An automobile emissions testing center has six inspectors and tests 50 vehicles per hour. Each inspector can inspect 12 vehicles per hour. How many inspectors would the center require to have a target utilization of 90 percent?

Answers

Answer 1

Answer:

The center require to have a 4.6 inspectors, but this on you decide if you have 4 or 5 inspectors, it may not have 4.6 people working.

So then if you decide to have 5 people their utilization percentage is 83.3%, but if you decide to have 4 people their utilization rate will be 104.17% at the risk of defaulting on demand.

Step-by-step explanation:

1. Define your variables

Demand rate= 50 vehicles per hour

Service rate = 12 vehicles per hour per inspector

Inspectors= a

2. Use the formule of the center´s utilization

U= [tex]\frac{Demand}{(Service) X a}[/tex]

0,9= [tex]\frac{50}{(12) X a }[/tex]

0,9a=[tex]\frac{50}{12}[/tex]

a=[tex]\frac{50}{12X0,9}[/tex]

a= 4.6

3. According to the center´s utilization formula the center require 4,6 inspectors, but approaches 5 because people cannot be divided. With this numbers of inspectors the utilization is:

U= [tex]\frac{Demand}{(Service) X (No. inspectors)}[/tex]

U= [tex]\frac{50}{(12) X (5)}[/tex]

U= 83,3%

4. Other option that you will be used is that the center require 4 inspectors. With this numbers of inspectors the utilization is:

U= [tex]\frac{Demand}{(Service) X (No. inspectors)}[/tex]

U= [tex]\frac{50}{(12) X (4)}[/tex]

U= 104,17%

Answer 2

The center would require 6 inspectors to have a target utilization of 90 percent.

To determine the number of inspectors required to have a target utilization of 90 percent, we can use the formula:

Number of inspectors = Total vehicles per hour / Vehicles inspected per inspector per hour / Target utilization

Given that the center tests 50 vehicles per hour, and each inspector can inspect 12 vehicles per hour, the formula becomes:

Number of inspectors = 50 / 12 / 0.9 = 5.56

Since we cannot have a fraction of an inspector, we round up to the nearest whole number. Therefore, the center would require 6 inspectors to have a target utilization of 90 percent.

Learn more about number of inspectors here:

https://brainly.com/question/36071752

#SPJ3


Related Questions

a. Given a = 13 and b = 195, find b div a and b mod a. b. Given a = 24 and b = 377, find b div a and b mod a.

Answers

Answer:

A. 15 and 0. B. 15 and 17

Step-by-step explanation:

A. a= 13 and b = 195.

b div a = 195 div 13. The result is the integer part of the division, so

195 div 13 = 15.

b mod a = 195 mod 13. The result is the residue of the division. In this case the division is exact, so

195 mod 13 = 0.

B. a = 24 and b=377.

b div a = 377 div 24. The result is the integer part of the division, so

377 div 24 = 15.

b mod a = 377 mod 24. The result is the residue of the division. In this case the division is not exact, so

377 = 24*15+17, then

377 mod 24 = 17.


I need the answer to this math question.

1) Divide 251 days 21 hours by 13.

Then round to the nearest hundredth as necessary.

Answers

Answer: 465

Step-by-step explanation:

251 (days) x 24 (hours) = 6,024 hours

6,024+21 hours= 6,045

6045/13=465

My Notes OAsk Your Tea The radioactive isotope of lead, Pb-209, decays at a rate proportional to the amount present at time t and has a half-life of 3.3 hours. If 1 gram of this isotope is present initially, how long will it take for 85% of the lead to decay? (Round your answel to two decimal places.) hr

Answers

Answer:

10.96 hours will take for 85% of the lead to decay.

Step-by-step explanation:

Suppose A represents the amount of Pb-209 at time t,

According to the question,

[tex]\frac{dA}{dt}\propto A[/tex]

[tex]\implies \frac{dA}{dt}=kA[/tex]

[tex]\int \frac{dA}{A}=\int kdt[/tex]

[tex]ln|A|=kt+C_1[/tex]

[tex]A=e^{kt+C_1}[/tex]

[tex]A=e^{C_1} e^{kt}[/tex]

[tex]\implies A=C e^{kt}[/tex]

Let [tex]A_0[/tex] be the initial amount,

[tex]A_0=C e^{0} = C[/tex]

[tex]\implies A=A_0 e^{kt}[/tex]

Since, the half-life of 3.3 hours.

[tex]\implies \frac{A_0}{2}=A_0 e^{3.3k}\implies e^{3.3k}=0.5\implies k=-0.21004[/tex]

[tex]\implies A=A_0 e^{-0.21004t}[/tex]

Here, [tex]A_0=1\text{ gram}[/tex]

[tex]A=(100-85)\% \text{ of }A_0=15\%\text{ of }A_0=0.15A_0[/tex]

By substituting the values,

[tex]0.15A_0=A_0 e^{-0.21004t}[/tex]

[tex]0.15=e^{-0.21004t}[/tex]

[tex]\implies t\approx 10.96\text{ hour}[/tex]

The time needed to complete a final examination in a particular college course is normally distributed with a mean of 79 minutes and a standard deviation of 8 minutes. Answer the following questions.

What is the probability of completing the exam in one hour or less (to 4 decimals)?


What is the probability that a student will complete the exam in more than 60 minutes but less than 75 minutes (to 4 decimals)?


Assume that the class has 60 students and that the examination period is 90 minutes in length. How many students do you expect will be unable to complete the exam in the allotted time (to the nearest whole number)?

Answers

Answer: a) 0.0088

b) 0.2997

c)  5

Step-by-step explanation:

Given : Mean : [tex]\mu = 79[/tex] minutes

Standard deviation : [tex]\sigma = 8[/tex] minutes

The formula for z-score :

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

a) For x = 60 minutes

[tex]z=\dfrac{60-79}{8}=-2.375[/tex]

The p-value =[tex]P(z\leq-2.375)=0.0087745\approx0.0088[/tex]

b) For x = 75 minutes

[tex]z=\dfrac{75-79}{8}=-0.5[/tex]

The p-value =[tex]P(60<x<75)=P(-2.375<z<-0.5)[/tex]

[tex]=P(-0.5)-P(-2.375)=0.3085-0.0088=0.2997[/tex]

c) For x = 90 minutes

[tex]z=\dfrac{90-79}{8}=1.375[/tex]

The p-value =[tex]P(z>1.375)=1-P(z<1.375)[/tex]

[tex]=1-0.9154342=0.0845658[/tex]

If the number of students in the class = 60 .

Then , the number of students will be unable to complete the exam in the allotted time =[tex]0.0845658\times60=5.073948\approx5[/tex]

Final answer:

The probability of completing the exam in one hour or less is 0.0087. The probability that the exam is completed in more than 60 minutes but less than 75 minutes is 0.2998. We expect about 5 students to not finish the exam in the given 90 minutes.

Explanation:

In statistics, when a data set is normally distributed, we use a z-score to describe the position of a raw score in terms of its distance from the mean, when measured in standard deviation units. The formula to calculate a z-score is Z = (X - μ) / σ, where X is the raw score, μ is the mean, and σ is the standard deviation.

To answer the questions:

Probability of completing the exam in one hour or less: Here, we need to calculate the z-score for 60 minutes (which is one hour) using the given mean (79 minutes) and standard deviation (8 minutes). Using the Z score formula, Z = (60-79)/8 = -2.375. You would then look up this z-score in a Z-table (also known as standard normal table) to find the probability, which is around 0.0087 to four decimal places. So the probability of completing the exam in one hour or less is 0.0087.Probability that a student will complete the exam in more than 60 minutes but less than 75 minutes: We need to calculate the z-scores for 60 minutes and 75 minutes. We know the z-score for 60 minutes from before is -2.375. The z-score for 75 minutes is (75-79)/8 = -0.5. The probabilities in the Z-table for these z-scores are about 0.0087 and 0.3085 respectively. We need to subtract the two probabilities to get the answer:  0.3085 - 0.0087 = 0.2998. So the probability that the exam is completed in more than 60 minutes but less than 75 minutes is 0.2998.Expected number of students unable to complete the exam in the 90 minutes examination period: Here we need to find the probability that a student will take more than 90 minutes to finish the exam. The z-score for 90 minutes is (90-79)/8 = 1.375. The probability associated with this z-score in the Z-table is about 0.9157. This essentially means the probability of completing the exam in 90 minutes or less is 0.9157. So, the probability of not completing in time is 1 - 0.9157 = 0.0843. If there are 60 students in the class, we expect about 60*0.0843 = 5.058, which rounds to about 5 students, not to finish the exam in the given 90 minutes time.

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ3

PLEASE HELP ME GET THESE FINISHED

Answers

Answer:

g(-0.5) = -1

g(0.2) = 0

g(0.5) = 1

Step-by-step explanation:

We are given the value of g(x) for which the x is defined.

Solving

g(-0.5) = -1

As given g(x) = -1 if -1.5 ≤ x ≤ 0.5

g(0.2) = 0

As given g(x) = 0 if -0.5 < x < 0.5

g(0.5) = 1

As given g(x) = 1 if 0.5 ≤ x < 1.5

Use the graph of a function f to determine x or y to the nearest​ integer, as indicated. Some problems may have more than one answer.

5=f(x)

Answers

Final answer:

To find the x for a given function f(x) =5, use the graph of the function and search for places where the y-coordinate is 5. The x-coordinates of these points are the solutions.

Explanation:

The problem is asking for the value of x when f(x) = 5. To solve this problem, you would examine the graph of the function and look for the point(s) where the y-coordinate (the function value) is 5; the corresponding x-coordinate(s) would be your answer. For example, if seen directly above the number five on the y-axis, the line crosses at x=3, then x=3 is your solution. If it crosses again at x=-2, then x=-2 is another solution. Always remember that some problems may indeed have more than one answer, especially with functions that are not linear.

Learn more about Function Graph here:

https://brainly.com/question/32810086

#SPJ3

Math help ASAP!! Also both drop down boxes are the same.

Answers

Answer:

Domain: amount of fuel in the airplane's tank (in gallons)

The set of all real numbers from 0 to 200

Range: weight of airplane (In  pounds)

The set of all real numbers from 3000 to 4400

Step-by-step explanation:

We have the following function

[tex]W=7F+3000[/tex]

Where W represents the weight of the plane in pounds and F represents the amount of fuel in gallons.

The domain of a function is the set of values ​​"F" that can be entered in a function W(F) to obtain an output value of W.

In this case the range of the function W(F) is the whole set of values [tex]W_1, W_2, W_3, ..., W_n[/tex] that are obtained for [tex]F_1, F_2, F_3, ..., F_n[/tex]

Note that, in this case, equation W(F) is used to obtain the weight of the airplane from the amount of fuel F.

Then the domain of the function is the amount of fuel in the airplane tank (in gallons). Since the tank can only hold up to 200 gallons, and there are no negative volume units, then the domain is all real numbers between 0 and 200.

The range of the function is the weight of the plane (in pounds). Note that the minimum weight of the airplane with 0 gallons of fuel is 3000 pounds and the maximum weight with the full tank is 4400 pounds.

Then the range is all real numbers between 3000 and 4400

For a certain​ candy, 20​% of the pieces are​ yellow, 15​% are​ red, 20​% are​ blue, 20​% are​ green, and the rest are brown. ​a) If you pick a piece at​ random, what is the probability that it is​ brown? it is yellow or​ blue? it is not​ green? it is​ striped? ​b) Assume you have an infinite supply of these candy pieces from which to draw. If you pick three pieces in a​ row, what is the probability that they are all​ brown? the third one is the first one that is​ red? none are​ yellow? at least one is​ green?

Answers

Answer:

Step-by-step explanation:

Based on the question we are given the percentages of each of the types of candies in the bag except for brown. Since the sum of all the percentages equals 75% and brown is the remaining percent then we can calculate that brown is (100-75 = 25%) 25% of the bag. Now we can show the probabilities of getting a certain type of candy by placing the percentages over the total percentage (100%).

Brown: [tex]\frac{25}{100}[/tex]Yellow or Blue: [tex]\frac{20}{100} +\frac{20}{100} = \frac{40}{100}[/tex]  ....add the numeratorsNot Green:  [tex]\frac{80}{100}[/tex].... since the sum of all the rest is 80%Stiped:  [tex]\frac{25}{100}[/tex] .... there are 0 striped candies.

Assuming the ratios/percentages of the candies stay the same having an infinite amount of candy will not affect the probabilities. That being said in order to calculate consecutive probability of getting 3 of a certain type in a row we have to multiply the probabilities together. This is calculated by multiplying the numerators with numerators and denominators with denominators.

3 Browns: [tex]\frac{25*25*25}{100*100*100} = \frac{15,625}{1,000,000} = \frac{1.5625}{100}[/tex]

the 1st and 3rd are red while the middle is any. We multiply 15% * (total of all minus red which is 85%) * 15% like so.

[tex]\frac{15*85*15}{100*100*100} = \frac{19,125}{1,000,000} = \frac{1.9125}{100}[/tex]

None are Yellow: multiply the percent of all minus yellow three times.

[tex]\frac{80*80*80}{100*100*100} = \frac{512,000}{1,000,000} = \frac{51.2}{100}[/tex]

At least 1 green: multiply the percent of green by 100% twice, since the other two can by any

[tex]\frac{20*100*100}{100*100*100} = \frac{200,000}{1,000,000} = \frac{20}{100}[/tex]

Find and classify any equilibrium solutions and then sketch typical solution curves to the differential equation: dx /dt = x 2 − 5x + 4.

Answers

Answer:

[tex]x=1+\dfrac{3}{1-Ke^{3t}}[/tex]

Step-by-step explanation:

Given that

[tex]\dfrac{dx}{dt}=x^2-5x+4[/tex]

This is a differential equation.

Now by separating variables

[tex]\dfrac{dx}{x^2-5x+4}=dt[/tex]

[tex]\dfrac{dx}{(x-1)(x-4)}=dt[/tex]

[tex]\dfrac{1}{3}\left(\dfrac{1}{x-4}-\dfrac{1}{x-1}\right)dx=dt[/tex]

Now by integrating both side

[tex]\int\dfrac{1}{3}\left(\dfrac{1}{x-4}-\dfrac{1}{x-1}\right)dx=\int dt[/tex]

[tex]\dfrac{1}{3}\left(\ln(x-4)-\ln(x-1)\right )=t+C[/tex]

Where C is the constant

[tex]\dfrac{1}{3}\ln\dfrac{x-4}{x-1}=t+C[/tex]

[tex]\dfrac{x-4}{x-1}=Ke^{3t}[/tex]    K is the constant.

[tex]x=1+\dfrac{3}{1-Ke^{3t}}[/tex]

So the solution of above differential equation is

[tex]x=1+\dfrac{3}{1-Ke^{3t}}[/tex]

Find the inverse of h(x) = [tex]\frac{2x+6}{5}[/tex]

show work please!

Answers

Answer:

The inverse of h(x) is [tex]\frac{5x-6}{2}[/tex]

Step-by-step explanation:

* Lets explain how to make the inverse of a function

- To find the inverse of a function we switch x and y and then solve

  for new y

- You can make it with these steps

# write g(x) = y

# switch x and y

# solve for y

# write y as [tex]g^{-1}(x)[/tex]

* Lets solve the problem

∵ [tex]h(x)=\frac{2x+6}{5}[/tex]

# Step 1

∴ [tex]y=\frac{2x+6}{5}[/tex]

# Step 2

∴ [tex]x=\frac{2y+6}{5}[/tex]

# Step 3

∵ [tex]x=\frac{2y+6}{5}[/tex]

- Multiply each side by 5

∴ 5x = 2y + 6

- Subtract 6 from both sides

∴ 5x - 6 = 2y

- Divide both sides by 2

∴ [tex]y=\frac{5x-6}{2}[/tex]

# Step 4

∴ [tex]h^{-1}(x)=\frac{5x-6}{2}[/tex]

Find the point on the plane 4x+3y+z=10 that is nearest to​ (2,0,1). What are the values of​ x, y, and z for the​ point? x= 28 / 13 y = 3 / 26 z= 27 / 26 ​(Type integers or simplified​ fractions.)

Answers

To find the point on the plane that is nearest to (2,0,1), we minimize the squared distance between the two points using partial derivatives and set them equal to 0. The values of x, y, and z for the point are x = 28/13, y = 3/26, and z = 27/26.

To find the point on the plane that is nearest to (2,0,1), we need to find the coordinates that satisfy the equation 4x+3y+z=10 and minimize the distance between the point and (2,0,1).

This can be done by minimizing the squared distance between the two points. Using the formula for distance, we get the squared distance as:

d^2 = (x-2)^2 + y^2 + (z-1)^2

To minimize the squared distance, we can find the partial derivatives with respect to x, y, and z and set them equal to 0.

Solving these equations, we find that x = 28/13, y = 3/26, and z = 27/26.

Learn more about Minimizing distance between points here:

https://brainly.com/question/34075842

#SPJ11

Twenty percent (20%) of 90 equals

A. 12

B. 15

C. 18

D. 21

Answers

Answer:

20 percent *90. =

(20:100)*90. =

(20*90.):100 =

1800:100 = 18

The correct answer is C.

FH←→ is tangent to circle E at point F.

What is the measure of ∠EFH?
80º
90º

160º

180º

Answers

Check the picture below.

Answer: SECOND OPTION.

Step-by-step explanation:

It is important to remember that a tangent to a circle is a line that touches it at one point. This point is called "Point of tangency". By definition, the angle between the tangent and the radius is 90 degrees.

In this case you can observe that EF is the radius of this circle, therefore, the angle between EF and FH measures 90 degrees.

Based on this, you can say the following:

[tex]\angle EFH=90\°[/tex]

This matches with the second option.

Find a simplified weighted voting system which is equivalent to

[8: 9, 3, 2, 1] and

[20: 8, 6, 3, 2, 1].

Answers

Answer: The explanation is as follows:

Step-by-step explanation:

(a) [8: 9, 3, 2, 1]

q = 8

Here, coalition is as follows:

[P1, P2, P3, P4] = [9, 3, 2, 1]

for the above coalition, the combined weight is

[P1, P2, P3, P4] = 9+3+2+1 = 15 ⇒ combined weight

For simplified weighted voting system;

q = combined weight ⇒ both the terms have to be equal for a simplified weighted voting system.

But, here 8 ≠ 15

It is not a simplified weighted voting system.

(b) [20: 8, 6, 3, 2, 1]

q = 20

Here, coalition is as follows:

[P1, P2, P3, P4, P5] = [8, 6, 3, 2, 1]

for the above coalition, the combined weight is

[P1, P2, P3, P4, P5] = 8+6+3+2+1 = 20 ⇒ combined weight

For simplified weighted voting system;

q = combined weight

Since,  20 = 20

It is a simplified weighted voting system.

A test of H0: μ = 20 versus Ha: μ > 20 will be based on a random sample of size n from a normal population distribution. What conclusion is appropriate in each of the following situations? (Round your P-values to three decimal places.) (a) z = 3.3, α = 0.05

Answers

Answer:

We will accept the null hypothesis

Step-by-step explanation:

Given :[tex]H_0: \mu= 20[/tex]

          [tex]H_a: \mu> 20[/tex]

To Find :  What conclusion is appropriate in each of the following situations?

Solution :

z = 3.3, α = 0.05

So, first we will find the p value corresponding to z value in the z table

So, p-value is 0.999

Since p value is greater than Alpha

0.999>0.05

So, we will accept the null hypothesis

So, the population mean is 20

The mean per capita income is 15,451 dollars per annum with a variance of 298,116. What is the probability that the sample mean would differ from the true mean by less than 22 dollars if a sample of 350 persons is randomly selected? Round your answer to four decimal places.

Answers

Answer: 0.5467

Step-by-step explanation:

Let X be the random variable that represents the income (in dollars) of a randomly selected person.

Given : [tex]\mu=15451[/tex]

[tex]\sigma^2=298116\\\\\Rightarrow\ \sigma=\sqrt{298116}=546[/tex]

Sample size : n=350

z-score : [tex]\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

To find the probability that the sample mean would differ from the true mean by less than 22 dollars, the interval will be

[tex]\mu-22,\ \mu+22\\\\=15,451 -22,\ 15,451 +22\\\\=15429,\ 15473[/tex]

For x=15429

[tex]z=\dfrac{15429-15451}{\dfrac{546}{\sqrt{350}}}\approx-0.75[/tex]

For x=15473

[tex]z=\dfrac{15473-15451}{\dfrac{546}{\sqrt{350}}}\approx0.75[/tex]

The required probability :-

[tex]P(15429<X<15473)=P(-0.75<z<0.75)\\\\=1-2(P(z<0.75))=1-2(0.2266274)=0.5467452\approx0.5467[/tex]

Hence, the required probability is 0.5467.

Find the selling price for a case of Newman's Own® special blend coffee that costs the retailer $35.87 if the markup is 22% of the selling price.

Answers

Answer:

The selling price is $46 approx.

Step-by-step explanation:

The cost price is = $35.87

Markup is 22% of selling price.

Let the selling price be = 100%

So, 100%-22%=78% = 0.78

So, solution is = [tex]35.87/0.78=45.98[/tex] ≈ $46.

Hence, the selling price is $46 approx.

A true false test with 10 questions is given. Compute the probability of scoring exactly 80% by guessing

Answers

Answer: 0.04395

Explanation:

Given: 10 true-false questions.

So, we will have 50% chances (probability = 0.5) of being correct.

Prob( Exactly 80% score) = Prob (exactly 8 answers correct)

As we observe, if X= number of correct answers, then X~ Binomial (n=10, p=0.5)

So, Prob( Exactly 80% score) = Prob (exactly 8 answers correct)

=[tex]\binom{10}{8}\times(1/2)^{8}}\times(1/2)^{2}[/tex]

= 0.0439453125

= 0.04395

17. Prove the following statement: Let n e Z. If n is odd, then n2 is odd. Proof 6 pts. 2 VÎ±Î¶Ï there fore, n and n Please See tue classnotes

Answers

Answer with explanation:

It is given that , n is Odd integer.

If , n is odd, then it can be Written as with the help of Euclid division lemma

 → n= 2 p +1, as 2 p is even , and adding 1 to it converts it into Odd.

As Euclid lemma states that for any three integers, a ,b and c ,when a is divided by b, gives quotient c and remainder r , then it can be written as:

 a= b c+r, →→0≤r<b

Now, n² will be of the form

(2 p +1)²=(2 p)²+2 × 2 p×1+ (1)²

             =4 p²+4 p +1

⇒Multiplying any positive or negative Integer by 4, gives Even integer and sum  or Difference of two even integer is always even.

So, 4 p²+4 p, will be an even term.But Adding , 1 to it converts it into Odd Integer.

Hence, if n is an Odd number then , n² will be also odd.

M1Q6.) How many degrees should be used to represent convertables in the Pie Graph?

Answers

Answer:

80 degrees

Step-by-step explanation:

The entire circle represents 72 and the "slice of pie" is represented by a portion:

16/72 * 100

= 0.22 * 100

= 22.222%

.

22.222% of 360 degrees

= .22222 * 360

= 80 degrees

Each portion can be represented by 16/72

16/72 = 0.22

0.22... * 100% = 22.22...%

0.2222 * 360 = 80

Therefore, the answer is 80 degrees.

Best of Luck!

A sample of ????=25 diners at a local restaurant had a mean lunch bill of $16 with a standard deviation of ????=$4 . We obtain a 95% confidence interval as (14.43,17.57) . Which action will not reduce the margin of error?

Answers

Answer:

"Decreasing the sample size."

Step-by-step explanation:

The margin of error is :

[tex]ME=z\times \frac{\sigma }{\sqrt{n}}[/tex]

Therefore, as n decreases, margin of error increases.

In the question we are asked " Which action will not reduce the margin of error."

Therefore, the correct option for which action will not reduce the margin of error is "Decreasing the sample size."

The probability that Mary will win a game is 0.02, so the probability that she will not win is 0.98. If Mary wins, she will be given $160; if she loses, she must pay $16. If X = amount of money Mary wins (or loses), what is the expected value of X? (Round your answer to the nearest cent.)

Answers

Given:

Probability of winning, P(X) = 0.02

Probability of losing, P([tex]\bar{X}[/tex]) = 0.98

Wining amount = $160

Losing amount = $16

Step-by-step explanation:

Let the expected amount of money win be  'X'

Expected value of X, E(X) = Probability of winning, P(X).Probability of winning, P(X)  - Probability of losing, P([tex]\bar{X}[/tex]).Losing amount

Now,

E(X) = ([tex]0.02\times 160 - 0.98\times 16[/tex])

E(X) = -12.48

Expected value of X = -12.48

Expected loss value = $12.48 loss

It is estimated that one third of the general population has blood type A A sample of six people is selected at random. What is the probability that exactly three of them have blood type A?

Answers

Answer: 0.2195

Step-by-step explanation:

Binomial distribution formula :-

[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex], where P(x) is the probability of x successes in the n independent trials of the experiment and p is the probability of success.

Given : The probability of that the general population has blood type A = [tex]\dfrac{1}{3}[/tex]

Sample size : n=6

Now, the probability that exactly three of them have blood type A is given by :-

[tex]P(3)=^6C_3(\dfrac{1}{3})^3(1-\dfrac{1}{3})^{6-3}\\\\=\dfrac{6!}{3!3!}(\dfrac{1}{3})^3(\dfrac{2}{3})^{3}\\\\=0.219478737997\approx0.2195[/tex]

Therefore, the probability that exactly three of them have blood type A = 0.2195


our friend purchases a $185,000 house. He is able to make a 15% down payment. The bank will give him a 30-year loan with a 3.5% APR.

How much money will he borrow for his mortgage?

$ (round to the nearest dollar)

What would his monthly payment be?

$ (round to the nearest cent)

How much interest will your friend pay over 30 years of his loan?

$ (round to the nearest cent)

Answers

Answer:

Given,

The value of the house = $ 185,000,

Percentage of down payment = 15%,

(i) So, the borrowed amount = 185,000 - 15% of 185,000

[tex]=185000-\frac{15\times 185000}{100}[/tex]

[tex]=185000-\frac{2775000}{100}[/tex]

[tex]=185000-27750[/tex]

[tex]=\$157250[/tex]

(ii) Since, the monthly payment formula of a loan is,

[tex]P=\frac{PV\times r}{1-(1+r)^{-n}}[/tex]

Where,

PV = present value of the loan ( or borrowed amount )

r = rate per month,

n = number of months,

Here, PV = $ 157250,

APR = 3.5% = 0.035 ⇒ r = [tex]\frac{0.035}{12}[/tex] ( 1 year = 12 months )

Time = 30 years, ⇒ n = 360 months,

Hence, the monthly payment would be,

[tex]P=\frac{157250\times \frac{0.035}{12}}{1-(1+\frac{0.035}{12})^{-360}}[/tex]

[tex]=706.122771579[/tex]    ( by graphing calculator ),

[tex]\approx \$ 706.12[/tex]

(iii) Interest = Total amount paid - borrowed amount

= 706.122771579 × 360 - 157250

= 96954.1977684

≈ $ 96954. 20

Final answer:

The friend will borrow $157,250 for the mortgage, with a monthly payment of $704.30. They will pay $101,548 in interest over 30 years.

Explanation:

To calculate the amount of money borrowed for the mortgage, we need to subtract the down payment from the total cost of the house. The down payment is 15% of the house cost, which is $185,000 x 0.15 = $27,750. So, the borrowed amount is $185,000 - $27,750 = $157,250.

To calculate the monthly payment, we can use the formula for a fixed-rate mortgage: M = P [ i(1 + i)^n ] / [ (1 + i)^n - 1 ]. Here, P is the borrowed amount ($157,250), i is the monthly interest rate (3.5% / 12 = 0.002916), and n is the total number of monthly payments (30 x 12 = 360). Plugging in these values, we get M = $157,250 [ 0.002916(1 + 0.002916)^360 ] / [ (1 + 0.002916)^360 - 1 ]. Using a calculator, the monthly payment comes out to be approximately $704.30.

To calculate the total interest paid over 30 years, we can multiply the monthly payment by the total number of payments and subtract the borrowed amount. The total interest paid = ($704.30 x 360) - $157,250. Using a calculator, the total interest paid comes out to be approximately $101,548. So, your friend will pay approximately $157,250 for the mortgage, with a monthly payment of approximately $704.30, and will pay approximately $101,548 in interest over 30 years.

Learn more about mortgage here:

https://brainly.com/question/31112455

#SPJ3

A study was conducted to measure the effectiveness of a diet program that claims to help manage weight. Subjects were randomly selected to participate. Before beginning the program, each participant was given a score based on his or her fitness level. After six months of following the diet, each participant received another score. The study wanted to test whether there was a difference between before and after scores. What is the correct alternative hypothesis for this analysis?

Answers

Answer: u (sub d) is inequal to zero

Step-by-step explanation: Because this is a paired t-test, our alternative hypothesis would be u(sub d) is inequal to zero.

Final answer:

The alternative hypothesis for a study on the effectiveness of a diet program would express the expectation of a statistically significant change in fitness level scores, likely a decrease if lower scores indicate better fitness, after participating in the program compared to before.

Explanation:

The correct alternative hypothesis for a study that aims to measure the effectiveness of a diet program in managing weight would look at whether there is a statistically significant difference in the fitness level scores of the participants before and after following the program. As the question suggests evaluating the effectiveness of a diet program, we are particularly interested in seeing an improvement, which would mean expecting a lower score after the program if the score represents a measure where lower is better.

Thus, the alternative hypothesis (H1) should reflect the expectation of improvement. If the fitness score is such that a lower score indicates better fitness, the alternative hypothesis would be:

H1: The mean fitness level score after the program is lower than the mean fitness level score before the program.

This implies that the diet program is effective in improving fitness levels. On the contrary, if a higher fitness score indicates better fitness, the alternative hypothesis would be framed to reflect an expected increase in the score after the program.

Which equation correctly describes the relationship between the measures of the angles and arcs formed by the intersecting secants?


m∠1=1/2(mAB−mEF)

m∠1=1/2(mAB+mEF)

m∠1=1/2mAB

m∠1=mAB+mEF

Answers

Answer:

  m∠1=1/2(mAB+mEF)

Step-by-step explanation:

The measure of the angle is half the sum of the intercepted arcs.

Answer:

[tex]m\angle 1 = \frac{1}{2}(m\angle AB+m\angle EF)[/tex]

Step-by-step explanation:

When two chords intersect each other inside a circle, the measure of the angle formed is one half the sum of the measure of the intercepted arcs.

Here, the chords FA and BE intersected each other inside the circle,

Also, angle 1 is the angle formed by the intersection,

Thus, from the above statement,

[tex]m\angle 1 = \frac{1}{2}(m\angle AB+m\angle EF)[/tex]

Second option is correct.

The probability of buying a movie ticket with a popcorn coupon is 0.629 and without a popcorn coupon is 0.371. If you buy 29 movie tickets, we want to know the probability that more than 16 of the tickets have popcorn coupons. Consider tickets with popcorn coupons as successes in the binomial distribution. Give the numerical value of the parameter p in this binomial distribution scenario.

Answers

Answer:

The probability[tex]0.75095[/tex] and the parameter [tex]p=0.629[/tex]

Step-by-step explanation:

The formula for probability  in a binomial distribution is:

[tex]b(x;n,p)=\frac{n!}{x!(n-x)!}\ast p^{x}\ast(1-p)^{n-x}[/tex]

where p is the probability of success (ticket with popcorn coupon), n is the number of trials (tickets bought) and x the number of successes desired. In this case p=0.629 (probability of buying a movie ticket with coupon), n=29,  and x=17,18,19, ...29.

[tex]b(17;29,0.629)=\frac{29!}{17!(29-17)!}\ast0.629^{17}\ast(1-0.629)^{29-17}=0.133\,25\\ b(18;29,0.629)=\frac{29!}{18!(29-18)!}\ast0.629^{18}\ast(1-0.629)^{29-18}=0.150\,61[/tex]

[tex]b(19;29,0.629)=\frac{29!}{19!(29-19)!}\ast0.629^{19}\ast(1-0.629)^{29-19}=0.147\,84\\ b(20;29,0.629)=\frac{29!}{20!(29-20)!}\ast0.629^{20}\ast(1-0.629)^{29-20}=0.125\,32 \\ b(21;29,0.629)=\frac{29!}{21!(29-21)!}\ast0.629^{21}\ast(1-0.629)^{29-21}=0.091\,06 \\ b(22;29,0.629)=\frac{29!}{22!(29-22)!}\ast0.629^{22}\ast(1-0.629)^{29-22}=0.056\,14[/tex]

[tex]b(23;29,0.629)=\frac{29!}{23!(29-23)!}\ast0.629^{23}\ast(1-0.629)^{29-23}=2.896\,8\times10^{-2} \\ b(24;29,0.629)=\frac{29!}{24!(29-24)!}\ast0.629^{24}\ast(1-0.629)^{29-24}=1.227\,8\times10^{-2}\\ b(25;29,0.629)=\frac{29!}{25!(29-25)!}\ast0.629^{25}\ast(1-0.629)^{29-25}=4.163\,4\times10^{-3} \\ b(26;29,0.629)=\frac{29!}{26!(29-26)!}\ast0.629^{26}\ast(1-0.629)^{29-26}=1.085\,9\times10^{-3} \\ b(27;29,0.629)=\frac{29!}{27!(29-27)!}\ast0.629^{27}\ast(1-0.629)^{29-27}=2.045\,7\times10^{-4}[/tex]

[tex]b(28;29,0.629)=\frac{29!}{28!(29-28)!}\ast0.629^{28}\ast(1-0.629)^{29-28}=2.477\,4\times10^{-5} \\ b(29;29,0.629)=\frac{29!}{29!(29-29)!}\ast0.629^{29}\ast(1-0.629)^{29-29}=1.448\,3\times10^{-6}[/tex]

The probability of more than 16 is equal to the sum of the probability of x=17, 17,18,19, ...29.

[tex]b(x>16;29,0.629)=0.13325+0.15061+0.14784+0.12532+0.09106+0.05614+2.8968\times10^{-2}+1.2278\times10^{-2}+4.1634\times10^{-3}+1.0859\times10^{-3}+2.0457\times10^{-4}+2.4774\times10^{-5}+1.4483\times10^{-6}=0.75095[/tex]

Final answer:

The numerical value of the parameter p in this binocular distribution scenario, where getting a popcorn coupon is defined as a success, is 0.629.

Explanation:

In this binomial distribution scenario, we are considering buying a movie ticket with a popcorn coupon as a success. The probability of success (p) is given as 0.629. Therefore, in this context, the numerical value of the parameter p for the binomial distribution is 0.629.

This means that each time a ticket is bought, there is a 0.629 chance (or 62.9%) of getting a popcorn coupon with the ticket. This probability stays constant with each new ticket purchase. In other words, the purchase of one ticket does not influence the likelihood of the outcome of the next ticket. This makes the scenario suitable to be modeled using a binomial distribution.

Learn more about Binomial Distribution here:

https://brainly.com/question/39749902

#SPJ3

. Joyce Meadow pays her three workers $160, $470, and $800, respectively, per week. Calculate what Joyce will pay at the end of the first quarter for (A) state unemployment and (B) federal unemployment. Assume a state rate of 5.6% and a federal rate of .6%. Base is $7,000. A. $950.64; $67.14 B. $655.64; $97.14 C. $755.64; $81.14 D. $850.64; $91.14

Answers

Answer:

Option D. $850.64; $91.14

Step-by-step explanation:

Joyce Meadow pays her three workers per week  $160, $470 and $800 respectively.

A year has 52 weeks, Therefore quarter has [tex]\frac{52}{4}[/tex] = 13 weeks.

So for a quarter she pays = 160 × 13 = $2,080, 470 × 13 = $6,110, 800 × 13 = $10,400

State rate is 5.6%

Federal rate is 0.6%

Base is $7,000

It means the unemployment needs to be paid on the first $7000 only

So the state unemployment = (0.056 × 2,080) + (0.056 × 6,110) + (0.056 × 7,000)

= 116.48 + 342.16 + 392 = $850.64

Federal unemployment = (0.006 × 2,080) + (0.006 × 6,110) + (0.006 × 7,000)

= 12.48 + 36.66 + 42 = $91.14

Option D. is the correct answer.

The ratio of my money to Natalie's was 7 to 4. After I gave Natalie $15, I now have 20 % more than her. How much money do we each have now? Solve with a strip diagram and explain.

Answers

Answer:

my money= $192.5

Natalie's money= $110

Step-by-step explanation:

let my and Natalie's money be 7x and 4x respectively.

Now i gave $15 dollar to Natalie so now

my and Natalie's money will be (7x-15) and (4x+15) respectively.

now my money is 20% more than Natalie

therefore,

[tex]\frac{7x-15}{4x+15} =\frac{6}{5}[/tex]

now calculating for x  we get

x= 27.5

since, my and Natalie's money be 7x and 4x respectively

putting x=27.5

my money= $192.5

Natalie's money= $110

4> Solve by using Laplace transform: y'+5y'+4y=0; y(0)=3 y'(o)=o

Answers

Answer:

[tex]y=3e^{-4t}[/tex]

Step-by-step explanation:

[tex]y''+5y'+4y=0[/tex]

Applying the Laplace transform:

[tex]\mathcal{L}[y'']+5\mathcal{L}[y']+4\mathcal{L}[y']=0[/tex]

With the formulas:

[tex]\mathcal{L}[y'']=s^2\mathcal{L}[y]-y(0)s-y'(0)[/tex]

[tex]\mathcal{L}[y']=s\mathcal{L}[y]-y(0)[/tex]

[tex]\mathcal{L}[x]=L[/tex]

[tex]s^2L-3s+5sL-3+4L=0[/tex]

Solving for [tex]L[/tex]

[tex]L(s^2+5s+4)=3s+3[/tex]

[tex]L=\frac{3s+3}{s^2+5s+4}[/tex]

[tex]L=\frac{3(s+1)}{(s+1)(s+4)}[/tex]

[tex]L=\frac3{s+4}[/tex]

Apply the inverse Laplace transform with this formula:

[tex]\mathcal{L}^{-1}[\frac1{s-a}]=e^{at}[/tex]

[tex]y=3\mathcal{L}^{-1}[\frac1{s+4}]=3e^{-4t}[/tex]

Other Questions
Instead of saying, "You're making me angry," say, "I'm getting angry." Instead of saying, "You hurt my feelings," say, "I feel hurt when you do that." These are examples of ________ . Please someone help me with these equations You need to find the distance across a river, so you make a triangle. BC is 943 feet, mB=102.9 and mC=18.6. Find AB. Five consecutive multiples of 3 yield a sum that is equal to the product of 7 and 15. What are these multiples? Daquan and Juan are twins but their sister phillipa is 3 years older than them if the sum of their three ages is 36 how old are the twins During the 1950s, a scientist named Lysenko tried to solve the food shortages in the Soviet Union by breeding wheat that could grow in Siberia. He theorized that if individual wheat plants were exposed to cold, they would develop additional cold tolerance and pass it to their offspring. Based on the ideas of artificial and natural selection, do you think this project worked as planned?A. Yes; the wheat probably evolved better cold tolerance over time through inheritance of acquired characteristics.B. No, because Lysenko took his wheat seeds straight to Siberia instead of exposing them incrementally to cold.C. No, because there was no process of selection based on inherited traits. Lysenko assumed thatexposure could induce a plant to develop additional cold tolerance and that this tolerance would be passed to the plant's offspring.D. Yes, because this is generally the method used by plant breeders to develop new crops. A system of equations is shown:2x = -y + 6- 4x + 3y = 8What is the solution to this system of equations?(-1,-4)(1,4)(4,1)(-4,-1) What's the average required power to raise a 150-kg drum to a height of 20 m in a time of 1.0 min? (Answer in kW) Write a program which prompts user to enter a character, if the user presses Z, the program asks user to enter a number. In this case the program implements 5-input majority voting logic which is explained as follows.The value of the number represented by the five leftmost bits of Register-B is tested. If the number of logic '1' bits (in the 5 leftmost bits) is greater than the number of logic '0' bits, the program should output: "The number of 1s in the 5 left most bits is greater than the number of 0s". If the number of logic '0' bits (in the 5 leftmost bits) is greater than the number of logic '1' bits, the program should output: "The number of 0s in the 5 left most bits is greater than the number of 1s" Which was not a reason Johnson used when vetoing the extension of the Freedmen's Bureau and the Civil Rights Bill of 1866? A. Johnson said the measures "favored" blacks over whites and was outside the bounds of the Constitution in doing so. B. Johnson said the measures were invalid because Southern states weren't represented in Congress during the vote. C. Johnson said providing social services for indigents via the Freedman's Bureau was outside the powers delineated in the Constitution. D. Johnson said the rights and guarantees of the Emancipation Proclamation were sufficient to protect blacks civil rights and a new bill was unnecessary. Helmsman Products sells a special type of navigation equipment for $ 1 comma 200. Variable costs are $ 800 per unit. When a special order arrived from a foreign contractor to buy 40 units at a reduced sales price of $ 1 comma 000 per unit, there was a discussion among the managers. The controller said that as long as the special price was greater than the variable costs, the sale would contribute to the company's profits and should be accepted as offered. The vice president, however, decided to decline the order. Which of the following statements supports the decision of the vice president? A. The company will need to hire additional staff to execute this order. B. The order is not likely to affect the regular sales. C. The variable costs of $ 800 includes variable costs of packing the product. D. The company is operating at 70% of its production capacity. If a CPU receives theinstruction to multiply the byte-sized values $12 and $3E, thisaction will take place in the ______________ (part of internal CPUhardware) section of the CPU. The Rangers won 5 of their first8 games. At this rate, how manygames should the Rangers win outof 56 games? A flat coil of wire consisting of 20 turns, each with an area of 50 cm2, is positioned perpendicularly to a uniform magnetic field that increases its magnitude at a constant rate from 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.40 ? What is the magnitude of the induced current? Compute the following quantities: a) i^21-i^32b) 2-i/3-2i.Please show work While on a sailboat at anchor, you notice that 15 waves pass its bow every minute. The waves have a speed of 6.0 m/s . Part A What is the distance between two adjacent wave crests Mateo pas el verano en Colombia con su abuela. Mateo fue a Colombia visitar a su abuela. Question 2 with 1 blank Ella estaba enferma y quera la compaa de su nieto. Ella estaba enferma; eso, Mateo decidi ir. Question 3 with 1 blank La familia le envi muchos regalos a la abuela. La famila envi muchos regalos la abuela. Question 4 with 1 blank La abuela se alegr mucho de la visita de Mateo. La abuela se puso muy feliz la visita de Mateo. Question 5 with 1 blank Mateo pas tres meses en ese pas. Mateo estuvo en Colombia tres meses. 3. Suppose a person developed a mutation in a somatic cell that diminishes the performance of the bodys natural cell cycle control proteins. This mutation resulted in cancer, but was effectively treated with a cocktail of cancer-fighting techniques. Is it possible for this persons future children to inherit this cancer-causing mutation? Be specific when you explain why or why not. For which H-atom wavefunction are you mostlikely to find the electron farthest from thenucleus?1.2p2.3p3.4pcorrect4.2s5.1s Which vessel leaves the right ventricle of the heart to take oxygen-poor