An urn contains 11 numbered balls, of which 6 are red and 5 are white. A sample of 4 balls is to be selected. How many samples contain at least 3 red balls?

Answers

Answer 1

Answer:

The total number of samples that contain at least 3 red balls is 115.

Step-by-step explanation:

Total number of balls = 11

Total number of red balls = 6

Total number of white balls = 5

A sample of 4 balls is to be selected that contain at least 3 red. It means either 3 out of 4 balls are red or 4 out of 4 ball are red.

[tex]\text{Total ways}=\text{Three balls are red}+\text{Four balls are red}[/tex]

[tex]\text{Total ways}=^6C_3\times ^5C_1+^6C_4\times ^5C_0[/tex]

Combination formula:

[tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]

Using this formula we get

[tex]\text{Total ways}=\frac{6!}{3!(6-3)!}\times \frac{5!}{1!(5-1)!}+\frac{6!}{4!(6-4)!}\times \frac{5!}{0!(5-0)!}[/tex]

[tex]\text{Total ways}=20\times 5+15\times 1[/tex]

[tex]\text{Total ways}=115[/tex]

Therefore the total number of samples that contain at least 3 red balls is 115.

Answer 2

Using the combination formula, it is found that 115 samples contain at least 3 red balls.

The balls are chosen without replacement, which is why the combination formula is used.

Combination formula:

[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by:

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

In this problem, the outcomes with at least 3 red balls are:

3 red from a set of 6 and 1 white from a set of 5.4 red from a set of 6.

Hence:

[tex]T = C_{6,3}C_{5,1} + C_{6,4} = \frac{6!}{3!3!}\frac{5!}{1!4!} + \frac{6!}{4!2!} = 20(5) + 15 = 100 + 15 = 115[/tex]

115 samples contain at least 3 red balls.

A similar problem is given at https://brainly.com/question/24437717


Related Questions

Suppose you just received a shipment of nine televisions. Three of the televisions are defective. If two televisions are randomly​ selected, compute the probability that both televisions work. What is the probability at least one of the two televisions does not​ work?

Answers

Answer:

a)

The probability that both televisions work is:  0.42

b)

The probability at least one of the two televisions does not​ work is:

                          0.5833

Step-by-step explanation:

There are a total of 9 televisions.

It is given that:

Three of the televisions are defective.

This means that the number of televisions which are non-defective are:

          9-3=6

a)

The probability that both televisions work is calculated by:

[tex]=\dfrac{6_C_2}{9_C_2}[/tex]

( Since 6 televisions are in working conditions and out of these 6 2 are to be selected.

and the total outcome is the selection of 2 televisions from a total of 9 televisions)

Hence, we get:

[tex]=\dfrac{\dfrac{6!}{2!\times (6-2)!}}{\dfrac{9!}{2!\times (9-2)!}}\\\\\\=\dfrac{\dfrac{6!}{2!\times 4!}}{\dfrac{9!}{2!\times 7!}}\\\\\\=\dfrac{5}{12}\\\\\\=0.42[/tex]

b)

The probability at least one of the two televisions does not​ work:

Is equal to the probability that one does not work+probability both do not work.

Probability one does not work is calculated by:

[tex]=\dfrac{3_C_1\times 6_C_1}{9_C_2}\\\\\\=\dfrac{\dfrac{3!}{1!\times (3-1)!}\times \dfrac{6!}{1!\times (6-1)!}}{\dfrac{9!}{2!\times (9-2)!}}\\\\\\=\dfrac{3\times 6}{36}\\\\\\=\dfrac{1}{2}\\\\\\=0.5[/tex]

and the probability both do not work is:

[tex]=\dfrac{3_C_2}{9_C_2}\\\\\\=\dfrac{1}{12}\\\\\\=0.0833[/tex]

Hence, Probability that atleast does not work is:

             0.5+0.0833=0.5833

Final answer:

To find the probability that both televisions work, use the combination formula to determine the number of ways to select 2 working televisions out of the total number of televisions. Divide this number by the total number of ways to select 2 televisions.

Explanation:

To find the probability that both televisions work, we need to first determine the number of ways we can select 2 televisions out of the 9 available. This can be done using the combination formula, which is C(n, r) = n!/(r!(n-r)!), where n is the total number of items and r is the number of items being selected. In this case, n = 9 and r = 2.

Now we need to determine the number of ways we can select 2 working televisions out of the 6 working televisions. Again, we can use the combination formula with n = 6 and r = 2.

The final step is to divide the number of ways we can select 2 working televisions by the total number of ways we can select 2 televisions to get the probability that both televisions work.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

If 20600 dollars is invested at an interest rate of 10 percent per year, find the value of the investment at the end of 5 years for the following compounding methods, to the nearest cent.

(a) Annual: $

(b) Semiannual: $

(c) Monthly: $

(d) Daily: $

Answers

Answer:

a) The value of the investment is $33176.506

b) The value of the investment is $33555.53

c) The value of the investment is $33893.36

d) The value of the investment is $33961.33

Step-by-step explanation:

This is a compound interest problem

Compound interest formula:

The compound interest formula is given by:

[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]

A: Amount of money(Balance)

P: Principal(Initial deposit)

r: interest rate(as a decimal value)

n: number of times that interest is compounded per unit t

t: time the money is invested or borrowed for.

In our problem, we have:

A: the value we want to find

P = 20600(the value invested)

r = 0.1

n: Will change for each letter

t = 5.

a) If the interest is compounded anually, n = 1. So.

[tex]A = 20600(1 + \frac{0.1}{1})^{1*5}[/tex]

[tex]A = 33176.506[/tex]

The value of the investment is $33176.506

b) If the interest is compounded semianually, it happens twice a year, which means n = 2. So:

[tex]A = 20600(1 + \frac{0.1}{2})^{2*5}[/tex]

[tex]A = 33555.23[/tex]

The value of the investment is $33555.53

c) If the interest is compounded monthly, it happens 12 times a year, which means n = 12. So:

[tex]A = 20600(1 + \frac{0.1}{12})^{12*5}[/tex]

[tex]A = 33893.36[/tex]

The value of the investment is $33893.36

d) If the interest is compounded monthly, it happens 365 times a year, which means n = 365. So:

[tex]A = 20600(1 + \frac{0.1}{365})^{365*5}[/tex]

[tex]A = 33961.33[/tex]

The value of the investment is $33961.33

Final answer:

The future value of $20,600 invested at a 10% annual interest rate after 5 years varies based on the compounding frequency: annually it will be $33,186.35, semiannually $33,644.31, monthly $33,949.69, and daily $34,030.18.

Explanation:

Calculating Future Value with Different Compounding Methods

To calculate the future value of an investment with compound interest, we use the formula  [tex]FV =PV(1+r/n)^{nt}[/tex],where FV is the future value, P is the principal amount, r is the annual interest rate, n is the number of times the interest is compounded per year, and t is time in years.

Given a principal amount of $20,600 and an annual interest rate of 10%, we will calculate the value of the investment at the end of 5 years for the following compounding methods:

Annual compounding (n=1): FV = 20600(1 + 0.10/1)⁽¹ˣ⁵⁾

Semiannual compounding (n=2): FV = 20600(1 + 0.10/2)⁽²ˣ⁵⁾

Monthly compounding (n=12): FV = 20600(1 + 0.10/12)⁽¹²ˣ⁵⁾

Daily compounding (n=365): FV = 20600(1 + 0.10/365)⁽³⁶⁶ˣ⁵⁾

Using a calculator or spreadsheet software, we can find the values to the nearest cent:

(a) Annual: $33,186.35

(b) Semiannual: $33,644.31

(c) Monthly: $33,949.69

(d) Daily: $34,030.18

The compounding effect shows that the more frequently the interest is compounded, the greater the final value of the investment.

8. 8 + (-2) – 9 – (-7)

A.24
B.-8
C.4
D.-10

Answers

Answer:

4

Step-by-step explanation:

8+(-2) is 66-9 is -3-3 -(-7) is -3+7 which is 4


The correct conversion from metric system to household system is

A. 5 ml equals 1 tablespoon

B. 15 ml equals 1 teaspoon

C. 30 ml equals 1 fluid ounce

D. 500 ml equals 1 measuring cup

Answers

Answer:

The closest conversion would be C. 30 ml equals 1 fluid ounce , it is only off by 0.43 ml

Step-by-step explanation:

Great question, it is always good to ask away in order to get rid of any doubts you may be having.

The metric system is a decimal system of measurement while the household system is a system of measurement usually found with kitchen utensils. The correct conversions are the following.

5 ml equals 0.33814 tablespoon

15 ml equals 3.04326 teaspoon

29.5735 ml equals 1 fluid ounce

236.588 ml equals 1 measuring cup

So the closest conversion would be C. 30 ml equals 1 fluid ounce , it is only off by 0.43 ml

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

Final answer:

The correct conversion between the metric and household system provided in the choices is 30ml equals 1 fluid ounce. However, 5ml is equivalent to 1 teaspoon, 15 ml to 1 tablespoon, and 250 ml to 1 measuring cup.

Explanation:

The correct conversion from the metric system to the household system among the options given is C. 30 ml equals 1 fluid ounce. The rationale behind this is that 30 ml is universally accepted as being equal to 1 fluid ounce in the household system.

Option A, B and, D are incorrect conversions. More accurate conversions would be: A. 5 ml equals 1 teaspoon; B. 15 ml equals 1 tablespoon; D. 250 ml equals 1 measuring cup.

Learn more about Conversion here:

https://brainly.com/question/33720372

#SPJ6

According to a recent​ study, 9.3​% of high school dropouts are​ 16- to​ 17-year-olds. In​ addition, 6.3​% of high school dropouts are white​ 16- to​ 17-year-olds. What is the probability that a randomly selected dropout is​ white, given that he or she is 16 to 17 years​ old?

Answers

Answer:  [tex]\dfrac{21}{31}[/tex]

Step-by-step explanation:

Let A represents the event that high school dropouts are ​16- to​ 17-year-olds and B be the event that high school dropouts are ​white.

Given : The probability of high school dropouts are​ 16- to​ 17-year-olds :[tex]P(A)=0.093[/tex]

The probability of of high school dropouts are white​ 16- to​ 17-year-olds :

[tex]P(A\cap B)=0.063[/tex]

Then , the conditional  probability that a randomly selected dropout is​ white, given that he or she is 16 to 17 years​ old is given by :-

[tex]P(B|A)=\dfrac{P(A\cap B)}{P(A)}\\\\\Rightarrow\ P(B|A)=\dfrac{0.063}{0.093}=\dfrac{21}{31}[/tex]

he diameters of red delicious apples of an orchard have a normal distribution with a mean of 3 inches and a standard deviation of 0.5 inch. One apple will be randomly chosen. What is the probability of picking an apple with diameter between 2.5 and 4.25 inches?

Answers

Answer: 0.8351

Step-by-step explanation:

Given :Mean : [tex]\mu=\text{ 3 inches}[/tex]

Standard deviation : [tex]\sigma =\text{ 0.5 inch}[/tex]

The formula for z -score :

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 2.5 ,

[tex]z=\dfrac{2.5-3}{0.5}=-1[/tex]

For x= 4.25 ,

[tex]z=\dfrac{4.25-3}{0.5}=2.5[/tex]

The p-value = [tex]P(-1<z<2.5)=P(z<2.5)-P(z<-1)[/tex]

[tex]=0.9937903-0.1586553=0.835135\approx0.8351[/tex]

Hence,  the probability of picking an apple with diameter between 2.5 and 4.25 inches =0.8351.

Final answer:

To find the probability, we standardize the values, convert them into z-scores, look up the z-scores in a z-table, and subtract the lower cumulative probability from the higher one. The probability of picking an apple with diameter between 2.5 inches and 4.25 inches is 83.51%.

Explanation:

The problem involves a normal distribution where the diameter of Red Delicious apples has a mean of 3 inches and a standard deviation of 0.5 inch. The objective is to find the probability of picking an apple with a diameter between 2.5 and 4.25 inches.

We first standardize the given values to convert them into z-scores by subtracting the mean from the given value and dividing by the standard deviation. For 2.5 inches, z = (2.5 - 3) / 0.5 = -1. For 4.25 inches, z = (4.25 - 3) / 0.5 = 2.5.

Using a z-table, the z-score of -1 corresponds to a cumulative probability of 0.1587 and the z-score of 2.5 corresponds to a cumulative probability of 0.9938. To find the probability between these two diameters, we subtract the cumulative probability of -1 from the cumulative probability of 2.5.

Therefore, the probability of picking an apple with diameter between 2.5 inches and 4.25 inches is 0.9938 - 0.1587 = 0.8351 or 83.51%.

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ3

Use the alternative curvature formula K=|a x v|/|v|^3 to find the curvature of the following parameterized curves. to find the curvature of the following parameterized curve. r(t)=<6+5t^2, t, 0>

Answers

Answer:

[tex]k=\frac{10}{(100t^2+1)^{\frac{3}{2}}}[/tex]

Or

[tex]k=\frac{10\sqrt{100t^2+1}}{(100t^2+1)^{2}}[/tex]

Step-by-step explanation:

We want to compute the curvature of the parameterized curve, [tex]r(t)=\:<\:6+5t^2,t,0)\:>\:[/tex] using the alternative formula:

[tex]k=\frac{|a\times v|}{|v|^3}[/tex].

We first compute the required ingredients.

The velocity vector is [tex]v=r'(t)=<\:10t,1,0\:>[/tex]

The acceleration vector is given by [tex]a=r''(t)=<\:10,0,0\:>[/tex]

The magnitude of the velocity vector is [tex]|v|=\sqrt{(10t)^2+1^2+0^2}=\sqrt{100t^2+1}[/tex]

The cross product of the velocity vector and the acceleration vector is

[tex]a\times v=\left|\begin{array}{ccc}i&j&k\\10&0&0\\10t&1&0\end{array}\right|=10k[/tex]

We now substitute ingredients into the formula to get:

[tex]k=\frac{|10k|}{(\sqrt{100t^2+1})^3}[/tex].

[tex]k=\frac{10}{(100t^2+1)^{\frac{3}{2}}}[/tex]

Or

[tex]k=\frac{10\sqrt{100t^2+1}}{(100t^2+1)^{2}}[/tex]

(a) Find parametric equations for the line through (3, 1, 8) that is perpendicular to the plane x − y + 4z = 7. (Use the parameter t.) (x(t), y(t), z(t)) = (b) In what points does this line intersect the coordinate planes?
xy-plane (x, y, z) =
yz-plane (x, y, z) =
xz-plane (x, y, z) =

Answers

Answer:

• (x, y, z) = (3+t, 1-t, 8+4t) . . . equation of the line

• xy-intercept (1, 3, 0)

• yz-intercept (0, 4, -4)

• xz-intercept (4, 0, 12)

Step-by-step explanation:

The line's direction vector is given by the coordinates of the plane: (1, -1, 4). So, the parametric equations can be ...

(x, y, z) = (3, 1, 8) + t(1, -1, 4) . . . . . parametric equation for the line

or

(x, y, z) = (3+t, 1-t, 8+4t)

__

The various intercepts can be found by setting the respective variables to zero:

xy-plane: z=0, so t=-2. (x, y, z) = (1, 3, 0)

yz-plane: x=0, so t=-3. (x, y, z) = (0, 4, -4)

xz-plane: y=0, so t=1. (x, y, z) = (4, 0, 12)

Given P(A and B) 0.20, P(A) 0.49, and P(B) = 0.41 are events A and B independent or dependent? 1) Dependent 2) Independent

Answers

Answer:  The correct option is (1) Dependent.

Step-by-step explanation:  For two events, we are given the following values of the probabilities :

P(A ∩ B) = 0.20,   P(A) = 0.49   and    P(B) = 0.41.

We are to check whether the events A and B are independent or dependent.

We know that

the two events C and D are said to be independent if the probabilities of their intersection is equal to the product of their probabilities.

That is,  P(C ∩ D) = P(C) × P(D).

For the given two events A and B, we have

[tex]P(A)\times P(B)=0.49\times0.41=0.2009\neq P(A\cap B)=0.20\\\\\Rightarrow P(A\cap B)\neq P(A)\times P(B).[/tex]

Therefore, the probabilities of the intersection of two events A and B is NOT equal to the product of the probabilities of the two events.

Thus, the events A and B are NOT independent. They are dependent events.

Option (1) is CORRECT.

Let P2 be the vector space of all polynomials of degree 2 or less, and let H be the subspace spanned by 10x2+4xâ1, 3xâ4x2+3, and 5x2+xâ1. The dimension of the subspace H is . Is {10x2+4xâ1,3xâ4x2+3,5x2+xâ1} a basis for P2? Be sure you can explain and justify your answer. A basis for the subspace H is { }. Enter a polynomial or a comma separated list of polynomials.

Answers

I suppose

[tex]H=\mathrm{span}\{10x^2+4x-1,3x-4x^2+3,5x^2+x-1\}[/tex]

The vectors that span [tex]H[/tex] form a basis for [tex]P_2[/tex] if they are (1) linearly independent and (2) any vector in [tex]P_2[/tex] can be expressed as a linear combination of those vectors (i.e. they span [tex]P_2[/tex]).

Independence:

Compute the Wronskian determinant:

[tex]\begin{vmatrix}10x^2+4x-1&3x-4x^2+3&5x^2+x-1\\20x+4&3-8x&10x+1\\20&-8&10\end{vmatrix}=-6\neq0[/tex]

The determinant is non-zero, so the vectors are linearly independent. For this reason, we also know the dimension of [tex]H[/tex] is 3.

Span:

Write an arbitrary vector in [tex]P_2[/tex] as [tex]ax^2+bx+c[/tex]. Then the given vectors span [tex]P_2[/tex] if there is always a choice of scalars [tex]k_1,k_2,k_3[/tex] such that

[tex]k_1(10x^2+4x-1)+k_2(3x-4x^2+3)+k_3(5x^2+x-1)=ax^2+bx+c[/tex]

which is equivalent to the system

[tex]\begin{bmatrix}10&-4&5\\4&3&1\\-1&3&-1\end{bmatrix}\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}a\\b\\c\end{bmatrix}[/tex]

The coefficient matrix is non-singular, so it has an inverse. Multiplying both sides by that inverse gives

[tex]\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}-\dfrac{6a-11b+19c}3\\\dfrac{3a-5b+2c}3\\\dfrac{15a-26b+46c}3\end{bmatrix}[/tex]

so the vectors do span [tex]P_2[/tex].

The vectors comprising [tex]H[/tex] form a basis for it because they are linearly independent.

Final answer:

To determine if a set of polynomials forms a basis for P2, they need to be linearly independent and span the vector space P2. If the only solution to a homogeneous system of equations is trivial (all coefficients equal zero), they are linearly independent. Whether they span P2 or not depends on if any polynomial of degree 2 or less can be expressed as a linear combination of these polynomials.

Explanation:

In order to determine if the set of polynomials {10x2+4x, 3x-4x2+3, 5x2+x} forms a basis for P2, we need to prove two properties: they should be linearly independent and they should span the vector space P2.

Linear independence means that none of the polynomials in the given set can be expressed as a linear combination of the others. The simplest way to prove this is to set up a system of equations called a homogeneous system, and solve for the coefficients. If the only solution to this system is the trivial solution (where all coefficients equal zero), then they are linearly independent.

Spanning means that any polynomial of degree 2 or less can be expressed as a linear combination of these polynomials.

So, depending on the outcome of checking those two properties, we can determine if the given set of polynomials is a basis for P2 or not.

Learn more about Basis for P2 here:

https://brainly.com/question/32589589

For the following functions from R -> R, determine if function is one to one, onto, or both. Explain.

a) f(x)=3x-4

b)g(x)=(x^2)-2

c) h(x)=2/x

d) k(x)=ln(x)

e) l(x) = e^x

Answers

Answer with explanation:

a. f(x)=3x-4

Let [tex]f(x_1)=f(x_2)[/tex]

[tex]3x_1-4=3x_2-4[/tex]

[tex]3x_1=3x_2-4+4[/tex]

[tex]3x_1=3x_2[/tex]

[tex]x_1=x_2[/tex]

Hence, the function one-one.

Let f(x)=y  

[tex]y=3x-4[/tex]

[tex]3x=y+4[/tex]

[tex]x=\frac{y+4}{3}[/tex]

We can find pre image in domain R for every y in range R.

Hence, the function onto.

b.g(x)=[tex]x^2-2[/tex]

Substiute x=1

Then [tex]g(x)=1-2=-1[/tex]

Substitute x=-1

Then g(x)=1-2=-1

Hence, the image of 1 and -1 are same . Therefore, the given function g(x) is not one-one.

The given function g(x) is not onto because there is no pre image of -2, -3,-4......  R.

Hence, the function neither one-one nor onto on given  R.

c.[tex]h(x)=\frac{2}{x}[/tex]

The function is not defined for x=0 .Therefore , it is not a function on domain R.

Let [tex]h(x_1)=h(x_2)[/tex]

[tex] \frac{2}{x_1}=\frac{2}{x_2}[/tex]

By cross mulitiply

[tex]x_1= \frac{2\times x_2}{2}[/tex]

[tex]x_1=x_2[/tex]

Hence, h(x) is a one-one function on R-{0}.

We can find pre image for every value of y except zero .Hence, the function

h(x) is onto on R-{0}.

Therefore, the given function h(x) is both one- one and onto on R-{0} but not on R.

d.k(x)= ln(x)

We know that logarithmic function not defined for negative values of x. Therefore, logarithmic is not a function R.Hence, the given function K(x) is not a function on R.But it is define for positive R.

Let[tex]k(x_1)=k(x_2)[/tex]

[tex] ln(x_1)=ln(x_2)[/tex]

Cancel both side log then

[tex]x_1=x_2[/tex]

Hence, the given function one- one on positive R.

We can find pre image in positive R for every value of [tex]y\in R^+[/tex].

Therefore, the function k(x) is one-one and onto on [tex]R^+[/tex] but not on R.

e.l(x)=[tex]e^x[/tex]

Using horizontal line test if we draw a line y=-1 then it does not cut the graph at any point .If the horizontal line cut the graph atmost one point the function is one-one.Hence, the horizontal line does not cut the graph at any point .Therefore, the function is one-one on R.

If a horizontal line cut the graph atleast one point then the function is onto on a given domain and codomain.

If we draw a horizontal line y=-1 then it does not cut the graph at any point .Therefore, the given function is not onto on R.

A professor has noticed that even though attendance is not a component of the grade for his class, students who attend regularly obtain better grades. In fact, 35% of those who attend regularly receive A's in the class, while only 5% of those who do not attend regularly receive A's. About 65% of students attend class regularly. Given that a randomly chosen student receives an A grade, what is the probability that he or she attended class regularly? (Round the answer to four decimal places.)

Answers

Answer:  Probability that she attended class regularly given that she receives A grade is 0.9286.

Step-by-step explanation:

Since we have given that

Probability of those who attend regularly receive A's in the class = 35%

Probability of those who do not regularly receive A's in the class = 5%

Probability of students who attend class regularly = 65%

We need to find the probability that she attended class regularly given that she receives an A grade.

Let E be the event of students who attend regularly.

P(E) = 0.65

And P(E') = 1-0.65 = 0.35

Let A be the event who attend receive A in the class.

So, P(A|E) = 0.35

P(A|E') = 0.05

So, According to question, we have given that

[tex]P(E|A)=\dfrac{P(E)P(A|E)}{P(E)P(A|E)+P(E')P(A|E')}\\\\P(E|A)=\dfrac{0.65\times 0.35}{0.65\times 0.35+0.35\times 0.05}\\\\P(E|A)=\dfrac{0.2275}{0.2275+0.0175}=\dfrac{0.2275}{0.245}=0.9286[/tex]

Hence, Probability that she attended class regularly given that she receives A grade is 0.9286.

Final answer:

The probability that a student attended class regularly given they received an A is approximately 0.9286, or 92.86% when rounded to four decimal places, calculated using Bayes' theorem.

Explanation:

To solve the problem, we need to calculate the conditional probability that a student attended class regularly given they received an A grade. To do this, we'll use Bayes' theorem, which allows us to reverse conditional probabilities.

Let's denote Attendance as the event that a student attends class regularly and A as the event of a student receiving an A grade. According to the question:

P(Attendance) = 0.65 (65% of students attend class regularly)P(A|Attendance) = 0.35 (35% of regular attendants receive A's)P(A|Not Attendance) = 0.05 (5% of irregular attendants receive A's)

The overall probability of receiving an A, P(A), is computed as follows:

P(A) = P(A|Attendance) × P(Attendance) + P(A|Not Attendance) × P(Not Attendance)
    = 0.35 × 0.65 + 0.05 × (1 - 0.65)
    = 0.2275 + 0.0175
    = 0.2450

Now we use Bayes' theorem to find P(Attendance|A), the probability of attendance given an A:

P(Attendance|A) = (P(A|Attendance) × P(Attendance)) / P(A)
       = (0.35 × 0.65) / 0.245
       = 0.2275 / 0.245
       ≈ 0.9286

Therefore, the probability that a student attended class regularly given that they received an A grade is approximately 0.9286, or 92.86% when rounded to four decimal places.

*Asymptotes*
g(x) =2x+1/x-3

Give the domain and x and y intercepts

Answers

Answer: Assuming the function is [tex]g(x)=\frac{2x+1}{x-3}[/tex]:

The x-intercept is [tex](\frac{-1}{2},0)[/tex].

The y-intercept is [tex](0,\frac{-1}{3})[/tex].

The horizontal asymptote is [tex]y=2[/tex].

The vertical asymptote is [tex]x=3[/tex].

Step-by-step explanation:

I'm going to assume the function is: [tex]g(x)=\frac{2x+1}{x-3}[/tex] and not [tex]g(x)=2x+\frac{1}{x}-3[/tex].

So we are looking at [tex]g(x)=\frac{2x+1}{x-3}[/tex].

The x-intercept is when y is 0 (when g(x) is 0).

Replace g(x) with 0.

[tex]0=\frac{2x+1}{x-3}[/tex]

A fraction is only 0 when it's numerator is 0.  You are really just solving:

[tex]0=2x+1[/tex]

Subtract 1 on both sides:

[tex]-1=2x[/tex]

Divide both sides by 2:

[tex]\frac{-1}{2}=x[/tex]

The x-intercept is [tex](\frac{-1}{2},0)[/tex].

The y-intercept is when x is 0.

Replace x with 0.

[tex]g(0)=\frac{2(0)+1}{0-3}[/tex]

[tex]y=\frac{2(0)+1}{0-3}[/tex]  

[tex]y=\frac{0+1}{-3}[/tex]

[tex]y=\frac{1}{-3}[/tex]

[tex]y=-\frac{1}{3}[/tex].

The y-intercept is [tex](0,\frac{-1}{3})[/tex].

The vertical asymptote is when the denominator is 0 without making the top 0 also.

So the deliminator is 0 when x-3=0.

Solve x-3=0.

Add 3 on both sides:

x=3

Plugging 3 into the top gives 2(3)+1=6+1=7.

So we have a vertical asymptote at x=3.

Now let's look at the horizontal asymptote.

I could tell you if the degrees match that the horizontal asymptote is just the leading coefficient of the top over the leading coefficient of the bottom which means are horizontal asymptote is [tex]y=\frac{2}{1}[/tex].  After simplifying you could just say the horizontal asymptote is [tex]y=2[/tex].

Or!

I could do some division to make it more clear.  The way I'm going to do this certain division is rewriting the top in terms of (x-3).

[tex]y=\frac{2x+1}{x-3}=\frac{2(x-3)+7}{x-3}=\frac{2(x-3)}{x-3}+\frac{7}{x-3}[/tex]

[tex]y=2+\frac{7}{x-3}[/tex]

So you can think it like this what value will y never be here.

7/(x-3) will never be 0 because 7 will never be 0.

So y will never be 2+0=2.

The horizontal asymptote is y=2.

(Disclaimer: There are some functions that will cross over their horizontal asymptote early on.)

A farmer builds a fence to enclose a rectangular pasture. He uses 160 feet of fence. Find the total area of the pasture if it is 50 feet long

Answers

Answer:

  1500 ft²

Step-by-step explanation:

The sum of two adjacent sides of the pasture is half the perimeter (160 ft/2 = 80 ft), so the side adjacent to the 50 ft side will be 80 ft - 50 ft = 30 ft.

The product of adjacent sides of a rectangle gives the area of the rectangle. That area will be ...

  area = (50 ft)(30 ft) = 1500 ft²

If 50 is 80% , then how many percent is 38 ?

Answers

Answer: 1.64

Step-by-step explanation:

80% = 50

20% = 12.5

100% = 62.5

38% = 1.64

To fill out a function's ___ ___, you will need to use test numbers before and after each of the function's ___ and asymtopes
A). Sign chart; Values
B). rational equation; values
C). sign chart; zeroes
D). rational equation; zeroes

Answers

Answer:

  C).  sign chart; zeroes

Step-by-step explanation:

A function potentially changes sign at each of its zeros and vertical asymptotes. So, to fill out a sign chart, you need to determine what the sign is on either side of each of these points. You can do that using test numbers, or you can do it by understanding the nature of the zero or asymptote.

Examples:

f1(x) = (x -3) . . . . changes sign at the zero x=3. Is positive for x > 3, negative for x < 3.

f2(x) = (x -4)^2 . . . . does not change sign at the zero x=4. It is positive for any x ≠ 4. This will be true for any even-degree binomial factor.

f3(x) = 1/(x+2) . . . . has a vertical asymptote at x=-2. It changes sign there because the denominator changes sign there.

f4(x) = 1/(x+3)^2 . . . . has a vertical asymptote at x=-3. It does not change sign there because the denominator is of even degree and does not change sign there.

Find the decimal form of 2/4

Answers

Answer:

Step-by-step explanation:

.5

Answer is provided in image attached.

Please help me with this

Answers

Answer: first option.

Step-by-step explanation:

By definition, the measure of any interior angle of an equilateral triangle is 60 degrees.

Then, we can find the value of "y". This is:

[tex]2y+6=60\\\\y=\frac{54}{2}\\\\y=27[/tex]

Since the three sides of an equilateral triangle have the same length, we can find the value of "x". This is:

[tex]x+4=2x-3\\\\4+3=2x-x\\\\x=7[/tex]

Suppose a random sample of 90 companies taken in 2006 showed that 14 offered​ high-deductible health insurance plans to their workers. A separate random sample of 120 firms taken in 2007 showed that 30 offered​ high-deductible health insurance plans to their workers. Based on the sample​ results, can you conclude that there is a higher proportion of companies offering​ high-deductible health insurance plans to their workers in 2007 than in 2006​? Conduct your hypothesis test at a level of significance alphaequals0.01.

Answers

Answer:

Step-by-step explanation:

Given that a random sample of 90 companies taken in 2006 showed that 14 offered​ high-deductible health insurance plans to their workers. A separate random sample of 120 firms taken in 2007 showed that 30 offered​ high-deductible health insurance plans to their workers.

H0: p1=p2

Ha: p1 <p2

(Two tailed test at99%)

Difference 14.44 %

Chi-squared 5.883

DF  1

Significance level P = 0.0153

Since p >0.01, our alpha reject null hypothesis.

NO. Based on the sample​ results, you can not  conclude that there is a higher proportion of companies offering​ high-deductible health insurance plans to their workers in 2007 than in 2006

The probability that a randomly chosen citizen-entity of Cygnus is of pension age† is approximately 0.7. What is the probability that, in a randomly selected sample of four citizen-entities, all of them are of pension age?

Answers

Answer: 0.2401

Step-by-step explanation:

The binomial distribution formula is given by :-

[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex]

where P(x) is the probability of x successes out of n trials, p is the probability of success on a particular trial.

Given : The probability that a randomly chosen citizen-entity of Cygnus is of pension age† is approximately: p =0.7.

Number of trials  : n= 4

Now, the required probability will be :

[tex]P(x=4)=^4C_4(0.7)^4(1-0.7)^{4-4}\\\\=(1)(0.7)^4(1)=0.2401[/tex]

Thus, the probability that, in a randomly selected sample of four citizen-entities, all of them are of pension age =0.2401

Find all the zeros of the polynomial function f(x) = x + 2x² - 9x - 18 a) (-3) b) (-3. -2,3) c) (-2) d) (-3.2.3) e) none

Answers

Answer:x=-3,-2,3

Step-by-step explanation:

Given equation of polynomial is

[tex]x^{3}+2x^2-9x-18=0[/tex]

taking [tex]x^3[/tex] and -9x together and remaining together we get

[tex]x^3-9x+2x^2-18=0[/tex]

[tex]x\left ( x^2-9\right )+2\left ( x^2-9\right )[/tex]

[tex]x\left ( \left ( x+3\right )\left ( x-3\right )\right )+2\left ( \left ( x+3\right )\left ( x-3\right )\right )[/tex]

[tex]taking \left ( x+3\right )\left ( x-3\right ) as common[/tex]

[tex]\left ( x+2\right )\left ( x+3\right )\left ( x-3\right )=0[/tex]

therefore

x=-3,-2,3

Draw fraction rectangles on dot paper to solve the problems.

1) Subtract: 3/5 - 1/4

2) Add: 5/6 + 1/4

3) Manny and Frank ordered pizza. Manny ate 1/4 of the pizza and Frank ate 5/8 of the pizza. How much of the whole pizza was eaten?

Answers

Answer:

1) [tex]\frac{7}{20}[/tex]

2) [tex]1\frac{1}{12}[/tex]

3) [tex]\frac{7}{8}[/tex]

Step-by-step explanation:

1) Given problem,

[tex]\frac{3}{5}-\frac{1}{4}[/tex]

LCM(5,4) = 20,

[tex]\frac{3}{5}=\frac{3\times 4}{5\times 4}=\frac{12}{20}[/tex]

[tex]\frac{1}{4}=\frac{1\times 5}{4\times 5}=\frac{5}{20}[/tex]

[tex]\implies \frac{3}{5}-\frac{1}{4}=\frac{12}{20}-\frac{5}{20}=\frac{7}{20}[/tex]

2) Given problem,

[tex]\frac{5}{6}+\frac{1}{4}[/tex]

LCM(6, 4) = 12,

[tex]\frac{5}{6}=\frac{5\times 2}{6\times 2}=\frac{10}{12}[/tex]

[tex]\frac{1}{4}=\frac{1\times 3}{4\times 3}=\frac{3}{12}[/tex]

[tex]\implies \frac{5}{6}+\frac{1}{4}=\frac{10}{12}+\frac{3}{12}=\frac{13}{12}=1\frac{1}{12}[/tex]

3) ∵ Pizza ate by Manny = [tex]\frac{1}{4}[/tex]

Pizza ate by Frank = [tex]\farc{5}{8}[/tex]

∴ Total pizza eaten = [tex]\frac{1}{4}+\frac{5}{8}[/tex]

LCM(4, 8) = 8,

[tex]\frac{1}{4}=\frac{2}{8}[/tex]

Thus, total pizza eaten =  [tex]\frac{2}{8}+\frac{5}{8}=\frac{7}{8}[/tex]

James is able to sell 15 of Product A and 16 of Product B a week, Sally is able to sell 25 of Product A and 10 of Product B a week, and Andre is able to sell 18 of Product A and 13 of Product B a week. If Product A sells for exist35.75 each and Product B sells for exist42.25 each, what is the difference in the amount of money earned between the most profitable and the least profitable seller? a exist91.00 b exist97.50 c exist104.00 d exist119.50 e exist123.50

Answers

Answer: Option(e) exist 123.50 is correct.

Step-by-step explanation:

James earns:

Product A: 15 × 35.75 = 536.25

Product B: 16 × 42.25 = 676

Total Earnings = 1212.25

Sally earns:

Product A: 25 × 35.75 = 893.75

Product B: 10 × 42.25 = 422.5

Total Earnings = 1316.25

Andre earns:

Product A: 18 × 35.75 = 643.5

Product B: 13 × 42.25 = 549.25

Total Earnings = 1192.75

Above calculation shows that Sally is the most profitable seller and Andre is the least profitable seller.

So, the difference between the most profitable seller i.e Sally (1316.25) and the least profitable seller i.e. Andre (1192.75) is 123.50.

14. Let R^2 have inner product defined by ((x1,x2), (y,, y2)) 4x1y1 +9x2y2 A. Determine the norm of (-1,2) in this space B. Determine the norm of (3,2) in this space.

Answers

The norm of a vector [tex]\vec x[/tex] is equal to the square root of the inner product of [tex]\vec x[/tex] with itself.

a. [tex]\|(-1,2)\|=\sqrt{\langle(-1,2),(-1,2)\rangle}=\sqrt{4(-1)^2+9(2)^2}=\sqrt{40}=2\sqrt{10}[/tex]

b. [tex]\|(3,2)\|=\sqrt{\langle(3,2),(3,2)\rangle}=\sqrt{4(3)^2+9(2)^2}=\sqrt{72}=6\sqrt2[/tex]

What is the value of x?



Enter your answer in the box.

Answers

Answer:

x = 25

Step-by-step explanation:

Step 1: Identify the similar triangles

Triangle DQC and triangle DBR are similar

Step 2: Identify the parallel lines

QC is parallel to BR

Step 3: Find x

DQ/QB = DC/CR

40/24 = x/15

x = 25

!!

Answer: [tex]x=25[/tex]

Step-by-step explanation:

In order to calculate the value of "x", you can set up de following proportion:

[tex]\frac{BQ+QD}{QD}=\frac{RC+CD}{CD}\\\\\frac{24+40}{40}=\frac{15+x}{x}[/tex]

Now, the final step is to solve for "x" to find its value.

Therefore, its value is the following:

[tex]1.6=\frac{15+x}{x}\\\\1.6x=x+15\\\\1.6x-x=15\\\\0.6x=15\\\\x=\frac{15}{0.6}\\\\x=25[/tex]

what is the LCM of 8 and 10 .

Answers

Answer:

40

Step-by-step explanation:

8: 8, 16, 24, 32, 40

10: 10 20 30 40

Answer:

The least common multiple of 8 and 10 is 40.

Step-by-step explanation:

8: 8*1=8, 8*2=16, 8*3=24, 8*4=32, 8*5=40

10: 10*1=10, 10*2=20, 10*3=30, 10*4=40

The least common factor of 8 and 10 is 40.

7% of items in a shipment are known to be defective. If a sample of 5 items is randomly selected from this shipment, what is the probability that at least one defective item will be observed in this sample? Round your result to 2 significant places after the decimal (For example, 0.86732 should be entered as 0.87).

Answers

Answer: 0.30

Step-by-step explanation:

Binomial distribution formula :-

[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex], where P(x) is the probability of getting success in x trials , n is the total number of trials and p is the probability of getting success in each trial.

Given : The probability that a shipment are known to be defective= 0.07

If a sample of 5 items is randomly selected from this shipment,then the probability that at least one defective item will be observed in this sample will be :-

[tex]P(X\geq1)=1-P(0)\\\\=1-(^5C_0(0.07)^0(1-0.07)^{5-0})\\\\=1-(0.93)^5=0.3043116307\approx0.30[/tex]

Hence, the probability that at least one defective item will be observed in this sample =0.30

The linear correlation between violent crime rate and percentage of the population that has a cell phone is minus 0.918 for years since 1995. Do you believe that increasing the percentage of the population that has a cell phone will decrease the violent crime​ rate? What might be a lurking variable between percentage of the population with a cell phone and violent crime​ rate? Will increasing the percentage of the population that has a cell phone decrease the violent crime​ rate? Choose the best option below. No Yes

Answers

Answer:

The correct option is No and lurking variable is "Economy".

Step-by-step explanation:

Consider the provided information.

It is given that the linear correlation between violent crime rate and percentage of the population that has a cell phone is minus 0.918 for years since 1995.

There is a lurking variable between the proportion of the cell phone population and the rate of violent crime, the correlation between the two factors does not indicate causation.

Once the economy become stronger, crime rate tends to decrease.

Thus the correct option is NO.

Now, we need to identify the lurking variable between percentage of the population with a cell phone and violent crime​ rate.

Lurking variable is the variable which is unknown and not controlled.

Here, if we observe we can identify that economy plays a vital role. If economy become stronger, crime rate tends to decrease and population are better to buy phones. Also it is difficult to controlled over it.

Thus, the lurking variable is "Economy".

solve the system of equation by guess sidle method

8x1 + x2 + x3 = 8

2x1 + 4x2 + x3 = 4

x1 + 3x2 + 5x3 = 5

Answers

Answer: The solution is,

[tex]x_1\approx 0.876[/tex]

[tex]x_2\approx 0.419[/tex]

[tex]x_3\approx 0.574[/tex]

Step-by-step explanation:

Given equations are,

[tex]8x_1 + x_2 + x_3 = 8[/tex]

[tex]2x_1 + 4x_2 + x_3 = 4[/tex]

[tex]x_1 + 3x_2 + 5x_3 = 5[/tex],

From the above equations,

[tex]x_1=\frac{1}{8}(8-x_2-x_3)[/tex]

[tex]x_2=\frac{1}{4}(4-2x_1-x_3)[/tex]

[tex]x_3=\frac{1}{5}(5-x_1-3x_2)[/tex]

First approximation,

[tex]x_1(1)=\frac{1}{8}(8-(0)-(0))=1[/tex]

[tex]x_2(1)=\frac{1}{4}(4-2(1)-(0))=0.5[/tex]

[tex]x_3(1)=\frac{1}{5}(5-1-3(0.5))=0.5[/tex]

Second approximation,

[tex]x_1(2)=\frac{1}{8}(8-(0.5)-(0.5))=0.875[/tex]

[tex]x_2(2)=\frac{1}{4}(4-2(0.875)-(0.5))=0.4375[/tex]

[tex]x_3(2)=\frac{1}{5}((0.875)-3(0.4375))=0.5625[/tex]

Third approximation,

[tex]x_1(3)=\frac{1}{8}(8-(0.4375)-(0.5625))=0.875[/tex]

[tex]x_2(3)=\frac{1}{4}(4-2(0.875)-(0.5625))=0.421875[/tex]

[tex]x_3(3)=\frac{1}{5}(5-(0.875)-3(0.421875))=0.571875[/tex]

Fourth approximation,

[tex]x_1(4)=\frac{1}{8}(8-(0.421875)-(0.571875))=0.875781[/tex]

[tex]x_2(4)=\frac{1}{4}(4-2(0.875781)-(0.571875))=0.419141[/tex]

[tex]x_3(4)=\frac{1}{5}(5-(0.875781)-3(0.419141))=0.573359[/tex]

Fifth approximation,

[tex]x_1(5)=\frac{1}{8}(8-(0.419141)-(0.573359))=0.875938[/tex]

[tex]x_2(5)=\frac{1}{4}(4-2(0.875938)-(0.573359))=0.418691[/tex]

[tex]x_3(5)=\frac{1}{5}(5-(0.875938)-3(0.418691))=0.573598[/tex]

Hence, by the Gauss Seidel method the solution of the given system is,

[tex]x_1\approx 0.876[/tex]

[tex]x_2\approx 0.419[/tex]

[tex]x_3\approx 0.574[/tex]

What is the optimal solution for the following problem?

Minimize

P = 3x + 15y

subject to

2x + 4y ? 12

5x + 2y ? 10

and

x ? 0, y ? 0.

(x, y) = (2, 0)

(x, y) = (0, 3)

(x, y) = (0, 0)

(x, y) = (1, 2.5)

(x, y) = (6, 0)

Answers

Answer:Find the slope of the line that passes through the points shown in the table.

The slope of the line that passes through the points in the table is

.

Step-by-step explanation:

Final answer:

By substitifying the given points into the objective function, we can evaluate the minimum P. The point (x, y) = (0, 0) gives the minimum value of P = 0, which is the optimal solution for this problem.

Explanation:

This problem is a classic example of a linear programming problem, a method to achieve the best outcome in a mathematical model whose requirements are represented by linear relationships. In this case, we are asked to minimize P = 3x + 15y subject to the constraints [tex]2x + 4y \leq 12, 5x + 2y \leq 10, and ,x \geq 0, y \geq 0.[/tex] In other words, we are looking for values of x and y that satisfy the constraints and result in the smallest possible value of P.

By substituting our given points into the equation for P we can compare the results. The smallest value for P corresponds to the point (x, y) = (0, 0) with P = 0. This is the optimal solution for this problem because it results in the lowest value for P while still satisfying all the constraints.

Learn more about Linear Programming here:

https://brainly.com/question/34674455

#SPJ5

Other Questions
Write an equation: Phils age increased by 9 years is 18 years Is (0,0) a solution to this system y>=x^2+x-4; y (Future value) Sarah Wiggum would like to make a single lump-sum investment and have $ 1.7 million at the time of her retirement in 34 years. She has found a mutual fund that expects to earn 8 percent annually. How much must Sarah invest today? If Sarah earned an annual return of 16 16 percent, how much must she invest today? a. If Sarah can earn 8 percent annually for the next 34 years, how much will she have to invest today? $ nothing (Round to the nearest cent.) The sides of a rectangle have length x+ 2 and width x -5. Which equation describes the area, A, of the rectangle in terms of x? What complication is introduced in the excerpt?1.Marco is unable to locate his friends in the busy park.2.The slides wooden stairs are in need of repair.3.Marco and his friends have to wait in a long line.4.Park patrons are not following the rules of the slide. julio has found that his new car gets 36 miles to the gallon on the highway and 31 miles per gallon in the city. he recently drove 397 miles on 12 gallons of gasoline. how many miles did he drive on the highway? How many miles did he drive in the city? Elly has 2 rectangular gardens. One measures 1809 cm by 2891 cm and the other measures 738 cm by 249 cm. Elly wants to put a fence around both, how much does she need to buy? Where on Earth are organisms exposed to unusually high amounts of toxins, and why does this occur? a.In the North Pole and South Pole because of prevailing ocean currents, as well as the fact that deposition exceeds evaporation at the poles b.In Africa because it is situated at the equator and it has a large land area c.In the United States of America because it is located at middle latitudes d.On the equator because rain constantly falls in equatorial regions how to convert binary to octal How many kilograms of a fertilizer are made of pure P2O5 would be required to supply 1.69 kilogram of phosphorus to the soil? What is the approximate theoretical maximum efficiency of a heat engine receiving heat at 627C and rejecting heat to 27c? a)-23.2 b)-0.96 c)-0.04 d)-0.33 e)-0.66 Is f(x)=e^2 an exponential function? If so what is its base? If not, why? Given h(x) = x-1 and f(x) = x3-x2+x-1 is h(x) a factor of f(x)? On October 1 2017 Sunland Company issued 4 10 year bonds with a face value of $6110000 at 104 Interest is paid on October 1 and April 1 with any premiums or discounts amortized on a straight line basis Bond interest expense reported on the December 31 2017 income statement of Sunland Company would be: 15 points!!! please help me figure this out I am so confused Vaughn Manufacturing has a weighted-average unit contribution margin of $30 for its two products, Standard and Supreme. Expected sales for Vaughn are 40000 Standard and 60000 Supreme. Fixed expenses are $1950000. At the expected sales level, Vaughns net income will be: Find the midpoint of the segment between the points (17,1) and (2,8) A. (19/2,7/2) B. (15,9) C. (15/2,9/2) D. (15,9) Graph the ellipse with equation x squared divided by 36 plus y squared divided by 49 equals 1. The normal boiling point of a certain liquid is , but when of urea () are dissolved in of the solution boils at instead. Use this information to calculate the molal boiling point elevation constant of . Be sure your answer is rounded to the correct number of significiant digits. Find all values of x that are NOT in the domain of h.If there is more than one value, separate them with commash(x) = x + 1 / x^2 + 2y + 1