An element has the following natural abundances and isotopic masses: 90.92% abundance with 19.99 amu, 0.26% abundance with 20.99 amu, and 8.82% abundance with 21.99 amu. Calculate the average atomic mass of this element.

Answers

Answer 1

Answer: The average atomic mass of the given element is 20.169 amu.

Explanation:

Average atomic mass of an element is defined as the sum of masses of the isotopes each multiplied by their natural fractional abundance.

Formula used to calculate average atomic mass follows:

[tex]\text{Average atomic mass }=\sum_{i=1}^n\text{(Atomic mass of an isotopes)}_i\times \text{(Fractional abundance})_i[/tex]     .....(1)

We are given:

For isotope 1:

Mass of isotope 1 = 19.99 amu

Percentage abundance of isotope 1 = 90.92 %

Fractional abundance of isotope 1 = 0.9092

For isotope 2:

Mass of isotope 2 = 20.99 amu

Percentage abundance of isotope 2 = 0.26%

Fractional abundance of isotope 2 = 0.0026

For isotope 3:

Mass of isotope 3 = 21.99 amu

Percentage abundance of isotope 3 = 8.82%

Fractional abundance of isotope 3 = 0.0882  

Putting values in equation 1, we get:

[tex]\text{Average atomic mass}=[(19.99\times 0.9092)+(20.99\times 0.0026)+(21.99\times 0.0882)][/tex]

[tex]\text{Average atomic mass}=20.169amu[/tex]

Hence, the average atomic mass of the given element is 20.169 amu.


Related Questions

A farsighted person breaks her current eyeglasses and is using an old pair whose refractive power is 1.550 diopters. Since these eyeglasses do NOT completely correct her vision, she must hold her phone 44.0 cm from her eyes in order to read it. She wears the eyeglasses 2.0 cm from her eyes. How far is her near point from her eyes?

Answers

Answer:

122.4 cm

Explanation:

[tex]d_{p}[/tex] = distance of phone from eye = 44 cm

[tex]d_{e}[/tex] = distance of eyeglasses from eye = 2.0 cm

[tex]d_{o}[/tex] = Object distance = [tex]d_{p}[/tex] - [tex]d_{e}[/tex] = 44 - 2 = 42 cm

P = Power of the eyeglasses = 1.55 diopter

focal length of eyeglass is given as

[tex]f = \frac{1}{P}[/tex]

[tex]f = \frac{100}{1.55}[/tex]

f = 64.5 cm

[tex]d_{i}[/tex] = image distance

using the lens equation

[tex]\frac{1}{d_{o}} + \frac{1}{d_{i}} = \frac{1}{f}[/tex]

[tex]\frac{1}{42} + \frac{1}{d_{i}} = \frac{1}{64.5}[/tex]

[tex]d_{i}[/tex] = - 120.4 cm

[tex]d_{n}[/tex] = distance of near-point

distance of near-point is given as

[tex]d_{n}[/tex] = |[tex]d_{i}[/tex]| + [tex]d_{e}[/tex]

[tex]d_{n}[/tex] = 120.4 + 2

[tex]d_{n}[/tex] = 122.4 cm

g A ray of light is incident on a flat reflecting surface and is reflected. If the incident ray makes an angle of 28.7° with the normal to the reflecting surface, what angle does the reflected ray make with the normal?

Answers

When a ray of light is incident on a flat reflecting surface and makes an angle of 28.7° with the normal, the reflected ray will also make an angle of 28.7° with the normal.

When light reflects off a flat surface, the angle of incidence at that time equals the angle of reflection. Given an incident angle of 28.7° with the normal, the reflected ray will also make an angle of 28.7° with the normal. This principle, known as the law of reflection.

In addition, this principle applies universally to all the flat surfaces and ensures that light behaves predictably when interacting with various reflective surfaces, thereby making it a fundamental concept in both optics and physics. Thus, in this given scenario, the angle of reflection is 28.7°, maintaining consistency with the law of reflection.

A spherical shell of radius 1.70 m contains a single charged particle with q = 88.0 nC at its center. (a) What is the total electric flux through the surface of the shell? N · m2/C (b) What is the total electric flux through any hemispherical portion of the shell's surface?

Answers

Answer:

Part a)

[tex]\phi' = 9943.5 Nm^2/C[/tex]

Part b)

[tex]\phi' = 4971.75 Nm^2/C[/tex]

Explanation:

Part a)

Total electric flux due to charge contained in a closed surface is given as

[tex]\phi = \frac{Q}{\epsilon_0}[/tex]

now we have

[tex]Q = 88 nC[/tex]

now from above equation total flux is given as

[tex]\phi = \frac{88 \times 10^{-9}}{8.85 \times 10^{-12}}[/tex]

[tex]\phi = 9943.5 Nm^2/C[/tex]

Part b)

Now we need to find the flux through the hemispherical surface

so we will have

[tex]\phi' = \frac{\phi}{2}[/tex]

here we have

[tex]\phi' = \frac{9943.5}{2}[/tex]

[tex]\phi' = 4971.75 Nm^2/C[/tex]

(a) The total electric flux through the surface of the shell is 9943.5[tex]\frac{Nm^2}{C}[/tex]  

(b) The total electric flux through any hemispherical portion of the      shell's surface is 4971.75 [tex]\frac{Nm^2}{C}[/tex]

What is an electric flux?

Electric flux is the measure of the electric field through a given surface. It helps us to describe the strength of an electric field at any distance from the charge.

(a) The formula for the electric flux is given by,

[tex]\rm{\phi=\frac{Q}{\varepsilon_0}}[/tex]      

Where , Q= 88.0 nC = [tex]88\times10^{-9}[/tex]

             [tex]\varepsilon_0[/tex] =[tex]{8.85\times10^{-12} }[/tex]

[tex]\phi=\frac{88\times10^{-9} }{8.85\times10^{-12} }[/tex]

[tex]\phi=9943.5\frac{Nm^{2} }{C}[/tex]

The total electric flux through the surface of the shell is 9943.5[tex]\frac{Nm^2}{C}[/tex]

(b) For the spherical surface electric flux is taken as [tex]\phi_2[/tex]

[tex]\rm{\phi_2=\frac{\phi_1}{2}}[/tex]

[tex]\rm{\phi_2=\frac{9943.5}{2}}[/tex]

[tex]\phi_2 =4979.5\frac{Nm^2}{C}[/tex]

The total electric flux through any hemispherical portion of the shell's surface is 4971.75 [tex]\frac{Nm^2}{C}[/tex]

To learn more about the electric flux refer to the link.

https://brainly.com/question/7944455

             

A meteoroid, heading straight for Earth, has a speed of 14.8 km/s relative to the center of Earth as it crosses our moon's orbit, a distance of 3.84 × 108 m from the earth's center. What is the meteroid's speed as it hits the earth

Answers

Answer:

The meteoroid's speed is 18.5 km/s

Explanation:

Given that,

Speed = 14.8 km/s

Distance [tex]d= 3.84\times10^{8}[/tex]

We need to calculate the meteoroid's speed

The total initial energy

[tex]E_{i}=K_{i}+U_{i}[/tex]

[tex]E_{i}=\dfrac{1}{2}mv_{i}^2-\dfrac{GM_{e}m}{r}[/tex]

Where, m = mass of  meteoroid

G = gravitational constant

[tex]M_{e}[/tex]=mass of earth

r = distance from earth center

Now, The meteoroid hits the earth then the distance of meteoroid from the earth 's center will be equal to the radius of earth

The total final energy

[tex]E_{f}=K_{f}+U_{f}[/tex]

[tex]E_{f}=\dfrac{1}{2}mv_{f}^2-\dfrac{GM_{e}m}{r_{e}}[/tex]

Where,

[tex]r_{e}[/tex]=radius of earth

Using conservation of energy

[tex]E_{i}=E_{j}[/tex]

Put the value of initial and final energy

[tex]\dfrac{1}{2}mv_{i}^2-\dfrac{GM_{e}m}{r}=\dfrac{1}{2}mv_{f}^2-\dfrac{GM_{e}m}{r_{e}}[/tex]

[tex]v_{f}^2=v_{i}^2+2GM_{e}(\dfrac{1}{r_{e}}-\dfrac{1}{r})[/tex]

Put the value in the equation

[tex]v_{f}^2=(14.8\times10^{3})^2+2\times6.67\times10^{-11}\times5.97\times10^{24}(\dfrac{1}{6.37\times10^{6}}-\dfrac{1}{3.84\times10^{8}})[/tex]

[tex]v_{f}=\sqrt{(14.8\times10^{3})^2+2\times6.67\times10^{-11}\times5.97\times10^{24}(\dfrac{1}{6.37\times10^{6}}-\dfrac{1}{3.84\times10^{8}})}[/tex]

[tex]v_{f}=18492.95\ m/s[/tex]

[tex]v_{f}=18.5\ km/s[/tex]

Hence, The meteoroid's speed is 18.5 km/s

Final answer:

To find the meteoroid's speed as it hits the Earth, we can use the principle of conservation of mechanical energy. The final velocity of the meteoroid is approximately 13.4 km/s.

Explanation:

To find the meteoroid's speed as it hits the Earth, we can use the principle of conservation of mechanical energy. Since there is no air friction, the mechanical energy of the meteoroid is conserved as it falls towards Earth. The initial kinetic energy of the meteoroid is equal to the final kinetic energy plus the gravitational potential energy.

First, we find the initial kinetic energy of the meteoroid using the formula KE = (1/2)mv^2, where m is the mass of the meteoroid and v is its initial velocity relative to the center of the Earth. Since the mass is not given, we can assume it cancels out in the equation.

Next, we calculate the gravitational potential energy of the meteoroid using the formula PE = mgh, where g is the acceleration due to gravity (approximately 9.8 m/s^2) and h is the height from which the meteoroid fell. The height can be calculated by subtracting the radius of the Earth from the distance from the center of the Earth to the moon's orbit (h = 3.84 × 10^8 m - 6.37 x 10^6 m).

Solving for the final velocity, we equate the initial kinetic energy and the sum of the final kinetic energy and gravitational potential energy. Rearranging the equation, we find that the final velocity is the square root of (initial velocity squared minus 2 times g times h).

Plugging in the given values, the final velocity of the meteoroid as it hits the Earth is approximately 13.4 km/s.

Learn more about conservation of mechanical energy here:

https://brainly.com/question/28928306

#SPJ12

A spaceship travels at a speed of 0.95c to the nearest star, Alpha Centauri, 4.3 light years (ly) away. How long does the trip take from the point of view of the passengers on the ship? A. 1.4 ly B. 1.0 ly C. 4.5 ly D. 14 ly E. 0.44

Answers

Answer:

A  1.4ly

Explanation:

speed v= 0.95c c= speed of light distance t₀=4.3ly

As per the time dilation priciple we know that

[tex] t=t_{0}\sqrt {\frac {c^2 -v^2}{c^2}} [/tex]

[tex]\Rightarrow t=4.3\sqrt {1-0.95^2}[/tex]

t=1.4 ly

therefore, it will take 1.4ly for the trip from the point of view of passenger on ship. ly here is light year.

Two flat rectangular mirrors are set edge to edge and placed perpendicular to a flat nonreflecting surface. The edges of the two mirrors meet at a 30° angle. A light ray that approaches mirror 1 is parallel to mirror 2. The angle of reflection of that ray from mirror 1 is:

Answers

Answer:

Angle of refelction is 60°

Explanation:

Let two mirrors XY and ZY  meet at Y such that ∠XYZ = 30°

Let an incident ray PO incident on the 1st mirror XY and is parallel to the 2nd mirror YZ.

Let ON be the normal.

Now we know that , angle of incidence is equal to the angle of reflection

∴∠PON = ∠NOQ =60°

Therefore, the angle of reflection of the ray incident on the 1st mirror is 60 degree.

Final answer:

The angle of reflection of the light ray from Mirror 1 is 30°. This is in accordance with the Law of Reflection which states that the angle of incidence equals the angle of reflection. Examples of this principle are corner reflectors on bikes or cars and binoculars.

Explanation:

According to The Law of Reflection, the angle of incidence is equal to the angle of reflection. When a light ray approaches a mirror parallel to another, it will reflect off at the same angle it hit, but in the opposite direction. Therefore, if the light ray approaches Mirror 1 parallel to Mirror 2, and considering that the two mirrors meet at a 30° angle, the light should reflect off at a 30° angle to the normal (perpendicular line) of Mirror 1.

This behavior of light can be observed in corner reflectors used on bikes and cars, where light is reflected back exactly parallel to the direction from which it came. It's also a principle used in binoculars and periscopes, where light is made to reflect multiple times in the system at respective angles of incidence and reflection.

Learn more about the Law of Reflection here:

https://brainly.com/question/15655610

#SPJ3

A small glass bead has been charged to 7.6 nC. What is the magnitude of the electric field 2.0 cm from the center of the bead? (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)

Answers

Answer:

1.7 × 10^8 N/C

Explanation:

Q = 7.6 nC, r = 2 cm = 0.02 m

E = KQ/r^2

E =

8.99 × 10^9 × 7.6 × 10^(-6)/(0.02 × 0.02)

E = 1.7 × 10^8 N/C

A boy whirls a stone in a horizontal circle of radius 1.7 m and at height 1.9 m above level ground. The string breaks, and the stone flies off horizontally and strikes the ground after traveling a horizontal distance of 8.9 m. What is the magnitude of the centripetal acceleration of the stone while in circular motion?

Answers

Answer:

[tex]a_c = 120.4 m/s^2[/tex]

Explanation:

As we know that stone is revolving in horizontal circle

so here height of the stone is H = 1.9 m

now by kinematics we can find the time to reach it at the ground

[tex]H = \frac{1}[2}gt^2[/tex]

now we have

[tex]1.9 = \frac{1}{2}(9.81)t^2[/tex]

now we have

[tex]t = 0.622 s[/tex]

now the speed of the stone is given as

[tex]v = \frac{x}{t}[/tex]

[tex]v = \frac{8.9}{0.622} = 14.3 m/s[/tex]

now for finding centripetal acceleration we have

[tex]a_c = \frac{v^2}{R}[/tex]

we know that radius of circle is

R = 1.7 m

now we have

[tex]a_c = \frac{14.3^2}{1.7}[/tex]

[tex]a_c = 120.4 m/s^2[/tex]

A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 6.00 sin 90πt, where I is in amperes and t is in seconds. What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.)

Answers

To find the electric field induced at a radius of 1.00 cm from the axis of the solenoid, we can use the formula for the magnetic field inside a solenoid:

B = μ₀nI,

where B is the magnetic field, μ₀ is the permeability of free space, n is the number of turns per unit length, and I is the current.

First, let's find the magnetic field at a radius of 2.00 cm from the axis of the solenoid using the given values:

B = μ₀nI,

B = (4π×10⁻⁷ T·m/A)(1.65×10³ turns/m)(6.00 sin 90πt A),

B = (4π×10⁻⁷)(1.65×10³)(6.00 sin 90πt) T.

Now, we can use Ampere's law to find the electric field at a radius of 1.00 cm from the axis of the solenoid. Ampere's law states that the line integral of the magnetic field around a closed loop is equal to the permeability times the current enclosed by the loop.

∮B·dl = μ₀I_enclosed.

For a solenoid, the magnetic field is constant along any circular loop inside the solenoid. Therefore, the left side of the equation simplifies to B multiplied by the circumference of the loop, 2πr.

B(2πr) = μ₀I_enclosed.

Since the electric field is induced by a changing magnetic field, we can use Faraday's law of electromagnetic induction to relate the electric field to the time derivative of the magnetic field:

E = -d(B·A)/dt,

where E is the electric field, B is the magnetic field, A is the cross-sectional area of the loop, and dt is the change in time.

To find the electric field at a radius of 1.00 cm, we need to differentiate the magnetic field with respect to time and multiply by the cross-sectional area of the loop. Since the cross-sectional area of the loop is proportional to the square of the radius, A = πr², we have:

E = -d(B·A)/dt,

E = -(d(B·πr²)/dt,

E = -πr²(dB/dt).

Taking the time derivative of the magnetic field B, we get:

dB/dt = (4π×10⁻⁷)(1.65×10³)(6.00 cos 90πt) T/s.

Substituting this expression back into the equation for the electric field, we have:

E = -πr²(dB/dt),

E = -π(1.00×10⁻² m)²[(4π×10⁻⁷)(1.65×10³)(6.00 cos 90πt)] T/s,

E = -6.27×10⁻⁸π cos 90πt mV/m.

So, the electric field induced at a radius of 1.00 cm from the axis of the solenoid is -6.27×10⁻⁸π cos 90πt mV/m.

The induced electric field at ( r = 1.00 ) cm from the solenoid axis is approximately [tex]\( -12\pi^2 \cos(90\pi t) \) mV/m.[/tex]  

Electric field induced:  [tex]\( 0.111 \cos(90\pi t) \) mV/m at \( r = 1.00[/tex] \) cm from solenoid axis.

To find the electric field induced at a radius of ( r = 1.00 ) cm from the axis of the solenoid, we can use Faraday's law of electromagnetic induction.

The induced electric field  [tex](\( E \))[/tex] is given by:

[tex]\[ E = -\frac{d\Phi}{dt} \][/tex]

Where  [tex]\( \Phi \)[/tex]  is the magnetic flux through the solenoid's cross-sectional area.

For a solenoid, the magnetic flux  [tex]\( \Phi \)[/tex]  is given by:

[tex]\[ \Phi = BA \][/tex]

Where:

- B  is the magnetic field inside the solenoid,

-  A  is the cross-sectional area of the solenoid.

Given the current  [tex]\( I(t) = 6.00 \sin(90\pi t) \)[/tex]  A, and using Ampere's law for the magnetic field inside a solenoid:

[tex]\[ B = \mu_0 n I \][/tex]

Where:

[tex]- \( \mu_0 \)[/tex] is the permeability of free space [tex](\( 4\pi \times 10^{-7} \) T m/A),[/tex]

-  n  is the number of turns per meter.

Substitute  [tex]\( I(t) \)[/tex]  into the equation for ( B ) and then calculate  [tex]\( \frac{d\Phi}{dt} \) to find \( E \).[/tex]

Given:

- [tex]\( n = 1.65 \times 10^3 \)[/tex]  turns/m

- [tex]\( I(t) = 6.00 \sin(90\pi t) \)[/tex] A

- [tex]\( A = \pi r^2 \)[/tex]  (for a circular cross-section)

We calculate the magnetic field [tex]\( B \):[/tex]

[tex]\[ B = \mu_0 n I(t) = 4\pi \times 10^{-7} \times 1.65 \times 10^3 \times 6.00 \sin(90\pi t) \][/tex]

Next, we calculate the magnetic flux  [tex]\( \Phi \):[/tex]

[tex]\[ \Phi = BA = 4\pi \times 10^{-7} \times 1.65 \times 10^3 \times 6.00 \sin(90\pi t) \times \pi \times (0.01)^2 \][/tex]

Now, we take the time derivative of [tex]\( \Phi \) to find \( \frac{d\Phi}{dt} \):[/tex]

[tex]\[ \frac{d\Phi}{dt} = 4\pi \times 10^{-7} \times 1.65 \times 10^3 \times 6.00 \times 90\pi \cos(90\pi t) \times \pi \times (0.01)^2 \][/tex]

Finally, we plug in the values and calculate:

[tex]\[ \frac{d\Phi}{dt} = 12\pi^2 \cos(90\pi t) \times 4.95 \times 10^{-10} \][/tex]

Now, we have [tex]\( \frac{d\Phi}{dt} \),[/tex]  the induced electric field [tex]\( E \) is given by \( E = -\frac{d\Phi}{dt} \).[/tex]

[tex]\[ E = -12\pi^2 \cos(90\pi t) \times 4.95 \times 10^{-10} \][/tex]

Therefore, the induced electric field at ( r = 1.00 ) cm from the solenoid axis is approximately [tex]\( -12\pi^2 \cos(90\pi t) \) mV/m.[/tex]

A grinding wheel with a mass of 10.50 kg and a radius of 0.55 m is initially at rest. What angular momentum will the wheel have 9.50 s after a 7.50 N·m torque is applied to it.

Answers

Answer:

[tex]L_f = 71.25 kg m^2/s[/tex]

Explanation:

As we know by Newton's law of rotational motion that Rate of change in angular momentum is total torque on the system

So here we have

[tex]\tau = \frac{\Delta L}{\Delta t}[/tex]

here we can say it

[tex]L_f - L_i = \tau \Delta t[/tex]

so final angular momentum of the disc is given by the equation

[tex]L_f = L_i + \tau \Delta t[/tex]

now we know that

[tex]\tau = 7.50 Nm[/tex]

time interval is given as

[tex]\Delta t = 9.50 s[/tex]

since it is initially at rest so initial angular momentum is ZERO

so we have

[tex]L_f = 0 + (7.50)(9.50)[/tex]

[tex]L_f = 71.25 kg m^2/s[/tex]

Wanda exerts a constant tension force of 12 N on an essentially massless string to keep a tennis ball (m=60g) attached to the end of the string traveling in uniform circular motion above her head at a constant speed of 9.0 m/s. What is the length of the string between her hand and the tennis ball? You may ignore gravity in this problem (assume the motion of the tennis ball and string happen in a purely horizontal plane). a. 22 m
b. 2.5 m
c. 2.2 cm
d. 10 m

Answers

Final answer:

The length of the string between Wanda's hand and the tennis ball is 4.5 cm.

Explanation:

To find the length of the string between Wanda's hand and the tennis ball, we need to use the formula for centripetal force:

F = (m * v^2) / r

where F is the tension force, m is the mass of the ball, v is the velocity, and r is the radius of the circular motion.

In this case, the tension force is 12 N, the mass of the ball is 60 g (0.06 kg), and the velocity is 9.0 m/s. We can rearrange the formula to solve for r:

r = (m * v^2) / F

Substituting the given values, we get:

r = (0.06 * 9.0^2) / 12

r = 0.045 m = 4.5 cm

Therefore, the length of the string between Wanda's hand and the tennis ball is 4.5 cm.

The height of your father is 70 inches. What is his height to the nearest centimeter, if there are 2.54 centimeters in an inch?

Answers

Answer:

The height of father = 178 cm.

Explanation:

The height of your father is 70 inches.

There are 2.54 centimeters in an inch

1 inch = 2.54 cm

70 inches = 70 x 2.54 = 177.8 cm

Rounding to the nearest centimeter.

70 inches = 177.8 cm = 178 cm

The height of father = 178 cm.

A ball is launched at an angle of 10 degrees from a 20 meter tall building with a speed of 4 m/s. How long is the ball in the air, how far from the launch point does it land, and what is the maximum height the ball reaches with respect to its starting height? a) -1.85 s,8.71 m, 1.54m b) 2.21 s, 8.71 m, 1.54m c) 6.44 s, 4.23 m, 0.02 m d) None of the above

Answers

Answer:

d) None of the above

Explanation:

[tex]v_{o}[/tex] = inituial velocity of launch = 4 m/s

θ = angle of launch = 10 deg

Consider the motion along the vertical direction

[tex]v_{oy}[/tex] = initial velocity along vertical direction = 4 Sin10 = 0.695

m/s

[tex]a_{y}[/tex] = acceleration along the vertical direction = - 9.8 m/s²

y = vertical displacement = - 20 m  

t = time of travel

using the equation

[tex]y=v_{oy} t+(0.5)a_{y} t^{2}[/tex]

- 20 = (0.695) t + (0.5) (- 9.8) t²

t = 2.1 sec

consider the motion along the horizontal direction

x = horizontal displacement

[tex]v_{ox}[/tex] = initial velocity along horizontal direction = 4 Cos10 = 3.94 m/s

[tex]a_{x}[/tex] = acceleration along the horizontal direction = 0 m/s²

t = time of travel =  2.1 s

Using the kinematics equation

[tex]x =v_{ox} t+(0.5)a_{x} t^{2}[/tex]

x = (3.94) (2.1) + (0.5) (0) (2.1)²

x = 8.3 m

Consider the motion along the vertical direction

[tex]v_{oy}[/tex] = initial velocity along vertical direction = 4 Sin10 = 0.695

m/s

[tex]a_{y}[/tex] = acceleration along the vertical direction = - 9.8 m/s²

[tex]y_{o}[/tex] =initial vertical position at the time of launch = 20 m  

[tex]y[/tex] = vertical position at the maximum height = 20 m

[tex]v_{fy}[/tex] = final velocity along vertical direction at highest point = 0 m/s

using the equation

[tex]{v_{fy}}^{2}= {v_{oy}}^{2} + 2 a_{y}(y - y_{o})[/tex]

[tex]0^{2}= 0.695^{2} + 2 (- 9.8)(y - 20)[/tex]

[tex]y[/tex] = 20.02 m

h = height above the starting height

h = [tex]y[/tex] - [tex]y_{o}[/tex]

h = 20.02 - 20

h = 0.02 m

After an initial test run John determines that his cooling system generates 45 W of heat loss. Calculate the amount of heat loss (H2), in W, that Mike expects his pump to do if its fan speed were 3.5 times greater and the coolant density was 9.5 times smaller.

Answers

Given:

heat generated by John's cooling system,  [tex]H = \rho A v^{3}[/tex]  = 45 W    (1)

If ρ, A, and v corresponds to John's cooling system then let [tex]\rho_{1}, A_{1}, v_{1}[/tex] be the variables for Mike's system then:

[tex]\rho  = 9.5\rho_{1}[/tex]

[tex]\rho_{1}  = \frac{\rho}{9.5}[/tex]

[tex]v_{1} =3.5 v[/tex]

Formula use:

Heat generated, [tex]H = \rho A v^{3}[/tex]

where,

[tex]\rho[/tex] = density

A = area

v = velocity

Solution:

for Mike's cooling system:

[tex]H_{2}[/tex] = [tex]v_{1}^{3}{1}A_{1}\rho_{1}[/tex]

⇒ [tex]H_{2}[/tex] = [tex](3.5v)^{3}[/tex] × A × [tex]\frac{\rho}{9.5}[/tex]

[tex]H_{2}[/tex] = 4.513[tex]v^{3}[/tex] A  [tex]\rho[/tex]

Using eqn (1) in the above eqn, we get:

[tex]H_{2}[/tex] = 4.513 × 45 = 203.09 W

We have that The Heat loss H2 is given as

H2=1347.5w

From the question we are told

After an initial test run John determines that his cooling system generates 45 W of heat loss. Calculate the amount of heat loss (H2), in W, that Mike expects his pump to do if its fan speed were 3.5 times greater and the coolant density was 9.5 times smaller.

heat loss (H2)

Generally the equation for the   is mathematically given as

H=PAV^3

Therefore

[tex]\frac{110}{h_2}=\frac{P_1}{p1/3.5}*(\frac{V_1}{3.5*v_1})^3[/tex]

H_2=1347.5w

Therefore

The Heat loss H2 is given as

H2=1347.5w

For more information on this visit

https://brainly.com/question/12266212?referrer=searchResults

A battery has an emf of 15.0 V. The terminal voltage of the battery is 12.2 V when it is delivering 14.0 W of power to an external load resistor R. (a) What is the value of R?
(b) What is the internal resistance of the battery?

Answers

Final answer:

The external resistance R is approximately 10.63 Ohms while the internal resistance of the battery is approximately 2.43 Ohms.

Explanation:

This problem pertains to the principles of electric circuits, namely Ohm's Law (V = IR) and power (P = VI). To solve this, we'll first compute the resistance R of the external load and then calculate the internal resistance (r) of the battery.

(a) We begin by using the power formula P = VI, rearranging to find resistance R: P/V = I. So, the current I flowing through the circuit is 14.0 W/12.2 V which equals to about 1.148 A. Then, we apply Ohm's Law to get R = V/I, which results in: R = 12.2 V /1.148 A = 10.63 Ω.

(b) The difference between the emf (ε) and the terminal voltage (Vt) gives the voltage drop across the internal resistance (i.e., ε - Vt = Ir). Thus, r = (ε - Vt) / I = (15V - 12.2V) / 1.148 A = 2.43 Ω.

Learn more about Electrical Resistance here:

https://brainly.com/question/31668005

#SPJ3

A 13.1 μF capacitor is connected through a 853 kΩ resistor to a constant potential difference of 64 V. Compute the charge on the capacitor at 14 s after the connections are made. (Give your answer in decimal using micro C (μC) as unit)

Answers

Answer:

[tex]q = 598.9 \mu C[/tex]

Explanation:

As we know that when an uncharged capacitor is connected through a voltage source then the charge on the plates of capacitor will increase with time.

It is given by the equation

[tex]q = CV(1 - e^{-\frac{t}{RC}})[/tex]

here we know that

[tex]C = 13.1 \mu F[/tex]

[tex]R = 853 k ohm[/tex]

V = 64 volts

now we have

[tex]q = (13.1 \mu F)(64) ( 1 - e^{-\frac{14}{(853\times 10^3)(13.1 \times 10^{-6})}})[/tex]

[tex]q = 598.9 \mu C[/tex]

The speedometer of a European sportscar gives its speed in km/h. To the nearest integer, what is the car's speed in mi/h when the speedometer reads 282 km/h?

Answers

Answer:

175  [tex]\frac{mi}{h}[/tex]

Explanation:

v = speedometer reading of a european sportscar = [tex]282 \frac{km}{h}[/tex]

we know that,

1 km = 0.621 miles

So the speedometer reading of a european sportscar in  mi/h is given as

v = [tex]282 \frac{km}{h}[/tex] = [tex]282\left ( \frac{km}{h} \right ) \left ( \frac{0.621 mi}{1 km} \right )[/tex]

v = (282 x 0.621) [tex]\frac{mi}{h}[/tex]

v = 175  [tex]\frac{mi}{h}[/tex]

A third baseman makes a throw to first base 40.5 m away. The ball leaves his hand with a speed of 30.0 m/s at a height of 1.4 m from the ground and making an angle of 17.3 o with the horizontal. How high will the ball be when it gets to first base?

Answers

Answer:

When the ball goes to first base it will be 4.23 m high.

Explanation:

Horizontal velocity = 30 cos17.3 = 28.64 m/s

   Horizontal displacement = 40.5 m

   Time  

         [tex]t=\frac{40.5}{28.64}=1.41s[/tex]          

   Time to reach the goal posts 40.5 m away = 1.41 seconds

Vertical velocity = 30 sin17.3 = 8.92 m/s

    Time to reach the goal posts 40.5 m away = 1.41 seconds

    Acceleration = -9.81m/s²

    Substituting in s = ut + 0.5at²

             s = 8.92 x 1.41 - 0.5 x 9.81 x 1.41²= 2.83 m

    Height of throw = 1.4 m

    Height traveled by ball = 2.83 m

    Total height = 2.83 + 1.4 = 4.23 m

    When the ball goes to first base it will be 4.23 m high.

A car that was initially moving at 10 m/s is accelerated until its velocity reached 61 m/s. The change of the velocity took 6 s. What is the acceleration of the car in m/s^2? Please round your answer to two decimal places.

Answers

Answer:

The acceleration of the car is 8.50 m/s²

Explanation:

Given that,

Initial velocity = 10 m/s

Final velocity = 61 m/s

Time = 6 s

We need to calculate the acceleration of the car

Using equation of motion

[tex]v=u+at[/tex].....(I)

[tex]a=\dfrac{v-u}{t}[/tex]

Where, u = initial velocity

v = final velocity

t = time

Put the value in the equation (I)

[tex]a=\dfrac{61-10}{6}[/tex]

[tex]a=8.50\ m/s^2[/tex]

Hence, The acceleration of the car is 8.50 m/s²

In a circus performance, a large 3.8 kg hoop with a radius of 1.3 m rolls without slipping. If the hoop is given an angular speed of 6.7 rad/s while rolling on the horizontal and is allowed to roll up a ramp inclined at 15◦ with the horizontal, how far (measured along the incline) does the hoop roll? The acceleration of gravity is 9.81 m/s 2 . Answer in units of m

Answers

Answer:

L = 30 m

Explanation:

As per mechanical energy conservation law we can say that total kinetic energy of the hoop is equal to the total gravitational potential energy at the top

So here we can say for initial total kinetic energy as

[tex]KE = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2[/tex]

for pure rolling we will have

[tex]v = r\omega[/tex]

also for large hoop we will have

[tex]I = mR^2[/tex]

now we have

[tex]KE = \frac{1}{2}mR^2\omega^2 + \frac{1}{2}(mR^2)\omega^2[/tex]

[tex]KE = mR^2\omega^2[/tex]

[tex]KE = (3.8)(1.3)^2(6.7)^2[/tex]

[tex]KE = 288.3 J[/tex]

now for gravitational potential energy we can say

[tex]U = mg(Lsin\theta)[/tex]

now by energy conservation we have

[tex]288.3 = (3.8)(9.81)(L sin15)[/tex]

[tex]L = 30 m[/tex]

The horizontal distance traveled by the hoop is approximately 30 m.

Total kinetic energy of the ball

The total kinetic energy of the ball is the sum of the translational and rotational kinetic of the ball.

K.E(total) = K.E(trans) + K.E(rotational)

[tex]K.E(t) = \frac{1}{2}mv^2 + \frac{1}{2} I \omega ^2\\\\K.E(t) = \frac{1}{2}mv^2 + \frac{1}{2} (mR^2) \omega ^2\\\\K.E(t) = \frac{1}{2}m(\omega R)^2 + \frac{1}{2} (mR^2) \omega ^2\\\\K.E(t) = m\omega ^2R^2\\\\K.E(t) = 3.8 \times (6.7)^2 \times (1.3)^2\\\\K.E(t) = 288.28 \ J[/tex]

Conservation of energy

The horizontal distance traveled by the hoop is calculated as follows;

K.E = P.E

288.28  = mg(Lsinθ)

288.28 = (3.8 x 9.8) x (L) x sin(15)

288.28 = 9.63 L

L = 30 m

Thus, the horizontal distance traveled by the hoop is approximately 30 m.

Learn more about conservation of energy here: https://brainly.com/question/166559

When atom A loses an electron to atom B: a) atom A becomes a negative ion and atom B becomes a positive ion. b) atom A acquires more neutrons than atom B. c) atom A becomes more negative than atom B. d) atom A acquires less neutrons than atom B. e) atom A becomes a positive ion and atom B becomes a negative ion.

Answers

The correct answer is e) atom A becomes a positive ion and atom B becomes a negative ion. Ions are charged particles that result when a neutral atom gains or loses an electron.

Further Explanation:

In a neutral atom, the number of protons is equal to the number of electrons.In a positive ion, the number of protons is greater than the number of electrons.In a negative ion, the number of protons is less than the number of electrons.

In the problem, atom A loses an electron to atom B.

Suppose atom A has 11 protons and 11 electrons and atom B has 9 protons and 9 electrons.

BEFORE TRANSFER OF ELECTRONS

atom A:    11 protons, 11 electrons

atom B:     9 protons, 9 electrons

AFTER TRANSFER OF ELECTRONS

atom A:    11 protons, 10 electrons

atom B:      9 protons, 10 electrons

a) atom A becomes a negative ion and atom B becomes a positive ion FALSE because atom A has more protons than electrons turning it into a positive ion, and atom B now has more electrons making a negative ion.

b) atom A acquires more neutrons than atom B FALSE because only the number of electrons changed. The number of neutrons are unchanged in the formation of ions.

c) atom A becomes more negative than atom B FALSE because atom A becomes more positive since there is more protons (positively charged) than electrons (negatively charged) while atom B, with its extra electron becomes negatively charged

d) atom A acquires less neutrons than atom B FALSE because the number of neutrons does not change. Only an electron was transferred.

e) atom A becomes a positive ion and atom B becomes a negative ion TRUE because there are more protons than electrons in A after the electron transfer and there are more electrons in B than protons after receiving the electron.

Learn More

Learn more about nucleus https://brainly.com/question/1013246Learn more about quarks https://brainly.com/question/803445Lean more about electrons https://brainly.com/question/1255220

Keywords: ion, electron, atom

On the Moon, the acceleration due to gravity is 1.62 m/s^2.How far would a 25 g rock fall from rest in 9.5 seconds if the only force acting on it was the gravitational force due to the Moon?

Answers

Answer:

Distance, x = 73.10 meters

Explanation:

It is given that,

Mass of the rock, m = 25 g = 0.025 kg

Acceleration due to gravity, a = 1.62 m/s²

We need to find the distance traveled by the rock when it falls from rest in 9.5 seconds if the only force acting on it was the gravitational force due to the Moon. It can be calculated using the second equation of motion i.e.

[tex]x=ut+\dfrac{1}{2}at^2[/tex]

[tex]x=0+\dfrac{1}{2}\times 1.62\ m/s^2\times (9.5\ s)^2[/tex]

x = 73.1025 meters

or

x = 73.10 meters

So, the distance traveled by the rock is 73.10 meters. Hence, this is the required solution.

A very long wire generates a magnetic field of 0.0020x 10^-4 T at a distance of 10 mm. What is the magnitude of the current? A) 2.0 mA B) 3100 mA C) 4000 mA D) 1.0 mA

Answers

Answer:

2*10^-5

Explanation:

B=IL

I=B/L

I=0.0020*10^-4/10

I=2*10^5

The magnitude of the current in a magnetic field is  2 x10⁵ Amperes.

What is magnetic field?

The magnetic field is the region of space where a charged object experiences magnetic force when it is moving.

The formula for magnetic field is given as;

B=IL

I=B/L

A very long wire generates a magnetic field of 0.0020 x 10⁻⁴ T at a distance of 10 mm.

Plug the values, we get

I=0.0020 x 10⁻⁴/(10 x 10⁻³)

I=2 x10⁵

Thus, the magnitude of the current is 2 x10⁵ Amperes.

Learn more about magnetic field.

https://brainly.com/question/14848188

#SPJ2

Calculate the torque and be sure to include units and sign. A force of 18.4 N is applied perpendicular to the end of a long level arm with length 97.8m causing a clockwise motion. What the torque?

Answers

Answer:

Torque = -1799.52 Nm or 1799.52 Nm (clockwise direction)

Explanation:

Torque =  Force x Perpendicular distance

Here force is given as 18.4 N and Perpendicular distance = 97.8 m

Substituting

Torque =  Force x Perpendicular distance = 18.4 x 97.8 = 1799.52 Nm

Torque = 1799.52 Nm (clockwise direction)

Usually anticlockwise is positive

So torque = -1799.52 Nm

Answer:

The torque is 1799.52 N-m

Explanation:

Given that,

Force = 18.4 N

Length = 97.8 m

We calculate the torque,

Torque is the product of the force and perpendicular distance.

[tex]\tau =Fl\sin\theta[/tex]

Where, F = force

l = length

Put the value into the formula

[tex]\tau =18.4\times97.8\sin90^{\circ}[/tex]

[tex]\tau =1799.52\ N-m[/tex]

Hence, The torque is 1799.52 N-m

(5-95) Argon steadily flows into a constant pressure heater at 300 K and 100 kPa with a mass flow rate of 6.24 kg/s Heat transfer in the rate of 150 kW is supplied to the argon as it flows through the heater. (a) Determine the argon temperature at the heater exit, in ℃. (b) Determine the argon volume flow rate at the heater exit, in m3/s.

Answers

Final answer:

The argon temperature at the heater exit is determined to be 348.08 ℃, while the argon volume flow rate at the heater exit is calculated to be 3769.23 m³/s.

Explanation:

To determine the argon temperature and volume flow rate at the heater exit, we can use the principles of thermodynamics. The problem states that heat transfer in the rate of 150 kW is supplied to the argon. Since there is no information given about the heater efficiency, we can assume it to be 100%, meaning all the heat is transferred to the argon. Therefore, the heat transfer can be equated to the change in internal energy of the argon, which is given by:

Q = m * Cp * ΔT

Where Q is the heat transfer, m is the mass flow rate, Cp is the specific heat capacity of argon, and ΔT is the change in temperature.

Given that Q = 150 kW, m = 6.24 kg/s, and Cp = 0.52 kJ/kg·℃ (specific heat capacity of argon), we can rearrange the equation to solve for ΔT:

ΔT = Q / (m * Cp)

Substituting the values, we have ΔT = (150 * 10³ J/s) / (6.24 kg/s * 0.52 kJ/kg·℃), which equals 48.08 ℃.

Therefore, the argon temperature at the heater exit is 300 ℃ + 48.08 ℃, which equals 348.08 ℃.

To calculate the argon volume flow rate at the heater exit, we can use the ideal gas law:

PV = nRT

Where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature. Rearranging the equation to solve for V, we have:

V = (nRT) / P

Given that the initial conditions are 300 K and 100 kPa, and a mass flow rate of 6.24 kg/s, we can calculate the number of moles of argon:

n = m / M

Where M is the molar mass of argon. The molar mass of argon is 39.948 g/mol, so n = 6.24 / (39.948 * 10⁻³) = 156.172 mol.

Substituting the values into the ideal gas law equation, we have V = (156.172 mol * 8.314 J/mol·K * 300 K) / 100 kPa. Converting kPa to Pa, we have V = (156.172 mol * 8.314 J/mol·K * 300 K) / 100,000 Pa, which equals 3769.23 m³.

Therefore, the argon volume flow rate at the heater exit is 3769.23 m³/s.

A hydraulic lift is used to raise an automobile of mass 1510 kg. The radius of the shaft of the lift is 8.0 cm and that of the piston is 1.0 cm. How much force must be applied to the piston to raise the automobile?\

Answers

Answer:

applied force on piston is 302.308163 N

Explanation:

Given data

mass = 1510 kg

weight = 1510 × 9.81 = 14813.1 N

radius = 8 cm

piston =  1.0 cm

to find out

force

solution

we will apply here pascal principal i.e

weight of automobile / area 1  = applied force on piston / area 2

so applied force on piston = weight of automobile × area 2  / area 1

and we know that areas is proportional to square of diameter

so area 2  / area 1 = (0.01/0.08)²

so  applied force on piston = weight of automobile × (0.01/0.08)²

applied force on piston = 14813.1  × (0.01/0.07)²

applied force on piston is 302.308163 N

Final answer:

The force necessary to raise the automobile using the hydraulic lift can be calculated using Pascal's Principle and the areas of the piston and the shaft. After calculating these, it is found that approximately 231 Newtons of force is needed to lift the car.

Explanation:

In the hydraulic lift, the force applied on the smaller piston is transmitted to the larger piston. This is based on Pascal's Principle that states that a change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of its container. The force necessary to lift the car can be calculated using this principle and the formula F1/F2 = A1/A2, where F is the force and A is the area of the pistons.

First, we need to calculate the areas of the pistons. The area of a circle is given by the formula A = πr^2 where r is the radius of the circle. Plugging in the given values, A1 (piston) = π*(1cm)^2 = π cm^2 and A2 (shaft) = π*(8 cm)^2 = 64π cm^2.

The force on the larger piston (F2), which is the weight of the car, can be calculated by multiplying the mass of the car by gravitational acceleration F2 = m*g, with m = 1510 kg and g = 9.8 m/s^2. Hence, F2 is roughly 14798 Newtons. Therefore, using the formula F1/F2 = A1/A2 we can solve for F1: F1 = F2 * (A1/A2) = 14798N * (1/64) = approx 231N.

So, to lift the automobile using the hydraulic lift, a force of approximately 231 Newtons must be applied to the piston.

Learn more about Hydraulic lift here:

https://brainly.com/question/20876092

#SPJ3

A 20 kg mass with an initial velocity of 10 m/s slides to a stop in 2 meters. What is the net work down on the mass? a.) 250 J b.) 500 J c.) 120 J d.) 20 J e.) None of the above

Answers

Answer:

12500 J

Explanation:

m = 20 kg, u = 10 m/s, s = 2 m, v = 0

Use third equation of motion

v^2 = u^2 = 2 a s

0 = 100 - 2 a x 2

100 / 4 = - a

a = - 25 m/s^2

Force, F = m a = 20 x 25 = 500 N

Work done = F x s = 500 x 25 = 12500 J

A 1500 kg car is approaching a hill that has a height of 12 m. As the car reaches the bottom of the hill it runs out of gas and has a constant speed of 10 m/s. Will the car make it to the top of the hill?

Answers

Answer:

No, the car will not make it to the top of the hill.

Explanation:

Let ΔX be how long the slope of the hill is, Δx be how far the car will travel along the slope of the hill, Ф be the angle the slope of the hill makes with the horizontal(bottom of the hill), ki be the kinetic energy of the car at the bottom of the hill and vi be the velocity of the car at the bottom of the hill and kf be the kinetic energy of the car when it stop moving at vf.

Since Ф is the angle between the horizontal and the slope, the relationship between the angle and the slope and the height of the hill is given by

sinФ = 12/ΔX

Which gives you the slope as

ΔX = 12/sinФ

Therefore for the car to reach the top of the hill it will have to travel ΔX.

Ignoring friction the total work done is given by

W = ΔK

W = (kf - ki)

Since the car will come to a stop, kf = 0 J

W = -ki

m×g×sinФ×Δx = 1/2×m×vi^2

(9.8)×sinФ×Δx = 1/2×(10)^2

sinФΔx = 5.1

Δx = 5.1/sinФ

ΔX>>Δx Ф ∈ (0° , 90°)

(Note that the maximum angle Ф is 90° because the slope of a hill can never be greater ≥ 90° because that would then mean the car cannot travel uphill.)

Since the car can never travel the distance of the slope, it can never make it to the top of the hill.

A beam of protons enter the electric field of magnitude E = 0.5 N/C between a pair of parallel plates. There is a magnetic field between the plates. The magnetic field is parallel to the plates and perpendicular to the initial direction of the protons, and its magnitude is 2.3 T. The proton beam passes through undeflected. What is the speed of the protons?

Answers

Answer:

0.217 m/s

Explanation:

The protons in the beam passes undeflected when the electric force is equal to the magnetic force:

qE = qvB

where

q is the proton's charge

E is the magnitude of the electric field

v is the speed of the protons

B is the magnitude of the magnetic field

Re-arranging the equation,

[tex]v=\frac{E}{B}[/tex]

And by substituting

E = 0.5 N/C

B = 2.3 T

We find

[tex]v=\frac{0.5}{2.3}=0.217 m/s[/tex]

Final answer:

The speed of the protons that pass through the parallel plates undeflected is determined by equalizing the electric and magnetic forces. By applying the formula v = E/B with E = 0.5 N/C and B = 2.3 T, we find that the speed is approximately 2.17 x 10^8 m/s.

Explanation:

To determine the speed of the protons that pass through a pair of parallel plates undeflected, we need to understand that the electric force and the magnetic force must be equal and opposite for the protons to travel in a straight line. The electric force (FE) is given by FE = qE, where q is the charge of the proton (q = 1.602 x 10-19 C) and E is the electric field strength.

The magnetic force (FB) on a moving charge is given by FB = qvB sin(θ), where v is the velocity of the proton, B is the magnetic field strength, and θ is the angle between the velocity and the magnetic field direction. Since the magnetic field is perpendicular to the velocity of the protons, sin(θ) = 1.

For the proton beam to pass through undeflected, FE must be equal to FB, hence qE = qvB. By canceling out the charge q from both sides and rearranging the equation, we get the velocity v = E/B. Substituting the given values, E = 0.5 N/C and B = 2.3 T, the speed of the protons is v = 0.5 N/C / 2.3 T which computes to approximately 2.17 x 108 m/s.

A particular satellite with a mass of m is put into orbit around Ganymede (the largest moon of Jupiter) at a distance 300 km from the surface. What is the gravitational force of attraction between the satellite and the moon? (Ganymede has a mass of 1.48x1023 kg and a radius of 2631 km.)

Answers

Answer:

3.36m or 1680 N

Explanation:

Given:

Mass of the satellite =m

Mass of the moon Ganymede, M = 1.48 × 10²³ kg

Radius of Ganymede, R = 2631 km

Distance of satellite above the surface of the moon, d = 300 km

According to Universal Gravitational law:

[tex]F=\frac{GMm}{(R+d)^2}[/tex]

where, G is the gravitational constant, M and m are mass of the objects and (R+d) is the distance between the centers of the objects.

Substitute the values:

[tex]F=\frac{6.67\times 10^{-11}\times 1.48 \times 10^{23} m}{(2.931\times 10^6)^2}=3.36m[/tex]

If we consider mass of a satellite to be about 500 kg, the gravitational force between the moon and the satellite would be:

[tex] F = 3.36\times 500 = 1680 N[/tex]

Other Questions
A(2,5),B(2,-3), and D(-6,5) are three verticals of square ABCD. What are the coordinates of the fourth vertex, c? What mass of potassium hypochlorite (FW-90.6 g/mol) must be added to 4.50 x 10 mL of water to give a solution with pH 10.20? [Ka(HCIO) 4.0 x 10-8] 0.032g ? 2.4 g 04.1 g 9.1 g 20. g A state is considering license plates that have two digits followed by four letters. Assuming no combinations are excluded, how many different plates are possible if no repetitions of letters or digits are allowed? What is the purpose of an emergency kit?To be able to stop bleeding or contaminationTo meet state licensing requirementsTo have enough supplies to survive several days in the event of an emergencyO None of the above Improve this sentence by adding adverbs.The little child sat in his yard. a jar contains 30 red marbles 50 blue marbles and 20 white marbles if you select one marble from the jar at random what is the theoretical probability of getting a red marble Earthshine is illumination seen during which phase of the moon? 8. In a word game, you choose a tile from a bag, replace it, and then choose another. If there are 28 vowels and 12 consonants, what is the probability you will choose a consonant and then a vowel? Driving ED SEGEGEMT 1 Which way would blood flow in:Patent ductus arteriosus?Transposition of the great vessels?Tetralogy of Fallot? Find the value of x if a linear function goes through the following points and has the following slope: (x,2), (-4,6), m=3 Jack and Susie want to save to buy a trampoline for their children. They each open a savings account that earns 1.5% ayear. Jack opens his account with $1,000, and Susie opens her account with $800.X = number of yearsThe following functions represent the value of the savings accounts in x yearsJack's savings account: f(x) = 1000(1.015)*Susie's savings account: g(x) = 800(1.015)Which function represents the total amount Jack and Susie will save in x years?200(1.015)1800(1.015)1800(1.015)21800(1.030) A single loop of wire with an area of 0.0900 m2 is in a uniform magnetic field that has an initial value of 3.80 T, is perpendicular to the plane of the loop, and is decreasing at a constant rate of 0.190 T s. (a) What emf is induced in this loop? (b) If the loop has a resistance of find the current induced in the loop Which of the following statements is NOT true of Good Morning Good Morning? John Lennon got the idea for the song after watching a cereal commercial on TV Lennon got the idea for the song after seeing an early-morning news program on TV it makes extensive use of changing meters it is an example of musique concrete (a form of music that is in part both traditional and electronic) The density of the solid phase of a substance is 0.90 g/cm3 and the density of the liquid phase is 1.0 g/cm3. A large increase in pressure will a. lower the freezing pointb. raise the freezing pointc. lower the boiling point d. raise the triple pointe. lower the triple point Sterilization of surgical instruments is a process that renders the items free of:A. spores. B. blood. C. oilD. dirt Nickel can be planted from aqueous solution according to the following half reaction. How long would it take (in min) to plate 29.6 g of nickel at 4.7 A? there are 6 sets of coins on the table. There is only one coin in the first set, 2 coins in the second set, 3 coins in the third set, 4 coins in the fourth set, 5 coins in the fifth set, and 6 coins in the sixth set. In each step, it is possible to add a coin to any two sets. Is it possible that after some steps the number of coins in each of the sets will be equalif you answer correctly in first 10 minutes ill give brainliest The angular velocity of the rear wheel of a stationary exercise bike is 5.40 rad/s at time t = 0.000 sec, and its angular acceleration is constant and equal to 1.50 rad/s^2. A particular spoke coincides with the +x axis at time t = 0.000 sec. (a) What angle (in rev) does this spoke make with the +x axis at time t = 4.00 s? (b) What is the angular velocity (rev/s) at this time? Chimpanzee attacks on members of other groups can be extremely brutal and result in severe injury or death. never result in injury. are definitely motivated by territoriality. are so rare that only one or two have been observed. always occur in the form of displays and nothing more.