-\mu}{\sigma}<\frac{b-\mu}{\sigma})=0.90[/tex]  

[tex]P(z<\frac{b-\mu}{\sigma})=0.90[/tex]

[tex]z=1.28<\frac{b-493}{108}[/tex]

And if we solve for a we got

[tex]b=493 +1.28*108=631.24[/tex]

The minimum score required for a letter of recognition would be 631.24

A Campus Republicans fundraiser offers raffle tickets for $14 each. The prize for the raffle is a $400 television set, which must be purchased with the proceeds from the ticket sales. Find a function that gives the profit/loss for the raffle as it varies with the number of tickets sold. How many tickets must be sold for the raffle sales to equal the cost of the prize

Answers

Answer:

##  Profit/Loss = [tex]14x-400[/tex]

##  29 tickets

Step-by-step explanation:

Profit/Loss is Revenue - Cost

For the fundraisers:

Revenue comes from tickets sold at $14 each

x tickets sold, means the revenue is:

14x

Now, cost is what they are going to give out, that is $400 TV Set, so the cost is:

400

Hence, Profit/Loss would be:

Profit/Loss = [tex]14x-400[/tex]

Raffle sales equaling the cost of prize is basically when we break-even, or when profit/loss is equal to 0. So we solve the equation:

Profit/Loss = 14x - 400

0 = 14x - 400

14x = 400

x = 28.57

We can't sell fractional tickets, so we have to sell 29 tickets in order to break even

To the nearest tenth of a second, how much time would it take the penny to hit the ground?

0.5 seconds
0.6 seconds
0.7 seconds
0.8 seconds

Answers

Answer:0.6 sec

Step-by-step explanation:

Answer:

Step-by-step explanation:

0.6 is the answer just took the test

A student's tuition was 2800. They took a loan out for 6/7 of the tuition. How much was the loan

Answers

30 ddddddddddddddddd

A textbook company claims that their book is so engaging that less than 55% of students read it. If a hypothesis test is performed that fails to reject the null hypothesis, how would this decision be interpreted?


a. There is sufficient evidence to support the claim that less than 55% of students read this text

b. There is not sufficient evidence to support the claim that less than 55% of students read this text

c. There is sufficient evidence to support the claim that no more than 55% of students read this text

d. There is not sufficient evidence to support the claim that no more than 55% of students read this text

Answers

Answer:

The answer is B.

Step-by-step explanation:

The example given in the question uses the null hypothesis versus the alternative hypothesis. Null hypothesis is the statement that is tested to be true or not and if it is not true, then the alternative hypothesis is accepted.

In the example, it is stated that the hypothesis test for the null hypothesis failed which means that the statement given on the percentage of students who read the book is false.

Then the option b is going to be interpreted which claims that the null hypothesis is false and there is not enough evidence to say that less than 55% of students read the textbook.

I hope this answer helps.

Final answer:

When a hypothesis test does not reject the null hypothesis with a p-value greater than the alpha level of 0.05, it indicates that there is not sufficient evidence to support the claim being tested, in this case, that less than 55% of students read the textbook.

Explanation:

If a hypothesis test is performed and fails to reject the null hypothesis, the interpretation depends on the results related to the alpha level and the p-value. In this case, where the claim is that less than 55% of students read the textbook and the p-value is greater than the alpha level (0.05 or 5%), the correct interpretation is that there is not sufficient evidence to support the claim that less than 55% of students read the text. This means that the sample data does not provide strong enough evidence to infer that the proportion of students who read the textbook is less than 55% for the entire population of students.

Therefore, the correct answer is:

b. There is not sufficient evidence to support the claim that less than 55% of students read this text.

What percentage of job opening are published?

a. 10% - 15%

b. 15% - 20%

30% - 35%

35% - 40%

Please select the best answer from the choices provided

Ο

Α

Answers

Answer:

a. 10% - 15%

Step-by-step explanation:

The percentage of a job opening, that gets published, is 15% to 20%,  just since just scarcely any occupations can be seen on a paper, commercials, and employment sheets. A large portion of the employment opportunities can be gotten notification from those representatives that worked inside the organization since there is only two job vacancies.

Answer:

the answer is b

Step-by-step explanation:

Nadia deposited $3000 into an account that earns annual simple interest. 13 points
After 6 years, she had earned $990 in interest. What was the interest rate
of the account? *
Your answer

Answers

Final answer:

To find the annual interest rate of Nadia’s account, we use the simple interest formula I = PRT. By rearranging the formula and plugging in the known values, we determine that the interest rate is 5.5%.

Explanation:

To determine the interest rate of Nadia’s account, we can use the formula for simple interest I = PRT, where I is the interest earned, P is the principal amount deposited, R is the annual interest rate in decimal, and T is the time in years. In Nadia's case, we know that she earned $990 in interest (I), deposited $3000 (P), over 6 years (T).

We need to solve for R.

The formula thus becomes: $990 = $3000 × R × 6

To find R, we divide both sides of the equation by $3000 × 6:

R = $990 / ($3000 × 6)

R = $990 / $18000

R = 0.055 or 5.5%

Therefore, the annual interest rate Nadia received on her account was 5.5%.

If each edge equals 5 inches, what will be the surface area of the cube?? Need answer quick!

Answers

Answer:

C

Step-by-step explanation:

A cube has 6 faces

Each face is a square of area:

5² = 25

Surface area: 6 × 25

= 150 in²

Answer:

150 in^2

Step-by-step explanation:

The surface area of a cube is given by

SA = 6 s^2 where s is the side length

SA = 6 (5)^2

    = 6 * 25

    = 6*25

    = 150 in^2

What is the area of the kite? A kite has a height of 10 meters and a base of 8 meters.

Answers

Answer:

80 meters (8*10=80)

Answer:

80

Step-by-step explanation:

10 times 8= 80

to find the area is always lenght × height × weight

to find the perimeter is always lenght × lenght × heigth × heigth

example...

a house with the height of 5 and the lenght of 1 .find the perimeter

5+5+1+1= 12

The Indian Ocean is 2/10 of the area of the worlds oceans. What fraction represents the area of the remaining oceans that make up the worlds oceans? Write in simplest form.

Answers

Answer: 8/10 or 4/5

Step-by-step explanation:

10/10 - 2/10 = 8/10

Answer:

Since 10 - 2 = 8

The fraction of the remaining oceans would be 8/10

And if you simplify both 8 and 10 by 2

Meaning you divide them by two

8 ÷ 2 = 4

10 ÷ 2 = 5

Our new fraction is 4/5

~DjMia~

What is the probability that X is between 12 and 60?

Answers

X will be between 21 and 24

An NBA fan named Mark claims that there are more fouls called on his team 1 point
any other team, but the commissioner says that the number of fouls called
against his team are no different than any other team. Mark finds that the
average number of fouls in any game in the NBA is 11.5. He takes a random
sample of 34 of games involving his team and finds that there are an
average of 12.2 fouls against his team, with a standard deviation of 1.6 fouls.
What is the correct conclusion? Use a = 0.05

a) The p value is 2.55 indicating insufficient evidence for his claim.

b)The p-value is 0.008, indicating sufficient evidence for his claim.

c)The p-value is 0.008, indicating insufficient evidence for his claim.

d)The p-value is 2.55, indicating sufficient evidence for his claim.

Answers

Answer:

[tex]t=\frac{12.2-11.5}{\frac{1.6}{\sqrt{34}}}=2.551[/tex]    

[tex] df = n-1=34-1=33[/tex]

[tex]p_v =P(t_{(33)}>2.551)=0.008[/tex]  

Since the p value is less than the significance level of 0.05 we have enough evidence to reject the null hypothesis in favor of the claim

And the best conclusion for this case would be:

b)The p-value is 0.008, indicating sufficient evidence for his claim.

Step-by-step explanation:

Information provided

[tex]\bar X=12.2[/tex] represent the sample mean fould against

[tex]s=1.6[/tex] represent the sample standard deviation

[tex]n=34[/tex] sample size  

represent the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

System of hypothesis

We need to conduct a hypothesis in order to check if the true mean is higher than 11.5 fouls per game:  

Null hypothesis:[tex]\mu \leq 11.5[/tex]  

Alternative hypothesis:[tex]\mu > 11.5[/tex]  

The statistic is given by:

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

The statistic is given by:

[tex]t=\frac{12.2-11.5}{\frac{1.6}{\sqrt{34}}}=2.551[/tex]    

P value

The degreed of freedom are given by:

[tex] df = n-1=34-1=33[/tex]

Since is a one side test the p value would be:  

[tex]p_v =P(t_{(33)}>2.551)=0.008[/tex]  

Since the p value is less than the significance level of 0.05 we have enough evidence to reject the null hypothesis in favor of the claim

And the best conclusion for this case would be:

b)The p-value is 0.008, indicating sufficient evidence for his claim.

The length and width of a rectangle are measured as 31 cm and 28 cm, respectively, with an error in measurement of at most 0.1 cm in each. Use differentials to estimate the maximum error in the calculated area of the rectangle.

Answers

Answer:

[tex]\Delta A = 5.9\,cm^{2}[/tex]

Step-by-step explanation:

The area of an rectangle is given by the following formula:

[tex]A = w\cdot h[/tex]

Where:

[tex]w[/tex] - Width, in centimeters.

[tex]h[/tex] - Height, in centimeters.

The differential of the expression is derived hereafter:

[tex]\Delta A = \frac{\partial A}{\partial w} \cdot \Delta w + \frac{\partial A}{\partial h}\cdot \Delta h[/tex]

[tex]\Delta A = h \cdot \Delta w + w \cdot \Delta h[/tex]

[tex]\Delta A = (31\,cm)\cdot (0.1\,cm) + (28\,cm)\cdot (0.1\,cm)[/tex]

[tex]\Delta A = 5.9\,cm^{2}[/tex]

Using differentials the maximum error in the calculated area of the rectangle wi’ould be 5.9 cm

The area formular of a rectangle is :

Area = Length(l) × width(w) w = 28 cml = 31 cm Error, Δe = 0.1cm

Maximum error can be defined thus :

Δmax = (L × Δe) + (W × Δe)

Δmax = (L × Δe) + (W × Δe)

Δmax = (31 × 0.1) + (28 × 0.1)

Δmax = 3.1 + 2.8

Δmax = 5.9 cm

Hence, the maximum error in the calculated area value is 5.9 cm.

Learn more : https://brainly.com/question/14717218

can someone please help I don’t get it and I just want answers I have been trying to solve this for 1 hour now

Answers

Answer:

1. y + 10 - 3/2y = -y/2 + 10

2. 2r+ 7r-r - 9 = 8r - 9

3.  7 + 4p-5+p+2q = 2 + 5p + 2q

Step-by-step explanation:

basically you can add terms that have the same variable

integers can be added together, Xs can be added, Zs, Ys, As, Bs, Cs, you get the point

1. y + 10 - 3/2y = -y/2 + 10

2. 2r+ 7r-r - 9 = 8r - 9

3.  7 + 4p-5+p+2q = 2 + 5p + 2q (do not add different variables p and q ) together

try 4-6 on your own to get this skill down, if you need help with those just let me know

Angle measure represented by 36.7 rotations counterclockwise

Answers

Answer:

13,212° or 73.4π radians

Step-by-step explanation:

Each rotation is 360° or 2π radians. So, 36.7 rotations is ...

  36.7×360° = 13,212°

or

  36.7×2π = 73.4π radians

A local soccer team has 6 more games that it will play. If it wins its game this weekend, then it will play its final 5 games in the upper bracket of its league, and if it loses, then it will play its final 5 games in the lower bracket. If it plays in the upper bracket, then it will independently win each of its games in this bracket with probability 0.3, and if it plays in the lower bracket, then it will independently win each of its games with probability 0.4. If the probability that it wins its game this weekend is 0.5, what is the probability that it wins at least 3 of its final 5 games?

Answers

Answer:

Probability that it wins at least 3 of its final 5 games = .02387

Step-by-step explanation:

Given -

The probability of win the weekend game = 0.5

The probability of loose  the weekend game = 0.5

If he wins the game this weekend then it will play its final 5 games in the upper bracket of its league

In this case,  probability of success is (p) = 0.3

probability of failure is (q) = 1 - p = 0.7

Let X be number of game won out of last five games

probability that it wins at least 3 of its final 5 games

( 1 )

[tex]P(X\geq3)[/tex] = [tex]P(X\geq3/first\; game\; won)[/tex] ( probability of first game won )

               =   [tex]0.5\times[/tex]P( X =3 ) + [tex]0.5\times[/tex]P( X =4) + [tex]0.5\times P(X = 5)[/tex]

                =  [tex]0.5\times\binom{5}{3}(0.3)^{3}(0.7)^{2} + 0.5\times\binom{5}{4}(0.3)^{4}(0.7)^{1}[/tex] + [tex]0.5\times\binom{5}{5}(0.3)^{5}(0.7)^{0}[/tex]

                 = [tex]0.5\times\frac{5!}{(3!)(2!)}\times(0.3)^{3}\times(0.7)^{2} + 0.5\times\frac{5!}{(4!)(1!)}\times(0.3)^{4}\times(0.7)^{1}[/tex] + [tex]0.5\times\frac{5!}{(5!)(0!)}\times(0.3)^{5}\times(0.7)^{0}[/tex]= = .065 + .014 + .001215  = .080

               

If he loose the game this weekend then it will play its final 5 games in the lower bracket of its league

In this case,  probability of success is (s) = 0.4

probability of failure is (t) = 1 - s = 0.6

( 2 )

[tex]P(X\geq3/first\; game\; lost)[/tex] ( probability of first game lost )

= [tex]0.5\times P(X = 3) + 0.5\times P(X = 4)[/tex] + [tex]0.5\times P(X=5)[/tex]

= [tex]\binom{5}{3}(0.4)^{3}(0.6)^{2} + 0.5\times\binom{5}{4}(0.4)^{4}(0.6)^{1}[/tex]+ [tex]0.5\times\binom{5}{5}(0.4)^{5}(0.6)^{0}[/tex]

= [tex]0.5\times\frac{5!}{(3!)(2!)}\times(0.4)^{3}\times(0.6)^{2} + 0.5\times\frac{5!}{(4!)(1!)}\times(0.4)^{4}\times(0.6)^{1}[/tex] + [tex]0.5\times\frac{5!}{(5!)(0!)}\times(0.4)^{5}\times(0.6)^{0}[/tex] = = .1152 + .0384 + .00512 = .1587

Required probability = ( 1 ) + ( 2 ) = .02387

An actor invested some money at 5% simple interest, and $41,000 more than 4 times the amount at 9%. The total annual interest earned from the investment was $35,260. How much did he invest at 5% and 9%?

Answers

Answer:

The amount invested at 5%=$77,000The amount invested at 9%=$349,000

Step-by-step explanation:

Let the amount invested at 5% simple interest =$x

He invested $41,000 more than 4 times the amount at 9%.

This amount is: $(4x+41000)

Total Annual Interest Earned = $35,260

Therefore, Time=1 year

Simple Interest[tex]=\frac{Principal X Rate X Time}{100}[/tex]

Therefore, his total interest

=Interest from Investment 1 + Interest from Investment 2

[tex]35260=\left(\frac{x*5*1}{100} \right)+\left(\frac{4x+41000*9*1}{100} \right)\\35260=0.05x+(0.36x+3690)\\35260-3690=0.05x+0.36x\\31570=0.41x\\\text{Divide both sides by 0.41}\\x=\$77000[/tex]

Therefore:

The amount invested at 5%=$77,000

The amount invested at 9%=$(4*77,000+41000)=$349,000

Lue is rolling a random number cube.The cube has six sides,and each one is labeled with a number 1 through 6. What is the probability that he will roll a sum of 12 in two rolls

Answers

Answer:

2%

Step-by-step explanation:

You do 12÷6×1=2

I used PEMDAS

Final answer:

The probability that Lue will roll a sum of 12 on two rolls of a standard six-sided die is 1/36 or about 2.78%, as only the combination (6,6) results in the sum of 12.

Explanation:

Probability of Rolling a Sum of 12

To calculate the probability that Lue will roll a sum of 12 on two rolls of a six-sided die, we need to consider all the possible combinations that can result in a sum of 12. These combinations are (6,6). Since each die is independent, we calculate the probability for one die and then square it for two dice, because there is only one way to get a six on a die, and there are six faces. Therefore, the probability of rolling a six is:

1/6

To find the probability of rolling two sixes, we multiply the probabilities of each independent event:

(1/6) × (1/6) = 1/36

So, the probability that Lue will roll a sum of 12 in two rolls is 1/36, or approximately 2.78%.

Suppose that Drake works for a research institute in Greenland and is given the job of treating wild polar bears there for hypothyroidism using medicated darts. The appropriate dosage depends on the bear's mass. Eager to head into the wilderness, he prints out the statistics he needs and sets off, planning to prepare the darts along the way.

Two days into his trek, however, Drake spills a cup of coffee on the printout. Unwilling to admit to his boss what happened, he decides to estimate the polar bear mass with the information he has remaining. He knows the population standard deviation to be ?=60 kg, and he has data from a simple random sample of n = 10 polar bears from Greenland. Their masses, in kg, are

275,250,325,310,240,360,350,400,380,400

The sample mean polar bear mass is x (there is the line on top of x) =329 kg.

-First, determine if the requirements for a z?confidence interval are met.

A) The requirements are not met because the population standard deviation is not known.

B) The requirements are not met because there is an outlier in the sample, indicating that polar bear masses do not come from a normal distribution or that the sample was not a simple random sample.

C)The requirements are met because the sample is a simple random sample from a normal distribution with a known population standard deviation.

D) The requirements are met because the sample is a simple random sample from a normal distribution and the standard deviation can be estimated from the sample.

-Next, calculate the lower and upper limits (bounds) for a 99% confidence interval for the mean polar bear mass in Greenland. Give your answer precise to one decimal place.

lower limit= _________kg

upper limit=_________kg

-Finally, summarize the results.

A) There is 99% confidence that the polar bear mass sample mean is between the lower and upper limits of the confidence interval.

B) There is a 99% chance that a randomly selected polar bear in Greenland will have a mass between the lower and upper limits of the confidence interval.

C) There is a 99% chance that the Greenland polar bear mass population mean is between the lower and upper limits of the confidence interval.

D) There is 99% confidence that the lower and upper limits of the confidence interval contains the Greenland polar bear mass population mean.

Answers

Step-by-step explanation:

Check the attached file for solution and

simulation screen shot

R-Code:

Sample mean

sd = 60 Population Standard deviation

n = 10 Sample size

conf.level = 0.99 Confidence level

[tex]\alpha = 1-conf.level[/tex]

[tex]z\star = \round(\qnorm(1-\alpha/2),2); z.\star[/tex]

[tex]E = \round(z* \times \sigma/\sqrt(n),2); E[/tex]

[tex]x= c(E,-E)[/tex]

Find the rectangular coordinates of the point (sqrt3,pi/6)

Answers

Answer:

[tex](x, y) = \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)[/tex]

Step-by-step explanation:

The rectangular coordinates of the point are:

[tex](x,y) = \left(\sqrt{3}\cdot \cos\frac{\pi}{6}, \sqrt{3}\cdot \sin\frac{\pi}{6}\right)[/tex]

[tex](x, y) = \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)[/tex]

Answer:

B

Step-by-step explanation:

The police department in NYC is trying to determine if it is worth the cost to install a speed sensor and traffic camera on a highway near the city. They will install the speed sensor and traffic camera if convinced that more than 20% of cars are speeding. The police department selects a random sample of 100 cars on the highway, measures their speed, and finds that 28 of the 100 cars are speeding. A significance test is performed using the hypotheses.
Hoo: p=0 .20
Ha:p > 0.20
Where p is the true proportion of all cars on the highway that are speeding. The resulting p-value is 0.023. What conclusion would you make at the alpha level of 0.05 level?
A conclusion can be made that since the alpha level is less than the p-level, then we fail to reject the null hypothesis due p-value being 0.023 being greater than alpha level 0.05.

Answers

Final answer:

At a 5 percent significance level and with a p-value of 0.023, we reject the null hypothesis, concluding that more than 20% of cars are speeding.

Explanation:

The question involves determining whether to reject the null hypothesis based on a p-value from a statistical test concerning the true proportion of cars that are speeding on a highway. Since the p-value of 0.023 is less than the alpha level of 0.05, we would reject the null hypothesis (H0: p = 0.20). At the 5 percent significance level, there is sufficient evidence to conclude that more than 20% of cars are speeding on the highway.

Since the p-value is less than the alpha level of 0.05, we reject the null hypothesis. Therefore, the police department should consider installing the speed sensor and traffic camera.

To determine if the police department should install a speed sensor and traffic camera based on a significance test, we need to examine the hypotheses:

H0: p = 0.20 (the true proportion of cars speeding is 20%)

H1: p > 0.20 (the true proportion of cars speeding is greater than 20%)

Given that in a random sample of 100 cars, 28 were speeding, the test resulted in a p-value of 0.023. At the alpha level of 0.05, since the p-value (0.023) is less than alpha (0.05), we reject the null hypothesis.

In conclusion, at the 5 percent significance level, there is sufficient evidence to conclude that the true proportion of cars speeding is greater than 20%, justifying the installation of the speed sensor and traffic camera.

0.24 + 4.25 equals what ?

Answers

Answer:

4.49

Step-by-step explanation:

Answer:

4.49

Step-by-step explanation:

*Imagine it as money, you have $4.25 and you find $0.24

1) 4.25 + 0.24= 4.49

You now have $4.49

Hoped that helped ;)

Find the maximum profit and the number of units that must be produced and sold in order to yield the maximum profit. Assume that​ revenue, Upper R (x )​, and​ cost, Upper C (x )​, are in thousands of​ dollars, and x is in thousands of units. Upper R (x )equals9 x minus 2 x squared​, Upper C (x )equalsx cubed minus 3 x squared plus 4 x plus 1

Answers

Answer:

-1.39

Step-by-step explanation:

Revenue and cost as a function of units sold are [tex]u(x) = 9x-2x^{2}[/tex]and[tex]c(x)=x^{3}-3x^{2}+4x+1[/tex]  respectively.

we are have to know for which value or input units are these functions at maximum which translates to for how many units is the revenue maximum and for how many same units is our cost minimum.

Other Questions
Which expression is equivalent to 3 7/8 - 6 1/4? different student is given a 10.0g sample labeled CaBr2 that may contain an inert (nonreacting) impurity. Identify a quantity from the results of laboratory analysis that the student could use to determine whether the sample was pure. Read the excerpt from the supporting text "Disease Central" in When Birds Get Flu by John DiConsiglio.In 1958, scientists at the CDC made their first trip overseas. A team went to Southeast Asia to respond to an epidemic ofsmallpox and cholera.The author uses this passage to help the reader focus onwhy Dr. Dowell is in Thailand.====why epidemics are dangerous-- -- --why scientists work for the CDC.why the CDC was formed. John is an agent for Peabody. John tells Wanda (a third party) of Peabodys existence, but not its identity, therefore John is an agent for a(n) ______ principal. If John signs a contract with Wanda on behalf of Peabody, John is ______ on the contract. What is the length of AC on the number line The diameter of the wheel is 22 inches what is the circumference of the world use 3.14 for pie Click on the sentence that has a contrast clue for the word incompetent? I need help Which function is equivalent to f(x)=-4(x+7)^2-6 Find the unit vector e which is collinear to vector a = (6,8) , and has the same direction. The _________ law consists of the substantive and procedural rules created by the bodies of the city, county, state, or federal government that carry out specific regulatory duties such as governing applications, permits, licenses available information, hearings, appeals, and decision making. complete the number line model to find (-5) + 6. A single mother and her male child are sitting alone watching a news report that is showing the damage from the storm. You observe the child getting more nervous and upset. A soccer ball is kicked in the air and follow the path h(x)=2x2+1x+6, where x is the time in seconds and h is the height of the soccer ball. At what time will the soccer ball hit the ground? Rank from largest to smallest the values of the magnetic field at the following distances from the axis of the conducting cylinder: Ra = 7.75 cm , Rb = 4.95 cm , r = 5.40 cm , and r>Ra. During ____, homologous chromosomes pair up forming tetrads. By the time I was in high school, I was a popular kid, and it showed in my name. Friends called me Jules or Hey Jude, and once a group of trouble making friends my mother forbade me to hang out with called me Alcatraz. I was Hoo-lee-tah only to Mami and Papi and uncles and aunts who came over to eat sancocho on Sunday afternoons old world folk whom I would just as soon go back to where they came from and leave me to pursue whatever mischief I wanted to in America. JUDY ALCATRAZ, the name on the "Wanted" poster would read. Who would ever trace her to me?Based on this passage, what inference can be made about the way Alvarez became accustomed to life in the United States?She felt more comfortable in the company of her Dominican family.She made many American friends but refused to let go of her culture.She introduced her American friends to many Dominican customs.She became very well accustomed to life among the Americans. [PLEASE HELP] The area of Bethany's garden will be 48 square feet once she expands it. She is not going to change the measurement on one side, but the other side will be 8 feet longer than before. The equation that models this situation and can be used to determine the possible dimensions of Bethany's garden is x^2 +8x -48. Factor to determine the possible dimensions of Bethany's new garden. a cinema has three screens.last Saturday there were 500 visitors.40% went to screen 125% went to screen 2the rest went to screen 3workout how many visitors attended each screen Bart Simpson explained to me that it's important toalways check our own prejudiced, and try to overcome it. HELP ASAP PLEASE!!!Which of the following angles are shown in the drawing?a. ADBb. Dc. CBDd. 1