Answer all questions: 1) The electric field of an electromagnetic wave propagating in air is given by E(z,t) = 4cos(6 x 10^8 t - 2z) +3 sin(6 x 10 t -2z) (V/m). Find the associated magnetic field H(z,t)

Answers

Answer 1
Final answer:

The magnetic field H(z,t) of an electromagnetic wave is related to the electric field E(z,t) by a factor of the speed of light. Therefore, if E(z,t) = 4cos(6 x 10^8 t - 2z) +3 sin(6 x 10^8 t -2z), the associated magnetic field would be H(z,t) = (4/c) cos(6 x 10^8 t - 2z) +(3/c) sin(6 x 10^8 t -2z), where c is speed of light, approximately 3 x 10^8 m/s.

Explanation:

The question is asking for the associated magnetic field H(z,t) of an Electromagnetic wave given the electric field E(z,t). A crucial fact to know for this question is that the electric and magnetic fields in an electromagnetic wave are perpendicular to each other and the direction of propagation. They also have a constant ratio of magnitudes in free space or air, which is the speed of light given by c = 1/√εOMO. Because of these relations, we know that we can find the magnetic field by simply dividing the given electric field by the speed of light in units that match the given Electric field.

So, if E(z,t) = 4cos(6 x 10^8 t - 2z) +3 sin(6 x 10^8 t -2z), then the associated magnetic field would be H(z,t) = (4/c) cos(6 x 10^8 t - 2z) +(3/c) sin(6 x 10^8 t -2z), where c is the speed of light, approximately 3 x 10^8 m/s.

Learn more about Electromagnetic Waves here:

https://brainly.com/question/29774932

#SPJ12

Answer 2
Final answer:

To find the associated magnetic field H(z, t), you can use Faraday's law of electromagnetic induction. This law states that the rate of change of magnetic flux through a surface is equal to the induced electromotive force (EMF) along the boundary of the surface. By following a step-by-step process, you can find the magnetic field B(z, t) using the given electric field E(z, t).

Explanation:

The associated magnetic field H(z, t) can be found by using Faraday's law of electromagnetic induction. Faraday's law states that the rate of change of magnetic flux through a surface is equal to the electromotive force (EMF) along the boundary of the surface. In this case, the magnetic field is changing due to the time-dependent electric field, so we can use Faraday's law to find the magnetic field.

Start by finding the magnetic flux through a surface with an area A in the z-direction.The magnetic field B is perpendicular to the surface, so the magnetic flux is given by Φ = B * A.By Faraday's law, the rate of change of magnetic flux is equal to the induced EMF around the boundary of the surface. In this case, the induced EMF is caused by the changing electric field.From the given electric field E(z, t), we can differentiate it with respect to time to find the rate of change, which gives us the induced EMF.Equating the rate of change of magnetic flux to the induced EMF, we can solve for the magnetic field B(z, t).

By following these steps, you can find the associated magnetic field H(z, t) using Faraday's law of electromagnetic induction.

Learn more about Faraday's law here:

https://brainly.com/question/1640558

#SPJ12


Related Questions

Express the weight of the main axle of the 1893 Ferris wheel in kilograms.

Answers

Answer:

40514.837 kg

Step-by-step explanation:

The weight of the main axle of the 1893 ferris wheel built by George Washington Gale Ferris Jr. in Chicago, USA was 89,320 pounds (lb).

1 kg=2.20462 pounds (lb)

[tex]\Rightarrow 1 lb=\frac{1}{2.20426}[/tex]

[tex]\Rightarrow 1 lb=0.453592 kg[/tex]

[tex]\Rightarrow 89320 lb=89320\times 0.453592[/tex]

[tex]\therefore 89320 lb=40514.837 kg[/tex]

A box contains 19 large marbles and 10 small marbles. Each marble is either green or white. 8 of the large marbles are green, and 4 of the small marbles are white. If a marble is randomly selected from the box, what is the probability that it is small or white? Express your answer as a fraction or a decimal number rounded to four decimal places.

Answers

Answer:

25/29

Step-by-step explanation:

see the attached picture.

The probability that marble is small or white is 25/29.

Probability is the ratio of the number of outcomes in an exhaustive set of equally likely outcomes that produce a given event to the total number of possible outcomes.

How to find If a marble is randomly selected from the box, what is the probability that it is small or white?

Given A box contains 19 large marbles and 10 small marbles.

Each marble is either green or white.

8 of the large marbles are green, and 4 of the small marbles are white.

Then P(s or w) = P(s) +P(w)

and P(s)=10/29

P(w)=11+4/29 = 15/29.

So,  P(s or w) = P(s) +P(w)

=> P(s or w) = 10+15/29

=> 25/29.

Learn more about probability on : https://brainly.in/question/20635873

#SPJ2

Seven trucks are filled equally from a gasoline tank and 1/3 of gasoline is still in the tank. The capacity of each truck is what part of tank:
a) 1/10 b) 2/15 c) 3/20 d) 2/21 e) 4/15

Answers

Answer:

2/21

Step-by-step explanation:

We start out with a full tank.  Once the trucks take from it, it is down to 1/3 of a tank.  Therefore,

[tex]\frac{3}{3} -\frac{1}{3} =\frac{2}{3}[/tex]

So the trucks took 2/3 of the gas.  

If there were 7 trucks and we need to know how much of that 2/3 was taken by each truck, we divide 2/3 by 7:

[tex]\frac{\frac{2}{3} }{7}[/tex]

When dividing fractions, we bring up the lower fraction and flip it and multiply:

[tex]\frac{2}{3}*\frac{1}{7}=\frac{2}{21}[/tex]

Final answer:

The capacity of each truck is 2/21 of the total gasoline tank, which is calculated by dividing the used part of the gasoline tank (2/3) by the number of trucks (7).

Explanation:

Let's denote the total gasoline tank volume as one unit, or 1. Seven trucks share 2/3 of the gasoline tank capacity (since 1/3 is still left); each truck capacity could be gotten by dividing this 2/3 equally among the seven trucks. By dividing 2/3 by 7, we get each truck's capacity as 2/21 of the total gasoline tank capacity. Therefore, the correct answer is d) 2/21.

Learn more about Fraction division here:

https://brainly.com/question/17205173

#SPJ3

Which of the following justifies the statement below? If AB = BC and BC = DE, then AB = DE.
A. Transitive Property of Equality
B. Segment Addition Postulate
C. Distributive Property of Equality
D. Symmetric Property of Equality

Will give brainliest!!!

Answers

Answer:

A transitive property

Step-by-step explanation:

There isn't much to this.

This is the the transitive property.

I guess I can go through each choice and tell you what the property looks like or postulate.

A)  If x=y and y=z, then x=z.

This is the exact form of your conditional.

x is AB here

y is BC here

z is DE here

B) Segment Addition Postulate

If A,B, and C are collinear with A and B as endpoints, then AB=AC+CB.

Your conditional said nothing about segment addition (no plus sign).

C) Distributive property is a(b+c)=ab+ac.

This can't be applied to any part of this.  There is not even any parenthesis.

D) The symmetric property says if a=b then b=a.

There is two parts to our hypothesis where this is only part to the symmetric property for the hypothesis .  

Final answer:

The statement 'If AB = BC  and BC = DE, then AB = DE' is justified by the Transitive Property of Equality, stating that, if two quantities both equal a third, they are equal to each other.

Explanation:

The justification for the statement 'If AB = BC  and BC = DE, then AB = DE' is the Transitive Property of Equality. This property states that if two quantities are both equal to a third quantity, then they are equal to each other. In this case, AB and DE are both equal to BC, therefore, according to the transitive property, AB must be equal to DE.

Learn more about Transitive Property of Equality here:

https://brainly.com/question/34548990

#SPJ2

There is a probability of 20% that a milk container is underweight throughout of packaging line. Suppose milk containers are shipped to retail outlets in boxes of 10 containers. What is the probability that at least nine milk containers in a box are properly filled?

Answers

Answer: 0.3758

Step-by-step explanation:

Given : The  probability that a milk container is underweight throughout of packaging line: [tex]p = 0.20[/tex]

The number of containers : n= 10

The formula binomial distribution formula :-

[tex]^nC_rp^{n-r}(1-p)^r[/tex]

The probability that at least nine milk containers in a box are properly filled is given by :-

[tex]P(X\geq9)=P(9)+P(10)\\\\=^{10}C_9(0.2)^{10-9}(1-0.20)^9+^{10}C_{10}(0.2)^{10-10}(1-0.2)^{10}\\=10(0.2)(0.8)^9+(1)(0.8)^{10}\\=0.3758096384\approx0.3758[/tex]

Find the critical numbers of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) F(x) = x4/5(x − 2)2

Answers

Answer:

The critical numbers/values are x = 0, 4/7, 2

Step-by-step explanation:

This is a doozy; no wonder you have it up here for help!

The critical numbers of a function are found where the derivative of the function is equal to 0.  To find these numbers, you have to factor the deriative or simply solve it for 0.  This one is especially difficult since it involves rational exponents that have to be factored.  But this is fun, so let's get to it.

First off, I am assuming that the function is

[tex]f(x)=x^{\frac{4}{5}}*(x-2)^2[/tex] which involves using the product rule to find the derivative.

That derivative is

[tex]f'(x)=x^{\frac{4}{5}}*2(x-2)+\frac{4}{5}x^{-\frac{1}{5}}(x-2)^2[/tex] which simplifies down to

[tex]f'(x)=x^{\frac{4}{5}}(2x^{\frac{5}{5}}-4)+\frac{4}{5}x^{-\frac{1}{5}}(x^{\frac{10}{5}}-4x^{\frac{5}{5}}+4)[/tex] and

[tex]f'(x)=2x^{\frac{9}{5}}-4x^{\frac{4}{5}}+\frac{4}{5}x^{\frac{9}{5}}-\frac{16}{5}x^{\frac{4}{5}}+\frac{16}{5}x^{-\frac{1}{5}}[/tex]

Let's get everything over the common denominator of 5 so we can easily add and subtract like terms:

[tex]f'(x)=\frac{10}{5}x^{\frac{9}{5}}-\frac{20}{5}x^{\frac{4}{5}}+\frac{4}{5}x^{\frac{9}{5}}-\frac{16}{5}x^{\frac{4}{5}}+\frac{16}{5}x^{-\frac{1}{5}}[/tex]

Combining like terms gives us

[tex]f'(x)=\frac{14}{5}x^{\frac{9}{5}}-\frac{36}{5}x^{\frac{4}{5}}+\frac{16}{5}x^{-\frac{1}{5}}[/tex]

This, however, factors so it is easier to solve for x.  First we will set this equal to 0, then we will factor out

[tex]\frac{2}{5}x^{-\frac{1}{5}}[/tex]:

[tex]0=\frac{2}{5}x^{-\frac{1}{5}}(7x^2-18x+8)[/tex]

By the Zero Product Property, one of those terms has to equal 0 for the whole product to equal 0.  So

[tex]\frac{2}{5}x^{-\frac{1}{5}}=0[/tex] when x = 0

And

[tex]7x^2-18x+8=0[/tex] when x = 2 and x = 4/7

Those are the critical numbers/values for that function.  This indicates where there is a max value or a min value.

Final answer:

To find the critical numbers of the function F(x) = x^(4/5)(x - 2)^2, take the derivative, set it equal to zero, and check for undefined values.

Explanation:

To find the critical numbers of the function F(x) = x4/5(x - 2)2, we need to find the values of x where the derivative of the function is equal to zero or undefined.

Step 1: Find the derivative of F(x) using the product rule and simplify.

Step 2: Set the derivative equal to zero and solve for x.

Step 3: Check if the derivative is undefined at any values of x.

The critical numbers of the function are the values of x where the derivative is equal to zero or undefined.

Learn more about Finding critical numbers here:

https://brainly.com/question/35503745

#SPJ2

A single card is drawn from a standard​ 52-card deck. Let D be the event that the card drawn is a black card​, and let F be the event that the card drawn is a 10 card. Find the indicated probability.

P(DUF')

The probability P(DUF') is

Answers

Final answer:

P(D ∪ F') is the probability of drawing a black card that is not a 10 from a standard 52-card deck, which is 24 black non-10 cards out of 52 total cards, resulting in a probability of 12/13.

Explanation:

The student is asking about probability in relation to drawing cards from a standard 52-card deck. Specifically, they want to find the probability of the event D (drawing a black card) or the complement of event F (not drawing a 10 card), denoted as P(D ∪ F'). In a standard deck, there are 26 black cards and four 10 cards (two of which are black), so the complement of F (F') is drawing any card that is not a 10, which is 52 - 4 = 48 cards. To find P(D ∪ F'), we consider the number of black cards that are not 10s, which is 24, since there are 26 black cards and 2 are 10s. Therefore, P(D ∪ F') is the probability of drawing one of these 24 cards out of the 52-card deck.

Calculating this probability:

P(D ∪ F') = number of black cards that are not 10s / total number of cards = 24/52 = 12/13.

The key concept here is that we're looking for the union of a black card and a non-10 card, which includes black cards that are also not the number 10.

Graph the line and the parabola and find the points of intersection: y= 3-x ; y=x(squared)+x-12

Answers

Answer:

Step-by-step explanation:

We have to graph a line y = 3 - x which has the slope = -1 and y intercept 3.

We will select two points where line intersects at x = 0 and y = 0

The given line will intersect x-axis at (3, 0) and at y- axis (0, 3).

Joining these two points we can draw a straight line showing y = -x + 3

Now we will draw the parabola given by equation y = x² + x - 12

We will convert this equation in vertex form first to get the vertex and line of symmetry.

Standard equation of a parabola in vertex form is

y = (x - h)² + k

Where (h, k) is the vertex and x = h is the line of symmetry.

y = x² + x - 12

y = x² + 2(0.5)x + (0.5)²- (0.5)²-12

y = (x + 0.5)² - 12.25

Therefore, vertex will be (-0.5, -12.25) and line of symmetry will be x = 0.5

For x intercept,

0 = (x + 0.5)² - 12.25

x + 0.5 = ±√12.25

x = -0.5 ± 3.5

x = -4, 3

For y- intercept,

y = (0+0.5)² - 12.25

 = 0.25 - 12.25

y = -12

So the parabola has vertex (-0.5, - 12.25), line of symmetry x = 0.5, x intercept (4, 0), (and y-intercept (0, -12).

Now we have to find the points of intersection of the given line and parabola.

For this we will replace the values of y

3 - x = x² + x - 12

x² + 2x - 15 = 0

x² + 5x - 3x - 15 = 0

x(x + 5) - 3(x + 5) = 0

(x - 3)(x + 5) = 0

x = 3, -5

For x = 3

y = 3- 3 = 0

For x = -5

y = 3 + 5 = 8

Therefore, points of intersection will be (3, 0) and (-5, 8)

 

1. Provide an appropriate response.

A company estimates that it will sell N(t) hair dryers after spending $t thousands on advertising as given by:
N(t) = -3t3 + 450t2 - 21,600t + 1,100, 40 ? t ? 60 For which values of t is the rate of sales N'(t) increasing?

A. 50 < t < 60 B. 40 < t < 50. C. t > 40 D. 40< t < 60

Answers

Answer:

D. 40 < t < 60

Step-by-step explanation:

Given function,

[tex]N(t) = -3t^3 + 450t^2 - 21,600t + 1,100[/tex]

Differentiating with respect to x,

[tex]N(t) = -9t^2+ 900t - 21,600[/tex]

For increasing or decreasing,

f'(x) = 0,

[tex]-9t^2+ 900t - 21,600=0[/tex]

By the quadratic formula,

[tex]t=\frac{-900\pm \sqrt{900^2-4\times -9\times -21600}}{-18}[/tex]

[tex]t=\frac{-900\pm \sqrt{32400}}{-18}[/tex]

[tex]t=\frac{-900\pm 180}{-18}[/tex]

[tex]\implies t=\frac{-900+180}{-18}\text{ or }t=\frac{-900-180}{-18}[/tex]

[tex]\implies t=40\text{ or }t=60[/tex]

Since, in the interval -∞ < t < 40, f'(x) = negative,

In the interval 40 < t < 60, f'(t) = Positive,

While in the interval 60 < t < ∞, f'(t) = negative,

Hence, the values of t for which N'(t) increasing are,

40 < t < 60,

Option 'D' is correct.

A candy box is made from a piece of cardboard that measures 43 by 23 inches. Squares of equal size will be cut out of each corner. The sides will then be folded up to form a rectangular box. What size square should be cut from each corner to obtain maximum​ volume?

Answers

Answer:

For maximum volume of the box, squares with 4.79 inches should be cut off.

Step-by-step explanation:

A candy box is made from a piece of a cardboard that measures 43 × 23 inches.

Let squares of equal size will be cut out of each corner with the measure of x inches.  

Therefore, measures of each side of the candy box will become

Length = (43 - 2x)

Width = (23 - 2x)

Height = x

Now we have to calculate the value of x for which volume of the box should be maximum.

Volume (V) = Length×Width×Height

V = (43 -2x)(23 - 2x)(x)

  = [(43)×(23) - 46x - 86x + 4x²]x

  = [989 - 132x + 4x²]x

  = 4x³- 132x² + 989x

Now we find the derivative of V and equate it to 0

[tex]\frac{dV}{dx}=12x^{2}-264x+989[/tex] = 0

Now we get values of x by quadratic formula

[tex]x=\frac{264\pm \sqrt{264^{2}-4\times 12\times 989}}{2\times 12}[/tex]

x = 17.212, 4.79

Now we test it by second derivative test for the maximum volume.

[tex]\frac{d"V}{dx}= 24x - 264[/tex]

For x = 17.212

[tex]\frac{d"V}{dx}= 24(17.212)-264=413.088-264=149.088[/tex]

This value is > 0 so volume will be minimum.

For x = 4.79

[tex]\frac{d"V}{dx}=24(4.79)-264=-149.04[/tex]

-149.04 < 0, so volume of the box will be maximum.

Therefore, for x = 4.79 inches volume of the box will be maximum.

Final answer:

To find the size of the square to cut from each corner to attain maximum volume, one needs to create a function for the volume based on the size of the cut, derive it, and solve for x when the derivative equals zero. However, this solution might require advanced calculus.

Explanation:

In this case, we're dealing with a problem in maximum volume. Let's say the size of the square cut is x. The length, width, and height of the box would then be 43-2x, 23-2x, and x, respectively. The volume of the box will then be (43-2x)(23-2x)*x.

To find the maximum volume, we take the derivative of this function (V'(x)) and find for which value of x it equals zero. But as this is a somewhat complex calculus problem, an alternative approach might be to solve it graphically or computationally, seeking for what value of x the volume becomes maximum.

For more detailed calculus solution, consult a mathematics teacher or resources that delve deeper into maximum and minimum problems within calculus.

Learn more about Maximum Volume here:

https://brainly.com/question/32315283

#SPJ3

Find the coefficient of x^12 in (1-x^2)^-5 what can you set about the coefficient of x^17

Answers

Answer with explanation:

The expansion  of

  [tex](1+x)^n=1 + nx +\frac{n(n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3+......[/tex]

where,n is a positive or negative , rational number.

Where, -1< x < 1

Expansion of

 [tex](1-x^2)^{-5}=1-5 x^2+\frac{(5)\times (6)}{2!}x^4-\frac{5\times 6\times 7}{3!}x^6+\frac{5\times 6\times 7\times 8}{4!}x^8-\frac{5\times 6\times 7\times 8\times 9}{5!}x^{10}+\frac{5\times 6\times 7\times 8\times 9\times 10}{6!}x^{12}+....[/tex]

Coefficient of [tex]x^{12}[/tex] in the expansion of [tex](1-x^2)^{-5}[/tex] is

        [tex]=\frac{5\times 6\times 7\times 8\times 9\times 10}{6!}\\\\=\frac{15120}{6\times 5 \times 4\times 3 \times 2 \times 1}\\\\=\frac{151200}{720}\\\\=210[/tex]

As the expansion [tex](1-x^2)^{-5}[/tex] contains even power of x , so there will be no term containing [tex]x^{17}[/tex].

A heap of rubbish in the shape of a cube is being compacted into a smaller cube. Given that the volume decreases at a rate of 3 cubic meters per minute, find the rate of change of an edge, in meters per minute, of the cube when the volume is exactly 8 cubic meters.

Answers

Answer:

-1/4 meter per minute

Step-by-step explanation:

Since, the volume of a cube,

[tex]V=r^3[/tex]

Where, r is the edge of the cube,

Differentiating with respect to t ( time )

[tex]\frac{dV}{dt}=3r^2\frac{dr}{dt}[/tex]

Given, [tex]\frac{dV}{dt}=-3\text{ cubic meters per minute}[/tex]

Also, V = 8 ⇒ r = ∛8 = 2,

By substituting the values,

[tex]-3=3(2)^2 \frac{dr}{dt}[/tex]

[tex]-3=12\frac{dr}{dt}[/tex]

[tex]\implies \frac{dr}{dt}=-\frac{3}{12}=-\frac{1}{4}[/tex]

Hence, the rate of change of an edge is -1/4 meter per minute.

The rate of change of an edge of the cube when the volume is exactly 8 cubic meters is -0.25 meters per minute, calculated using the formula for the volume of a cube and the chain rule for differentiation.

The student seeks to find the rate of change of an edge of a cube when the volume is decreasing at a specific rate. Given that the volume decreases at a rate of 3 cubic meters per minute, we can find the rate at which the edge length changes using the formula for the volume of a cube, which is V = s^3, where V is volume and s is the edge length.

To determine the rate of change of the edge length, we can use the chain rule in calculus to differentiate the volume with respect to time: dV/dt = 3( s^2 )(ds/dt). We know that dV/dt = -3 m^3/min and that when the volume V = 8 m^3, the edge length s can be found by taking the cube root of the volume, which is 2 meters. By substituting these values, we solve for ds/dt, which is the rate of change of the edge length. The resulting calculation is ds/dt = (dV/dt) / (3s^2) = (-3 m^3/min) / (3(2m)^2) = -0.25 m/min.

An estimator receives an average quote fora traffic control subcontractor of $1570 for the job duration. If the lowest bid is 4 % under average, and the highest bid is 12% above average, what is the cost difference between lowest and highest bid?

Answers

Answer:

The cost difference between lowest and highest bid $ 251.20

Step-by-step explanation:

Given,

The average quote for the traffic control subcontractor = $ 1570,

Also, the lowest bid is 4 % under average,

That is, lowest bid = average quote - 4% average quote

= 1570 - 4% of 1570

[tex]=1570-\frac{4\times 1570}{100}[/tex]

[tex]=1570-\frac{6280}{100}[/tex]

[tex]=1570-62.80[/tex]

[tex]=\$1507.2[/tex]

While, the highest bid is 12% above average,

That is, the highest bid = average quote + 12% average quote

= 1570 + 12% of 1570

[tex]=1570+\frac{12\times 1570}{100}[/tex]

[tex]=1570+\frac{18840}{100}[/tex]

[tex]=1570+188.4[/tex]

[tex]=\$1758.4[/tex]

Hence,  the cost difference between lowest and highest bid = $ 1758.4 - $ 1507.2 = $ 251.20

Determine whether the vectors (2, 3, l), (2, -5, -3), (-3, 8, -5) are linearly dependent or linear independent. If the vectors are linearly dependent, express one as a linear combination of the others. (Solutions of homogeneous differential equations form a vector space: it is necessary to confirm whether given functions/vectors are linearly dependent or linearly independent, chapter 4).

Answers

Answer:

So the vectors are linearly independent.

Step-by-step explanation:

So if they are linearly independent then the following scalars in will have the condition a=b=c=0:

a(2,3,1)+b(2,-5,-3)+c(-3,8,-5)=(0,0,0).

We have three equations:

2a+2b-3c=0

3a-5b+8c=0

1a-3b-5c=0

Multiply last equation by -2:

2a+2b-3c=0

3a-5b+8c=0

-2a+6b+10c=0

Add equation 1 and 3:

0a+8b+7c=0

3a-5b+8c=0

-2a+6b+10c=0

Divide equation 3 by 2:

0a+8b+7c=0

3a-5b+8c=0

-a+3b+2c=0

Multiply equation 3 by 3:

0a+8b+7c=0

3a-5b+8c=0

-3a+9b+6c=0

Add equation 2 and 3:

0a+8b+7c=0

3a-5b+8c=0

0a+4b+13c=0

Multiply equation 3 by -2:

0a+8b+7c=0

3a-5b+8c=0

0a-8b-26c=0

Add equation 1 and 3:

0a+0b-19c=0

3a-5b+8c=0

0a-8b-26c=0

The first equation tells us -19c=0 which implies c=0.

If c=0 we have from the second and third equation:

3a-5b=0

0a-8b=0

0a-8b=0

0-8b=0

-8b=0 implies b=0

We have b=0 and c=0.

So what is a?

3a-5b=0 where b=0

3a-5(0)=0

3a-0=0

3a=0 implies a=0

So we have a=b=c=0.

So the vectors are linearly independent.

Final answer:

To find out if the vectors (2, 3, l), (2, -5, -3), and (-3, 8, -5) are linearly dependent or independent, set up a linear system with the vectors and look for non-trivial solutions.

Explanation:

To determine whether the vectors (2, 3, l), (2, -5, -3), and (-3, 8, -5) are linearly dependent or linearly independent, we set up the equation a(2, 3, l) + b(2, -5, -3) + c(-3, 8, -5) = (0, 0, 0), where a, b, and c are scalars.

If only the trivial solution exists, where a = b = c = 0, then the vectors are linearly independent. If a non-trivial solution exists, then the vectors are linearly dependent.

Let's solve the system of linear equations generated from the above equation:

2a + 2b - 3c = 0,3a - 5b + 8c = 0,al - 3b - 5c = 0.

Using the methods for solving systems of linear equations, such as Gaussian elimination, we can determine whether a unique solution exists.

If the determinant of the coefficients matrix is non-zero, the system has a unique solution, indicating linear independence. Otherwise, a non-unique solution indicates linear dependence, and we can express

The response to a question has three alternatives: A, B, and C. A sample of 120 responses provides 64 A, 23 B, and 33 C responses. Show the frequency and relative frequency distributions (use nearest whole number for the frequency column and 2 decimal for the relative frequency column).

Answers

Answer with explanation:

Frequency--

It is the number of times an outcome occurs while performing an experiment some " n " number of times.

Relative frequency--

It is the ratio of the frequency of an outcomes to the total number of times an experiment is been performed.

Here there are TOTAL : 120 responses and three outcomes A , B and C.

The frequency table is given as follows:

Outcome         A           B            C

Frequency       64         23           33

and the Relative frequency table is given as follows:

Outcome                          A              B               C

Relative frequency         64/120     23/120      33/120

i.e. the Relative frequency table is given by:

Outcome                         A              B               C

Relative frequency         0.53         0.19          0.28    

Final answer:

The frequency distribution for the given sample is: A: 64, B: 23, C: 33. The relative frequency distribution is: A: 0.53, B: 0.19, C: 0.28.

Explanation:

To find the frequency distribution, we simply count the number of occurrences of each response. For the given sample of 120 responses, we have:

A: 64 responses

B: 23 responses

C: 33 responses

To find the relative frequency distribution, we divide the frequency of each response by the total number of responses (120). The relative frequencies, rounded to two decimal places, are:

A: 0.53

B: 0.19

C: 0.28

QUESTIONS The average price of wheat per metric ton in 2012 was $30575. Demand in millions of metric tons) in 2012 was 672. The average price of wheat per metric ton in 2013 was $291.56, while the demand was 700. Calculate the elasticity and classify as elastic or inelastic -0.04 elastic -0.9, elastic -0.9; inelastic -3.84, elastic -0.04 inelastic

Answers

Answer: -0.9 ; inelastic

Explanation:  

Given:

The average price of wheat per metric ton in 2012 = $305.75

Demand (in millions of metric tons) in 2012 = 672

The average price of wheat per metric ton in 2013 =  $291.56

Demand (in millions of metric tons) in 2013 = 700

We will compute the elasticity using the following formula:

ε = [tex]\frac{\frac{(Q_{2} - Q_{1})}{\frac{(Q_{2} +Q_{1})}{2}}}{\frac{(P_{2} - P_{1})}{\frac{(P_{2} +P_{1})}{2}}}[/tex]

ε = [tex]\frac{\Delta Q}{\Delta P}[/tex]

Now , we'll first compute  [tex]\Delta Q[/tex]

i.e.  [tex]\frac{\Delta Q}{\Delta P}[/tex] = [tex]\frac{(700 - 672)}{\frac{(700 +672)}{2}}[/tex]

[tex]\Delta Q[/tex] = 0.04081

Similarly for  [tex]\Delta P[/tex]

i.e. [tex]\Delta P[/tex] = [tex]\frac{(291.56 - 305.75)}{\frac{(261.56 +305.75)}{2}}[/tex]

[tex]\Delta P[/tex] = -0.0475

ε = [tex]\frac{0.04081}{-0.0475}[/tex]

ε = -0.859 [tex]\simeq[/tex] -0.9

[tex]\because[/tex] we know that ;

If, ε > 1 ⇒ Elastic

ε < 1 ⇒ Inelastic

ε = 1 ⇒ unit elastic

[tex]\because[/tex] Here , ε = -0.859 [tex]\simeq[/tex] -0.9

Therefore ε is inelastic.

Please help me I don't know how to do these at all.


Answers

Answer:

The quotient is (-x³ + 4x² + 4x - 8) and the remainder is 0

Step-by-step explanation:

Look to the attached file

3500 to purchase a government bonds

Pays 4.89% annual simple interest.

How much will you have in 3 years?

Answers

Answer:

4013.45

Step-by-step explanation:

Given,

Purchased amount of the bond, P = 3500,

Annual rate of simple interest, r = 4.89% = 0.0489,

Time ( in years ), t = 3,

Since, the total amount of a bond that earns simple interest is,

[tex]A=P(1+r\times t)[/tex]

By substituting values,

The amount of the bond would be,

[tex]=3500(1+0.0489\times 3)[/tex]

[tex]=3500(1.1467)[/tex]

[tex]=4013.45[/tex]

A wheel initially has an angular velocity of 18 rad/s, but it is slowing at a constant rate of 2 rad/s 2 . By the time it stops, it will have turned through approximately how many revolutions?

Answers

Answer:13 revolution

Step-by-step explanation:

Given  data

Wheel initial angular velocity[tex]\left ( \omega \right ) [/tex]=18 rad/s

Contant angular deaaceleration[tex]\left ( \alpha \right )[/tex]=2[tex]rad/s^2[/tex]

Time required to stop wheel completely=t sec

[tex]\omega =\omega_0 + \aplha t[/tex]

0 =18 +[tex]\left ( -2\right )t[/tex]

t=9 sec

Therefore angle turn in 9 sec

[tex]\theta [/tex]=[tex]\omega_{0} t[/tex]+[tex]\frac{1}{2}[/tex][tex]\left ( \alpha\right )t^{2}[/tex]

[tex]\theta [/tex]=[tex]18\times 9[/tex]+[tex]\frac{1}{2}[/tex][tex]\left ( -2\right )\left ( 9\right )^2[/tex]

[tex]\theta [/tex]=81rad

therefore no of turns(n) =[tex]\frac{81}{2\times \pi}[/tex]

n=12.889[tex]\approx [/tex]13 revolution

The root of the equation f(x) = 0 is found by using the Secant method. The initial guesses are x-1 = 3.6 and x0 = 1.5. Given that f(3.6) = 7.1 and f(1.5) = 3.9, the angle the secant line makes with the x axis is ___ (Report your answer in in degrees ; keep 4 decimal places.)

Answers

Answer:

Angle made by secant line equals[tex]56.7251^{o}[/tex]

Step-by-step explanation:

Solpe of a line joining points [tex](x_{1},y_{1}),(x_{2},y_{2})[/tex] is given by

[tex]tan(\theta)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

where [tex]y_{i}=f(x_{i})[/tex]

Applying values we get

[tex]tan(\theta)=\frac{7.1-3.9}{3.6-1.5}\\\\\theta =tan^{-1}\frac{32}{21}\\\\\theta=56.7251^{o}[/tex]

A hacker is trying to guess someone's password. The hacker knows (somehow) that the password is 3 digits long, and that each digit could be a number between 0 and 4. Assume that the hacker makes random guesses. What is the probability that the hacker guesses the password on his first try? Round to six decimal places.

Answers

Answer:

.008000

Step-by-step explanation:

The first digit is either 0,1,2,3,4

P( right guess) = 1/5

The second digit is either 0,1,2,3,4

P( right guess) = 1/5

The third digit is either 0,1,2,3,4

P( right guess) = 1/5

Since they are independent

P( right,right,right) = 1/5*1/5*1/5 = 1/125 =.008

To six decimal places = .008000

To solve the problem, let's consider each piece of information step by step:
1. The password is 3 digits long.
2. Each digit can be any number from 0 to 4.
Since there are 5 choices for each digit (0, 1, 2, 3, or 4), we calculate the total number of distinct combinations possible for a 3-digit password where each digit has 5 possibilities.
For each place of the three digits, we have 5 choices, which gives us a total combination count using the Multiplication Principle:
- First digit: 5 choices (0-4)
- Second digit: 5 choices (0-4)
- Third digit: 5 choices (0-4)
To find the total number of different password combinations, we multiply the number of choices for each digit:
Total combinations = 5 (choices for the first digit) × 5 (choices for the second digit) × 5 (choices for the third digit) = \( 5^3 = 125 \) possible password combinations.
Each of these combinations is equally likely if the hacker guesses at random. Hence, the probability that the hacker guesses the correct password on the first try is 1 out of the total number of combinations.
Therefore, the probability is:
\( P(\text{correct on first try}) = \frac{1}{125} \)
Let's convert this probability to a decimal and then round it to six decimal places:
\( P(\text{correct on first try}) = \frac{1}{125} = 0.008 \)
When rounded to six decimal places, the probability is:
\( P(\text{correct on first try}) \approx 0.008000 \)
So, the probability that the hacker guesses the password correctly on the first try is approximately 0.008000.

A ball is shot out of a cannon at ground level, We know that its height H in feet after t sec given by the function H(t) 144t-16t Com is a. Find H(3), H(6), H(4), and H(5). Why are some of the outputs equal? H(3) feet

Answers

Answer:

H(3) = 288 feet

H(4) = 320 feet

H(5) = 320 feet

H(6) = 288 feet

Step-by-step explanation:

A ball is shot out of a cannon at ground level so the ball will follow a parabolic path.

Since height H and time t of the ball have been described by a function H(t) = 144t - 16t²

Then we have to find the values of H(3), H(4), H(5) and H(6).

H(3) = 144×3 - 16(3)²

       = 432 - 144

       = 288 feet

H(4) = 144×4 - 16(4)²

       = 576 - 256

       = 320 feet

H(5) = 144×5 - 16(5)²

       = 720 - 400

       = 320 feet

H(6) = 144×6 - 16(6)²

       = 864 - 576

       = 288 feet

Here we are getting the value like H(3), H(6) and H(4), H(5) are same because in a parabolic path ball first increase in the height above the ground then after the maximum height it decreases.

Therefore, after t = 3 and t = 6 heights of the canon ball are same. Similarly after t = 4 and t = 5 heights of the canon above the ground are same.

Final answer:

The heights of the ball at different times are calculated by substituting the times into the quadratic function H(t) = 144t - 16t². Some heights are equal because the ball reaches the same height on its way up and on its way down due to the parabolic path of the projectile motion.

Explanation:

The height function for the ball being shot out of a cannon is H(t) = 144t - 16t². This is a quadratic function, which models projectile motion. To find the heights at specific times we substitute these times into the function.

H(3) = 144(3) - 16(3²) = 288 feetH(6) = 144(6) - 16(6²) = 0 feetH(4) = 144(4) - 16(4²) = 320 feetH(5) = 144(5) - 16(5²) = 320 feet

Notice that H(4) = H(5) = 320 feet. This is because the path of the ball follows parabolic motion. The ball reaches the same height of 320 feet on its way up (at 4 seconds) and on its way down (at 5 seconds), which is why some output values are equal.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ12

Find the solution of the given initial value problems in explicit form. Determine the interval where the solutions are defined. y' = 1-2x, y(1) = -2

Answers

Answer:

The solution of the given initial value problems in explicit form is [tex]y=x-x^2-2[/tex]  and the solutions are defined for all real numbers.

Step-by-step explanation:

The given differential equation is

[tex]y'=1-2x[/tex]

It can be written as

[tex]\frac{dy}{dx}=1-2x[/tex]

Use variable separable method to solve this differential equation.

[tex]dy=(1-2x)dx[/tex]

Integrate both the sides.

[tex]\int dy=\int (1-2x)dx[/tex]

[tex]y=x-2(\frac{x^2}{2})+C[/tex]                  [tex][\because \int x^n=\frac{x^{n+1}}{n+1}][/tex]

[tex]y=x-x^2+C[/tex]              ... (1)

It is given that y(1) = -2. Substitute x=1 and y=-2 to find the value of C.

[tex]-2=1-(1)^2+C[/tex]

[tex]-2=1-1+C[/tex]

[tex]-2=C[/tex]

The value of C is -2. Substitute C=-2 in equation (1).

[tex]y=x-x^2-2[/tex]

Therefore the solution of the given initial value problems in explicit form is [tex]y=x-x^2-2[/tex] .

The solution is quadratic function, so it is defined for all real values.

Therefore the solutions are defined for all real numbers.

Accomplished silver workers in India can pound silver into incredibly thin sheets, as thin as 2.87 × 10-7 m. Find the area of such a sheet that can be formed from 1.00 kg of silver. [silver density = 10500 kg/m3]

Answers

Answer:

A=331.84 m2

Step-by-step explanation:

Hello

The density of a object is defined by

[tex]d=\frac{m}{v}[/tex]

d is the density

m is the mass of the object

v es the volume of the object

We  have

[tex]thickness= t =2.87 * 10^{-7} m\\\ A=unknown=area\\ Volume=Area*thickness\\m=1 kg \\\\\\d=10500kg/m^{3}[/tex]

[tex]d=\frac{m}{v}\\ v=\frac{m}{d}\\ A*t=\frac{m}{d}\\ A=\frac{m}{d*t}\\ \\A=\frac{1 kg}{10500\frac{kg}{m^{3} }*2.87*10^{-7}m}\\A=331.84m^{2}[/tex]

I hope it helps

Pedro owns 5 7/10 acres of farmland. He grows beets on 1/8 of the land. On how many acres of land does Pedro grow beets?

Answers

Final answer:

Pedro owns 5 7/10 acres of farmland and grows beets on 1/8 of it. The calculation to determine the area used for beets is to convert 5 7/10 to an improper fraction (57/10), multiply by 1/8 to get 57/80, which is 0.7125 acres.

Explanation:

The question asks us to calculate the amount of farmland Pedro uses to grow beets. Pedro owns 5 7/10 acres of farmland and grows beets on 1/8 of his land. To find out how many acres he uses for beets, we do the following calculation:

Convert the mixed number to an improper fraction: 5 7/10 is equal to 57/10 (5 × 10 + 7).Multiply 57/10 by 1/8 to find the fraction of land used for beets: 57/10 × 1/8 = 57/80.Simplify 57/80: It can't be simplified further, so we keep it as is or convert it to decimal form which is 0.7125 acres.

Therefore, Pedro grows beets on 0.7125 acres of land.

Learn more about Farmland Calculation here:

https://brainly.com/question/37967537

#SPJ2

Final answer:

Pedro grows beets on 57/80 acres of his land. First, convert 5 7/10 acres to the improper fraction 57/10, then multiply by 1/8 to find the area for beets.

Explanation:

The question is asking us to calculate the amount of land Pedro uses to grow beets. Since Pedro owns 5 7/10 acres of farmland and grows beets on 1/8 of the land, we need to find what 1/8 of 5 7/10 acres is. To do this, we convert 5 7/10 to an improper fraction, which is 57/10 acres. Then, we multiply 57/10 by 1/8 to find the portion of the land used for beets.

Here is the calculation step by step:

Convert the mixed number 5 7/10 to an improper fraction: 57/10.

Multiply 57/10 by 1/8 to get the fraction of the land used for beets.

57/10 × 1/8 = (57 × 1) / (10 × 8) = 57 / 80

Convert the fraction 57/80 to its decimal form or directly to acres to get the final answer.

Therefore, Pedro grows beets on 57/80 acres of his farmland, which can be converted to a decimal to get an exact measure in acres if needed.

The functions f and g are defined as follows.

f (x) = 3x^2 - 3x g (x) = 3x -1
Find f(-4) and g(-6)

Simplify your answers as much as possible.

Answers

Answer:

f(-4)=60 and g(-6)=17

Step-by-step explanation:

f(x)

Plug in -4 for x-values

3(-4)^2 - 3(-4)

Square -4

3(16) - 3(-4)

Multiply 3 by 16 and -3 by -4 then solve

48+12=60

Simplify

f(-4)=60

g(x)

Plug in -6 for x

-3(-6)-1

Multiply -3 by -6

-3(-6)=18

Subtract 1

18-1=17

Simplify

g(-6)=17

For this case we have the following functions:

[tex]f (x) = 3x ^ 2-3x\\g (x) = 3x-1[/tex]

We must find the value of the function [tex]f (x)[/tex] when [tex]x = -4[/tex], then:

[tex]f (-4) = 3 (-4) ^ 2-3 (-4)\\f (-4) = 3 * 16 12\\f (-4) = 48 12\\f (-4) = 60[/tex]

We must find the value of the function g (x) when [tex]x = -6[/tex], then:

[tex]g (-6) = 3 (-6) -1\\g (-6) = - 18-1\\g (-6) = - 19[/tex]

Answer:

[tex]f (-4) = 60\\g (-6) = - 19[/tex]

A researcher at a major hospital wishes to estimate the proportion of the adult population of the United States that has high blood pressure. How large a sample is needed in order to be 98% confident that the sample proportion will not differ from the true proportion by more than 6%? 267 10 755 378

Answers

Answer:

option d)378

Step-by-step explanation:

Given that a researcher at a major hospital wishes to estimate the proportion of the adult population of the United States that has high blood pressure.

Margin of error should be at most 6% = 0.06

Let us assume p =0.5 as when p =0.5 we get maximum std deviation so this method will give the minimum value for n the sample size easily.

We have std error = [tex]\sqrt{\frac{pq}{n} } =\frac{0.5}{\sqrt{n} }[/tex]

For 98%confident interval Z critical score = 2.33

Hence we have margin of error = [tex]2.33(\frac{0.5}{\sqrt{n} } <0.06\\n>377[/tex]

Hence answer is option d)378

The size of the sample needed in order to be 98% confident that the sample proportion will not differ from the true proportion by more than 6% is; 376

What is the size of the sample?

We are told that Margin of error should be at most 6% = 0.06

Formula for margin of error is;

M = z√(p(1 - p)/n)

we are given the confidence level to be 98% and the z-score at this confidence level is 2.326

Since no standard deviation then we assume it is maximum and as such  assume p =0.5 which will give us the minimum sample required.

Thus;

0.06 = 2.326√(0.5(1 - 0.5)/n)

(0.06/2.326)² = (0.5²/n)

solving for n gives approximately n = 376

Thus, the size of the sample required is 376

Read more about sample size at; https://brainly.com/question/14470673

A manufacturer of industrial solvent guarantees its customers that each drum of solvent they ship out contains at least 100 lbs of solvent. Suppose the amount of solvent in each drum is normally distributed with a mean of 101.3 pounds and a standard deviation of 3.68 pounds. a) What is the probability that a drum meets the guarantee? Give your answer to four decimal places. b) What would the standard deviation need to be so that the probability a drum meets the guarantee is 0.97? Give your answer to three decimal places.

Answers

Final answer:

The probability that a drum meets the guarantee is approximately 0.3625. The standard deviation needed for a 0.97 probability is -0.691 pounds.

Explanation:

To find the probability that a drum meets the guarantee, we need to calculate the z-score for the value of 100 pounds using the formula z = (x - mean) / standard deviation. Plugging in the values, we get z = (100 - 101.3) / 3.68 = -0.353. Using a z-score table or a calculator, we can find that the probability is approximately 0.3625.

To find the standard deviation that would give a probability of 0.97, we need to find the z-score that corresponds to that probability. Using a z-score table or a calculator, we find that the z-score is approximately 1.88. Plugging this value into the z-score formula and rearranging for the standard deviation, we get standard deviation = (100 - 101.3) / 1.88 = -0.691. Rounded to three decimal places, the standard deviation would need to be -0.691 pounds.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ12

(a) The probability that a drum meets the guarantee is approximately 0.6381.

(b) To achieve a 97% probability of meeting the guarantee, the standard deviation would need to be approximately 1.383 pounds.

(a) To determine the probability that a drum contains at least 100 lbs of solvent, we need to find the Z-score. The Z-score formula is:

Z = (X - μ) / σ

Where:

X is the value of interest (100 lbs)μ is the mean (101.3 lbs)σ is the standard deviation (3.68 lbs)

First, compute the Z-score:

Z = (100 - 101.3) / 3.68 = -1.3 / 3.68 ≈ -0.3533

Next, we look up the Z-score in the standard normal distribution table or use a calculator to find the probability:

P(Z > -0.3533) ≈ 0.6381

So, the probability that a drum meets the guarantee is approximately 0.6381.

(b) To find the standard deviation such that the probability of the drum meeting the guarantee is 0.97, we need to solve for σ when P(Z > Z₀) = 0.97.

We know P(Z > Z₀) = 0.97 implies P(Z < Z₀) = 0.03 (since it is the complementary probability).

Using the Z-table or a calculator, we find the Z-score for the 3rd percentile, which is approximately:

Z₀ ≈ -1.88

Now, use the Z-score formula in reverse to solve for σ:

Z₀ = (X - μ) / σ

Plugging in the values:

-1.88 = (100 - 101.3) / σ

Solving for σ, we get:

σ = (101.3 - 100) / 1.88 ≈ 1.383

Thus, the standard deviation would need to be approximately 1.383 lbs to achieve a 97% probability that each drum meets the guarantee.

___________is the use of EHRs in a meaningful manner.

A. Interoperability

B. Meaningful use

C. Integration

Answers

Answer:

B. Meaningful use

Step-by-step explanation:

Meaningful use is the use of EHRs in a meaningful manner.

The recommended dose of a particular drug is 0.1 g/kg. How many mg of the drug should be given to a 50 lb. patient?


A. 22.72 mg
B. 0.5 mg
C. 2,272 mg
D. 5 mg

Answers

Answer: C. 2,272 mg

Step-by-step explanation:

Given : The recommended dose of a particular drug is 0.1 g/kg.

We know that 1 kilogram is equals to approximately 2.20 pounds.

Then ,[tex]\text{1 pound}=\dfrac{1}{2.20}\text{ kilogram}[/tex]

[tex]\Rightarrow\text{50 pounds}=\dfrac{1}{2.20}\times50\approx22.72text{ kilogram}[/tex]

Now, the dose of drug should be given to a 22.72 kilogram patient is given by :-

[tex]22.72\times0.1=2.272g[/tex]

Since 1 grams = 1000 milligrams

[tex]2.272\text{ g}=2,272\text{ mg}[/tex]

Hence , 2,272 mg of the drug should be given to a 50 lb. patient.

Other Questions
Two equal mass balls (one red and the other blue) are dropped from the same height, and rebound off the floor. The red ball rebounds to a higher position. Which ball is subjected to the greater magnitude of impulse during its collision with the floor? Splish Brothers Inc. has the following transactions related to notes receivable during the last 2 months of the year. The company does not make entries to accrue interest except at December 31. (Omit cost of goods sold entries.) Nov. 1 Loaned $66,600 cash to C. Bohr on a 12-month, 6% note. Dec. 11 Sold goods to K. R. Pine, Inc., receiving a $7,200, 90-day, 6% note. Dec. 16 Received a $9,600, 180-day, 8% note to settle an open account from A. Murdock. Dec. 31 Accrued interest revenue on all notes receivable.Journalize the transactions. Poison dart frogs live in the rainforest. They produce a poison by eating toxic fire ants. The only known predator is a snake, Liophis epinephelus. Which of the following factors is most likely a density-independent regulator of population growth of poison dart frogs in the rainforest? A 0.200-kg cube of ice (frozen water) is floating in glycerine.The gylcerine is in a tall cylinder that has inside radius 3.90 cm. The level of the glycerine is well below the top of the cylinder. Part A) If the ice completely melts, by what distance does the height of liquid in the cylinder change? Express your answer with the appropriate units.Part B) Does the level of liquid rise or fall? That is, is the surface of the water above or below the original level of the gylcerine before the ice melted? Who experimented with rats to demonstrate that organisms can learn even if they do not receive immediate reinforcement? U.S. firms can produce and sell electric fans for $25. The United States can also import electric fans from China at $19 each and from Canada at $20 each. Electric fans made in the United States, China, and Canada are identical. Currently, the United States imposes a 30% tariff on imported electric fans. which country will the United States import fans?A) China B) Canada C) both China and Canada D) neither China nor Canada The profit earned by a hot dog stand is a linear function of the number of hot dogs sold. It costs the owner $48 dollars each morning for the days supply of hot dogs, buns and mustard, but he earns $2 profit for each hot dog sold. Which equation represents y, the profit earned by the hot dog stand for x hot dogs sold? how do i know if a function is increasing Why are some microscopic organisms, such as mites and worms, categorized as invertebrate parasites instead of being categorized as true microbes? Choose one: A. Invertebrate animals have complex organ systems not found in true microbes. B. True microbes are bacteria and viruses. C. Groups classified as true microbes do not contain macroscopic forms. D. Invertebrate parasites do not cause human diseases. How does Thomas Jefferson support the argument that the colonists should separate from Great Britain Suppose that you currently own a clothes dryer that costs $25 per month to operate A new efficient dryer costs $630 and has an estimated operating cost of $15 per month. How long will it take for the new dryer to pay for itself? months The clothes dryer will pay for itself in A medical clinic is reducing the number of incoming patients by giving vaccines before flu season. During week 5 of flu season, the clinic saw 85 patients. In week 10 of flu season, the clinic saw 65 patients. Assume the reduction in the number of patients each week is linear. Write an equation in function form to show the number of patients seen each week at the clinic. A.f(x) = 20x + 85 B.f(x) = 20x + 85 C.f(x) = 4x + 105 D.f(x) = 4x + 105 How many different committees can be formed from 12men and 12 women if the committee consists of 3 men and 4 women? What inference can be made about the Cyclopes? What is the rule/output? A person moves to the U.S. from a foreign country. She learns English, assimilates to the country, continues to speak her native tongue at home and is always telling her friends about how things were done back at home. This is an example of: solve the equation 9d+1=8d-15 Find the relation independent of y for the following equation-2y^2-2y=p-y^2+y=q if a = m what is the value of a when m = -3? If nominal GDP is $12 trillion and real GDP is $10 trillion, then the GDP deflator is a. 120, and this indicates that the price level has increased by 20 percent since the base year. b. 83.33, and this indicates that the price level has increased by 83.33 percent since the base year. c. 120, and this indicates that the price level has increased by 120 percent since the base year. d. 83.33, and this indicates that the price level has decreased by 16.67 percent since the base year.