Assume the readings on thermometers are normally distributed with a mean of 0degreesC and a standard deviation of 1.00degreesC. Find the probability that a randomly selected thermometer reads between negative 1.52 and negative 0.81 and draw a sketch of the region.

Answers

Answer 1

Answer:

Step-by-step explanation:

Given : The readings on thermometers are normally distributed with

Mean : [tex]\mu=\ 0[/tex]

Standard deviation : [tex]\sigma= 1[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = -1.52

[tex]z=\dfrac{-1.52-0}{1}=-1.52[/tex]

For x = -0.81

[tex]z=\dfrac{-0.81-0}{1}=-0.81[/tex]

The p-value = [tex]P(-1.52<z<-0.81)=P(z<-0.81)-P(z<-1.52)[/tex]

[tex]0.2089701-0.0642555=0.1447146\approx0.1447[/tex]

Hence, the probability that a randomly selected thermometer reads between negative 1.52 and negative 0.81 = 0.1447

Assume The Readings On Thermometers Are Normally Distributed With A Mean Of 0degreesC And A Standard
Answer 2
Final answer:

To find the probability, standardize the values using z-scores and find the area under the normal curve between the z-scores.

Explanation:

To find the probability that a randomly selected thermometer reads between -1.52 and -0.81, we need to find the area under the normal curve between these two values. First, we need to standardize the values by finding the z-scores for these values using the formula z = (x - μ) / σ, where x is the given value, μ is the mean, and σ is the standard deviation. After finding the z-scores, we can then use the normal distribution table or a calculator to find the area between these z-scores.

The z-score for -1.52 is z = (-1.52 - 0) / 1.00 = -1.52 and the z-score for -0.81 is z = (-0.81 - 0) / 1.00 = -0.81. Using a normal distribution table or a calculator, we can find the area to the left of -1.52 and the area to the left of -0.81. The probability that a randomly selected thermometer reads between -1.52 and -0.81 is the difference between these two areas: P(-1.52 < X < -0.81) = P(X < -0.81) - P(X < -1.52).

Using the normal distribution table or a calculator, we can find that P(X < -0.81) is approximately 0.2123 and P(X < -1.52) is approximately 0.0655. Therefore, the probability that a randomly selected thermometer reads between -1.52 and -0.81 is approximately 0.2123 - 0.0655 = 0.1468, or 14.68%. The sketch of the region would be a shaded area under the standard normal curve between -1.52 and -0.81.

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ3


Related Questions

54​% of U.S. adults have very little confidence in newspapers. You randomly select 10 U.S. adults. Find the probability that the number of U.S. adults who have very little confidence in newspapers is ​ (a) exactly​ five, (b) at least​ six, and​ (c) less than four.

Answers

Answer:

[tex]P(5)=0.238[/tex]

[tex]P(x\geq 6)=0.478[/tex]

[tex]P(x<4)=0.114[/tex]

Step-by-step explanation:

In this case we can calculate the probability using the binomial probability formula

[tex]P(X=x)=\frac{n!}{x!(n-x)!}*p^x*(1-p)^{n-x}[/tex]

Where p is the probability of obtaining a "favorable outcome " x is the number of desired "favorable outcome " and n is the number of times the experiment is repeated. In this case n = 10 and p = 0.54.

(a) exactly​ five

This is:

[tex]x=5,\ n=10,\ p=0.54.[/tex]

So:

[tex]P(X=5)=\frac{10!}{5!(10-5)!}*0.54^x*(1-0.54)^{10-5}[/tex]

[tex]P(5)=0.238[/tex]

(b) at least​ six

This is: [tex]x\geq 6,\ n=10,\ p=0.54.[/tex]

[tex]P(x\geq 6)=P(6) + P(7)+P(8)+P(9) + P(10)[/tex]

[tex]P(x\geq 6)=0.478[/tex]

(c) less than four

This is: [tex]x< 4,\ n=10,\ p=0.54.[/tex]

[tex]P(x<4)=P(3) + P(2)+P(1)+P(0)[/tex]

[tex]P(x<4)=0.114[/tex]

This question is based on the probability. Therefore, the required probabilities  are :  (a) [tex]P(5) = 0.238[/tex],  (b)[tex]P(x \geq 6) = 0.478[/tex]  and (c) [tex]P(x <4) = 0.114[/tex].

Given:

54​% of U.S. adults have very little confidence in newspapers. You randomly select 10 U.S. adults.

We have to find the probability that the number of U.S. adults who have very little confidence in newspapers is ​ (a) exactly​ five, (b) at least​ six, and​ (c) less than four.

According to the question,

[tex]P(5) = 0.238\\P(x \geq 6) = 0.478\\P(x <4) = 0.114[/tex]

In this we have to calculate the probability using the binomial probability formula,

[tex]P(X=x) = \dfrac{n!}{x!(n-x)!} \times p^{x} \times (1-p)^{n-x}[/tex]

Where, p is the probability of obtaining a "favorable outcome ", x is the number of desired "favorable outcome " and n is the number of times the experiment is repeated. In this case n = 10 and p = 0.54.

(a) exactly​ five  

x=5, n= 10, p = 0.54

[tex]P(X=5)= \dfrac{10!}{5!(10-5)!} \times 0.5^{x} \times (1-0.54)^{10-5}[/tex]

P(X=5) = 0.238

(b) at least​ six

[tex]x\geq 6, n=10, p=0.54\\P(x\geq 6) = P(6) + P(7) + P(8) + P(9)+P(10)\\P(x\geq 6) = 0.478[/tex]

(c) less than four

[tex]x< 6, n=10, p=0.54\\P(x< 4) = P(3) + P(2) + P(1) + P(0)\\P(x< 4) = 0.114[/tex]

Therefore, the answers are :  (a) [tex]P(5) = 0.238[/tex],  (b)[tex]P(x \geq 6) = 0.478[/tex]

and (c) [tex]P(x <4) = 0.114[/tex].

For more details, please refer this link:

https://brainly.com/question/795909

If (x,y) is a solution to the system of equations shown below, what is the product of the y-coordinates of the solutions? x^2+4y^2=40 x+2y=8

Answers

Answer:

The product of the y-coordinates of the solutions is equal to 3

Step-by-step explanation:

we have

[tex]x^{2}+4y^{2}=40[/tex] -----> equation A

[tex]x+2y=8[/tex] ------> equation B

Solve by graphing

Remember that the solutions of the system of equations are the intersection point both graphs

using a graphing tool

The solutions are the points (2,3) and (6,1)

see the attached figure

The y-coordinates of the solutions are 3 and 1

therefore

The product of the y-coordinates of the solutions is equal to

(3)(1)=3

find lim ?x approaches 0 f(x+?x)-f(x)/?x where f(x) = 4x-3

Answers

If [tex]f(x)=4x-3[/tex]:

[tex]\displaystyle\lim_{\Delta x\to0}\frac{(4(x+\Delta x)-3)-(4x-3)}{\Delta x}=\lim_{\Delta x\to0}\frac{4\Delta x}{\Delta x}=4[/tex]

If [tex]f(x)=4x^{-3}[/tex]:

[tex]\displaystyle\lim_{\Delta x\to0}\frac{\frac4{(x+\Delta x)^3}-\frac4{x^3}}{\Delta x}=\lim_{\Delta x\to0}\frac{\frac{4x^3-4(x+\Delta x)^3}{x^3(x+\Delta x)^3}}{\Delta x}[/tex]

[tex]\displaystyle=\lim_{\Delta x\to0}\frac{4x^3-4(x^3+3x^2\Delta x+3x(\Delta x)^2+(\Delta x)^3)}{x^3\Delta x(x+\Delta x)^3}[/tex]

[tex]\displaystyle=\lim_{\Delta x\to0}\frac{-12x^2\Delta x-12x(\Delta x)^2-4(\Delta x)^3}{x^3\Delta x(x+\Delta x)^3}=-\frac{12}{x^4}[/tex]

A card is drawn at random from a standard deck of 52 cards. Find the following conditional probabilities. ​a) The card is a spade​, given that it is black. ​b) The card is black​, given that it is a spade. ​c) The card is a seven​, given that it is black. ​d) The card is a king​, given that it is a face card.

Answers

Final answer:

To find the conditional probabilities, you need to use the definition of conditional probability. Given that a card is black, the probability that it is a spade is 1/2. Given that a card is a spade, the probability that it is black is 2. Given that a card is black, the probability that it is a seven is 1/13. Given that a card is a face card, the probability that it is a king is 1/3.

Explanation:

To find these conditional probabilities, we need to use the definition of conditional probability:

P(A|B) = P(A and B) / P(B)

a) The card is a spade, given that it is black:

In a standard deck of cards, there are 26 black cards and 13 spades. So, P(S|B) = P(S and B) / P(B) = 13/26 / 26/52 = 1/2

b) The card is black, given that it is a spade:

P(B|S) = P(B and S) / P(S) = 26/52 / 13/52 = 26/13 = 2

c) The card is a seven, given that it is black:

In a standard deck of cards, there are 4 black sevens and 26 black cards. So, P(7|B) = P(7 and B) / P(B) = 4/26 / 26/52 = 1/13

d) The card is a king, given that it is a face card:

In a standard deck of cards, there are 4 kings and 12 face cards. So, P(K|F) = P(K and F) / P(F) = 4/52 / 12/52 = 1/3

The number of measles cases increased 13.6 % to 57 cases this year, what was the number of cases prior to the increase? (Express your answer rounded correctly to the nearest whole number)

Answers

Answer:

The number of cases prior to the increase is 50.

Step-by-step explanation:

It is given that the number of measles cases increased by 13.6% and the number of cases after increase is 57.

We need to find the number of cases prior to the increase.

Let x be the number of cases prior to the increase.

x + 13.6% of x = 57

[tex]x+x\times \frac{13.6}{100}=57[/tex]

[tex]x+0.136x=57[/tex]

[tex]1.136x=57[/tex]

Divide both the sides by 1.136.

[tex]\frac{1.136x}{1.136}=\frac{57}{1.136}[/tex]

[tex]x=50.176[/tex]

[tex]x\approx 50[/tex]

Therefore the number of cases prior to the increase is 50.

Thirty-five more than the limit of weight (w) in an elevator is greater then 1,050 pounds.

A. Model with an inequality.

B. Solve the inequality.

C. Where would the solution for the inequality be graphed on the number line?

Answers

Answer:

Part A) [tex]w+35 > 1,050[/tex]

Part B) [tex]w > 1,015\ pounds[/tex]

Part C) The graph in the attached figure

Step-by-step explanation:

Part A) Model with an inequality.

Let

w -----> the limit of weight in an elevator

we know that

The inequality that represent this situation is

[tex]w+35 > 1,050[/tex]

Part B)   Solve the inequality

[tex]w+35 > 1,050[/tex]

solve for w

Subtract 35 sides

[tex]w+35-35 > 1,050-35[/tex]

[tex]w > 1,015\ pounds[/tex]

All real numbers greater than 1,015 pounds

Part C) Where would the solution for the inequality be graphed on the number line?

[tex]w > 1,015\ pounds[/tex]

The solution is the interval -------> (1,015,∞)

In a number line is the shaded area at right of the number x=1.015 (open circle)

see the attached figure

The population of an Asian country is growing at the rate of 0.7% annually. If there were 3,942.000 residents in the city in 1995. Find how many to the nearest ten thousand) are living in that city in 2000. Use y = 3,942,000(2.7)0.0074 a) 370,000 b) 4,000,000 c) 4.160,000 d) 4.320,000

Answers

Answer:

b) 4,000,000

Step-by-step explanation:

Let the population is measured since 1995,

Given,

The initial population, P = 3,942,000,

Annual rate of growing, r = 0.7% = 0.007,

If y represents the population after t years

So, the population after t years would be,

[tex]y=Pe^{rt}[/tex]

[tex]y=3942000(2.7)^{0.007x}[/tex]

Therefore, the population after 5 years,

[tex]y=3942000(2.7)^{0.007\times 5}=3942000(2.7)^{0.035}=4081448.78924\approx 4000000[/tex]

Hence, the population in 2000 would be approximately 40,00,000.

Option 'b' is correct.

Final answer:

By using the accurate population growth formula P = P0(1 + r)^n and substitifying the given values, the population of the Asian country in 2000 would be approximately 4,160,000 residents.

Explanation:

The question involves the concept of exponential growth, specifically applied to the population growth of an Asian country. Now, in given formula y = 3,942,000(2.7)^0.0074, we should use the correct growth rate formula to solve the problem which should be P = P0(1 + r)^n since the population growth is annually and continuous. Here, P0 is the initial population (3,942,000), r is the growth rate (0.7% or 0.007) and n is the number of years (2000-1995 = 5 years).

Using this formula, if you substitute these values in, you should get:

P = 3,942,000(1 + 0.007)^5

If you calculate this out, you reach a population of approximately 4,160,000 residents at the end of year 2000. Thus, answer 'c' is the correct option. Please remember exponential growth is a concept necessary for understanding population dynamics across multiple fields like demography, biology and mathematical modeling.

Learn more about Population Growth here:

https://brainly.com/question/18415071

#SPJ3

If ( 43.65 ) ( 8.79 ) / x = ( 0.4365 ) ( 87.9 ) then value of x is:
(a) .01 (b) 0.1 (c) 1 (d) 10 (e) 100
Need step-by-step solution
i will mark your answer Brainliest

Answers

Answer:

  (d)  10

Step-by-step explanation:

Multiply by x and divide by its coefficient:

  (43.65)(8.79) = (0.4365)(87.9)x

  (43.65)(8.79)/((0.4365)(87.9)) = x

At this point, any calculator can give you the answer. It is, perhaps, more satisfying to work out the answer without a calculator.

  x = (43.65)/(0.4365) × (8.79)/(87.9)

In the first quotient, the numerator is 100 times the denominator; in the second, the denominator is 10 times the numerator.

  x = (100) × (1/10) = 100/10

  x = 10

_____

Moving the decimal point to the right 1 place multiplies the numerical value by 10.

Final answer:

The value of x in the given equation that satisfies the condition is 10.

Explanation:

In this question, we're given a mathematical expression in which the value of x is unknown. We're looking for the value of x that satisfies the equation:

( 43.65 ) ( 8.79 ) / x = ( 0.4365 ) ( 87.9 )

To solve this equation for x, we can start by noting the similarity between the left and right sides. We have larger numbers on the left side that appear, in reduced form, on the right side.

Follow these steps:

Multiply 43.65 and 8.79 to get 383.985.Multiply 0.4365 and 87.9 to get 38.3985.Divide 383.985 by 38.3985 to get 10.

So, the correct option would be (d) 10.

Learn more about Algebra here:

https://brainly.com/question/32436021

#SPJ2

You invest $1600 in an account paying 5% interest compounded daily. What is the account's effective annual yield? Assume 360 days in a year.

The account's effective annual yield is ___% (Round to two decimal places as needed)

Answers

Answer:

5.13%.

Step-by-step explanation:

Amount  accumulated in 1 year

= 1600(1 + 0.05/360)^360

= $1682.03

Account's effective annual yield

= 82.03 * 100  / 1600 %

= 5.13%.

The account's effective annual yield (EAY) for an investment of $1600 with a 5% interest rate compounded daily (assuming a 360-day year) is approximately 5.12% when rounded to two decimal places.

The student has invested $1600 in an account that offers 5% interest compounded daily with the assumption of a 360-day year. To find the effective annual yield, we use the formula for compound interest and the definition of effective annual yield (EAY), which accounts for the compounding effect:

EAY = (1 + r/n)n - 1

Where:


 
 

In this case:


 
 

Now, substituting the values, we get:

EAY = (1 + 0.05/360)360 - 1

Calculating this out:

EAY = (1 + 0.0001388888889)360 - 1

EAY

to find the EAY:

EAY = ((1 + (0.05/360))^360) - 1

After calculating the above expression, the approximate effective annual yield comes out to be:

EAY = 0.05116 or 5.116%

Therefore, after rounding to two decimal places as required, the effective annual yield of the account is 5.12%.

3. (6 Points). Solve the initial value problem y'-y.cosx=0, y(pi/2)=2e

Answers

Answer:

[tex]y=2e^{sin(x)}[/tex]

Step-by-step explanation:

Given equation can be  re written as

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}-ycos(x)=0\\\frac{\mathrm{d} y}{\mathrm{d} x}=ycos(x)\\\\=> \frac{dy}{y}=cox(x)dx\\\\Integrating  \\ \int \frac{dy}{y}=\int cos(x)dx \\\\ln(y)=sin(x)+c[/tex]............(i)

Now it is given that y(π/2) = 2e

Applying value in (i) we get

ln(2e) = sin(π/2) + c

=> ln(2) + ln(e) = 1+c

=> ln(2) + 1 = 1 + c

=> c = ln(2)

Thus equation (i) becomes

ln(y) = sin(x) + ln(2)

ln(y) - ln(2) = sin(x)

ln(y/2) = sin(x)

[tex]y= 2e^{sinx}[/tex]

caps hock Guess and Check (or use Algebra) to solve #3 & # 4 3. Plato has 36 coins in nickels, dimes, and quarters. The number of nickels is three less than twice the number of dimes. The total value of the coins is $5.20. How many of each type of coin does Plato have? mel 36 coinsin d
4. Katy bought a ski hat that was marked down 35% to $15.60. What was the price of the hat before the markdown? (Hint: She was in Oregon where they do not have sales tax). 35 9. douon 15.60 5. Sele amo ont 621.06

Answers

Answer:

Part 1:

Let the nickels be = n

Let the dimes be = d

Let the quarters be = q

Plato has 36 coins in nickels, dimes, and quarters. So, equation forms:

[tex]n+d+q=36[/tex]    .....(1)

The number of nickels is three less than twice the number of dimes.

[tex]n=2d-3[/tex]    ....(2)

The total value of the coins is $5.20.

[tex]0.10d+0.05n+0.25q=5.20[/tex]   .... (3)

Substituting n=2d-3 in (1) and (3)

[tex]2d-3+d+q=36[/tex]

=> [tex]3d+q=39[/tex]    ....(4)

[tex]0.10d+0.05(2d-3)+0.25q=5.20[/tex]

=> [tex]0.10d+0.10d-0.15+0.25q=5.20[/tex]

=> [tex]0.20d+0.25q=5.35[/tex]    ...(5)

Multiplying (4) by 0.25 and subtracting (5) from (4)

[tex]0.75d+0.25q=9.75[/tex] now subtracting (5) from this we get;

[tex]0.55d=4.4[/tex]

=> d = 8

Substituting d = 8 in [tex]3d+q=39[/tex]

[tex]3(8)+q=39[/tex]

[tex]24+q=39[/tex]

=> q = 15

Substituting values of d and q in [tex]n+d+q=36[/tex], we get n

[tex]n+8+15=36[/tex]

[tex]n=36-23[/tex]

=> n = 13

Therefore Plato has 13 nickels, 15 quarters and 8 dimes.

-----------------------------------------------------------------------------------------

Part 2:

Let the original price of the ski hat be = x

Original price was marked down by 35% means value was lowered by 35%.

So, we can calculate as:

[tex]x-\frac{35x}{100}=15.60[/tex]

=> [tex]\frac{65x}{100}=15.60[/tex]

=> [tex]65x=1560[/tex]

x = 24

Hence, the original price was $24 but after 35% marking down, it was available for $15.60.

Let Z be a standard normal random variable and calculate the following probabilities, drawing pictures wherever appropriate. (Round your answers to four decimal places.) (a) P(0 ≤ Z ≤ 2.38) .4913 (b) P(0 ≤ Z ≤ 1) .3413 (c) P(−2.70 ≤ Z ≤ 0) .4965 (d) P(−2.70 ≤ Z ≤ 2.70) .9931 (e) P(Z ≤ 1.62) .9474 (f) P(−1.55 ≤ Z) .9394 (g) P(−1.70 ≤ Z ≤ 2.00) .9327 (h) P(1.62 ≤ Z ≤ 2.50) .0464 (i) P(1.70 ≤ Z) .0445 (j) P(|Z| ≤ 2.50) .9876

Answers

The correct answers are:

(a) [tex]P(0\leq Z\leq 2.38)=0.4913[/tex]

(b)  [tex]P(0\leq Z\leq 1)=0.3413[/tex]

(c)  [tex]P(-2.70\leq Z\leq 0)=0.4965[/tex]

(d)  [tex]P(-2.70\leq Z\leq 2.70)=0.9926[/tex]

(e)  [tex]P(Z\leq 1.62)=0.9474[/tex]

(f)  [tex]P(-1.55\leq Z)=0.9394[/tex]

(g)  [tex]P(-1.70\leq Z\leq 2.00)=0.9326[/tex]

(h)  [tex]P(1.62\leq Z\leq 2.50)=0.0457[/tex]

(i) [tex]P(1.70\leq Z)=0.0446[/tex]

(j) [tex]P(|Z|\leq 2.50)=1.9862[/tex]

Let's calculate these probabilities step by step using the standard normal distribution table (also known as the z-table).

For reference, the standard normal distribution table provides the probabilities associated with the standard normal random variable (Z), which has a mean of [tex]0[/tex] and a standard deviation of [tex]1[/tex].

We'll use the standard normal distribution table to find the probabilities corresponding to the given Z-values.

(a [tex]P(0\leq Z\leq 2.38)[/tex] From the z-table,  [tex]P(Z\leq 2.38)=0.9913 P(0\leq Z\leq 2.38)=0.9913-0.5=0.4913[/tex] (subtracting the cumulative probability up to [tex]0[/tex] from the cumulative probability up to [tex]2.38[/tex])

(b) [tex]P(0\leq Z\leq 1)[/tex] From the z-table,  [tex]P(Z\leq 1)=0.8413 P(0\leq Z\leq 1)=0.8413-0.5=0.3413[/tex]

(c) [tex]P(-2.70\leq Z\leq 0)[/tex] From the z-table,  [tex]P(Z\leq 0)=0.5[/tex] and  [tex]P(Z\leq -2.70)=0.0035 P(-2.70\leq Z\leq 0)=0.5-0.0035=0.4965[/tex]

(d)  [tex]P(-2.70\leq Z\leq 2.70)[/tex] From the z-table,  [tex]P(Z\leq 2.70)=0.9961[/tex] and  [tex]P(Z\leq -2.70)=0.0035 P(-2.70\leq Z\leq 2.70)=0.9961-0.0035=0.9926[/tex]

(e)  [tex]P(Z\leq 1.62)[/tex] From the z-table,  [tex]P(Z\leq 1.62)=0.9474[/tex]

(f)  [tex]P(-1.55\leq Z)[/tex] From the z-table,  [tex]P(Z\leq -1.55)=0.0606 P(-1.55\leq Z)=1-0.0606=0.9394[/tex] (subtracting the cumulative probability up to [tex]-1.55[/tex] from [tex]1[/tex])

(g [tex]P(-1.70\leq Z\leq 2.00)[/tex] From the z-table,  [tex]P(Z\leq 2.00)=0.9772[/tex] and  [tex]P(Z\leq -1.70)=0.0446 P(-1.70\leq Z\leq 2.00)=0.9772-0.0446=0.9326[/tex]

(h)   [tex]P(1.62\leq Z\leq 2.50)[/tex] From the z-table,   [tex]P(Z2.50)=0.9931[/tex] and  [tex]P(Z\leq 1.62)=0.9474 P(1.62\leq Z\leq 2.50)=0.9931-0.9474=0.0457[/tex]

(i) [tex]P(1.70\leq Z)[/tex][tex]From the z-table, P(Z\leq 1.70)=0.9554 , P(1.70\leq Z)=1-0.9554=0.0446[/tex] (subtracting the cumulative probability up to [tex]1.70[/tex] from [tex]1[/tex])

(j) [tex]P(|Z|\leq 2.50)[/tex] Since the standard normal distribution is symmetric,   [tex]P(|Z|\leq 2.50)=2*P(0\leq Z\leq 2.50)=2*0.9931=1.9862[/tex] (multiply by [tex]2[/tex] because the probability of Z being between [tex]-2.50[/tex] and [tex]2.50[/tex] is twice the probability of Z being between [tex]0[/tex] and [tex]2.50[/tex] )

Let Z be a standard normal random variable and calculate the following probabilities, drawing pictures wherever appropriate. (Round your answers to four decimal places.)

(a) [tex]P(0 \leq Z \leq 2.38) .4913[/tex]

(b) [tex]P(0 \leq Z\leq 1) .3413[/tex]

(c) [tex]P(-2.70 \leq Z \leq 0) .4965[/tex]

(d) [tex]P(-2.70 \leq Z \leq 2.70) .9931[/tex]

(e) [tex]P(Z \leq 1.62) .9474[/tex]

(f) [tex]P(-1.55 \leq Z) .9394[/tex]

(g) [tex]P(-1.70 \leq Z \leq 2.00) .9327[/tex]

(h) [tex]P(1.62 \leq Z \leq 2.50) .0464[/tex]

(i) [tex]P(1.70 \leq Z) .0445[/tex]

(j) [tex]P(|Z| \leq 2.50) .9876[/tex]

The mean score for all NBA games during a particular season was less than 106 points per game. If a hypothesis test is performed, how should you interpret a decision that fails to reject the null hypothesis? There is not sufficient evidence to reject the claim μ < 106. There is sufficient evidence to reject the claim μ < 106. There is not sufficient evidence to support the claim μ < 106. There is sufficient evidence to support the claim μ < 106.

Answers

Answer:

As given in the problem statement

mean score was less than 106

H0:mean score<106

so There is sufficient evidence to reject the claim μ < 106. is correct option.

Eliminate the parameter and obtain the standard form of the rectangular equation. Hyperbola: x = h + b tan(θ), y = k + a sec(θ) Use your result to find a set of parametric equations for the line or conic. (When 0 ≤ θ ≤ 2π. Set your center at the origin. Enter your answers as a comma-separated list of equations.) Hyperbola: vertices: (0, ±2); foci: (0, ± 5 )

Answers

Final answer:

The standard form of the hyperbola is derived using trigonometric identities and substituted values. The given hyperbola has vertices (0,±2) and foci (0,±5), which yields a = 2, and c = 5. Using these, the standard form of the hyperbola would be y²/4 - x²/21 = 1, and the parametric equations are x = sqrt(21) tan(θ), y = 2 sec(θ).

Explanation:

To eliminate the parameter and obtain the standard form of the rectangular equation for a hyperbola, use the properties of trigonometric identities and apply the Pythagorean identity tan²(θ) + 1 = sec²(θ). Now, express tan(θ) and sec(θ) in terms of x and y, and substitute these into the Pythagorean identity to obtain the equation of the hyperbola.

In this case, tan(θ) = (x - h) / b and sec(θ) = (y - k) / a. Substitute these into the Pythagorean identity to get ((x - h) / b)² + 1 = ((y - k) / a)². Rearrange to obtain ({(x - h)²}/{b²}) - ({(y - k)²}/{a²}) = 1. This is the standard form of the hyperbola equation centered at (h, k).

For the specific hyperbola given with vertices (0,±2) and foci (0,±5), you can determine that a = 2, and c = 5. Using the relationship c² = a² + b² (for hyperbolas), you can find b = sqrt(c² - a²) = sqrt((5)² - (2)²) = sqrt(21).

So, the standard form of the equation would be y²/4 - x²/21 = 1. The parametric equations revert back to the original equation with specific values, i.e., x = sqrt(21) tan(θ) and y = 2 sec(θ).

Learn more about Hyperbola here:

https://brainly.com/question/27799190

#SPJ3

Exercise 2.2 gave the following data (in increasing order) for the attribute age: 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70. (a) Use smoothing by bin means to smooth these data, using a bin depth of 3. Illustrate your steps. Comment on the effect of this technique for the given data. (b) How might you determine outliers in the data? (c) What other methods are there for data smoothing?

Answers

Answer:

Step-by-step explanation:

13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

a) Smoothing by bin means

Each bin has depth of 3

Dividing data into bins

so, Bin 1= 13, 15, 16

Bin 2=  16, 19, 20

Bin 3=  20, 21, 22

Bin 4= 22, 25, 25

Bin 5= 25, 25, 30

Bin 6= 33, 33, 35

Bin 7 = 35, 35, 35

Bin 8= 36, 40, 45

Bin 9=  46, 52, 70

Now, smoothing data by bin mean

so, Bin 1= 13, 15, 16 = (13+15+16)/3 = 15 Bin 1 = 15,15,15

Bin 2=  16, 19, 20 = (16+19+20)/3 = 18 Bin 2 = 18,18,18

Bin 3=  20, 21, 22= (20+21+22)/3 = 21 Bin 3 = 21,21,21

Bin 4= 22, 25, 25 = (22+25+25)/3 = 24 Bin 4 = 24,24,24

Bin 5= 25, 25, 30 =(25+25+30)/3 = 27 Bin 5 = 27,27,27

Bin 6= 33, 33, 35 = (33+33+35)/3 = 34 Bin 6 = 34,34,34

Bin 7 = 35, 35, 35 = (35+35+35)/3 = 35 Bin 7 = 35,35,35

Bin 8= 36, 40, 45 = (36+40+45)/3 = 40 Bin 8 = 40,40,40

Bin 9=  46, 52, 70=(46+52+70)/3 = 56 Bin 9 = 56,56,56

This technique is used to smooth the data. Data may have noise, using binning techniques we can remove noise from the data. It helps in providing more accurate results

b) How might you determine outliers in the data?

Outliers are the data that are abnormal to other data points. Outliers can be found by Box and whisker chart (box plot). Inter Quartile range can also be used to identify outliers

c)  What other methods are there for data smoothing?

Other methods of smoothing data are

a) binning by boundaries

b) Exponential smoothing

c) Random walk

The correct statement will be that the method of binning is extensively used for smoothening the data and cancels the noise a data contains. Outliers of a data can be determined using the quartile range.

There are different methods of data smoothening, such as binning with the help of boundaries, binning with the help of outliers, exponential binning, etc.

Binning of attributes.

The bins will be created using the depth of 3 as,

Bin 1- 13,15,16 ; Bin 2- 16,19,20 ; Bin 3 20, 21, 22 ; Bin 4- 22,25,25 ; Bin 5- 25, 25, 30 ; Bin 6- 33,33,35 ; Bin 7- 35,35,35 ; Bin 8- 36,40,45 ; Bin 9- 46,52,70.

The vales of bins will be averaged and rounded off to the nearest whole numbers, considering bins as b in the following way.

[tex]b1= \dfrac {13+15+16}{3}\\\\b1= 14.67[/tex]

Continuing further in similar ways, we will find the values of remaining bins as

b2- 18b3- 21b4- 24b5- 27b6- 34b7- 35b8- 40b9- 56

The outliers in the data can be found by using the box plot method and quartile range functions. Normally, such outliers are referred to as the mismatching data in a bin.

There are various different methods for smoothing the data. Some ways of smoothing the data are exponential smoothing, random walk smoothing, boundary binning method, etc.

Hence, the data is smoothened using the binning method and the values obtained are as above.

Learn more about bin data here:

https://brainly.com/question/6103918

The coefficient of x^3y^4 in (3x+2y)^7 is

Answers

Answer:

The coefficient is 15120.  

Step-by-step explanation:

Since, by the binomial expansion formula,

[tex](x+y)^n=\sum_{r=0}^n^nC_r x^{n-r} y^r[/tex]

Where, [tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]

Thus, we can write,

[tex](3x+2y)^7 = \sum_{r=0}^n ^7C_r (3x)^{7-r} (2y)^r[/tex]

For finding the coefficient of [tex]x^3y^4[/tex],

r = 4,

So, the term that contains [tex]x^3y^4[/tex] = [tex]^7C_4 (3x)^3 (2y)^4[/tex]

[tex]=35 (27x^3) (16y^4)[/tex]

[tex]=15120 x^3 y^4[/tex]

Hence, the coefficient of [tex]x^3y^4[/tex] is 15120.

Answer:[tex][/tex]

Coefficient of  [tex]x^3y^4[/tex] in [tex](3x+2y)^7[/tex] is 15120

Step-by-step explanation:

We know that [tex](x+y)^{n}[/tex]) can be expanded in (n+1) terms by using binomial theorem and each term is given as

[tex]n_C_{r}x^{n-r}y^{r}[/tex]

Here value of r is taken from n to 0

we have to determine the coefficient of [tex]x^3y^4[/tex] in [tex](3x+2y)^7[/tex]

in this problem we have given n=7

We have to determine the coefficient of [tex]x^3y^4[/tex]

it means in the expansion we have to find the the 3rd power of x and therefore

r=n-3

here n=7

therefore, r=7-3=4

Hence the coefficient of [tex]x^3y^4[/tex]  can be determine by using formula

[tex]n_C_{r}x^{n-r}y^{r}[/tex]

here n=7, r=4

[tex]7_C_{4}x^{7-4}y^{4}[/tex]

=[tex]\frac{7\times 6\times 5\times 4}{1\times 2\times 3\times 4} (3x)^3(2y)^4[/tex]

=[tex]15120x^3y^4[/tex]

Therefore the coefficient of  [tex]x^3y^4[/tex] in [tex](3x+2y)^7[/tex] is 15120

A basketball team sells tickets that cost​ $10, $20,​ or, for VIP​ seats,​ $30. The team has sold 3142 tickets overall. It has sold 207 more​ $20 tickets than​ $10 tickets. The total sales are ​$59,670. How many tickets of each kind have been​ sold?

Answers

Answer:

1,084 tickets were sold that cost $10

1,291 tickets were sold that cost $20

767 tickets were sold that cost $30

Step-by-step explanation:

Let

x ----> the number of tickets  that cost $10 sold

y ----> the number of tickets  that cost $20 sold

z ----> the number of tickets  that cost $30 sold

we know that

x+y+z=3,142 -----> equation A

10x+20y+30z=59,670 ----> equation B

y=x+207 ----> equation C

substitute equation C in equation A and equation B

x+(x+207)+z=3,142 ----> 2x+z=2,935 ----> equation D

10x+20(x+207)+30z=59,670 ---> 30x+30z=55,530 ----> equation E

Solve the system of equations D and E by graphing

The solution is the intersection point both graphs

The solution is the point (1,084,767)

so

x=1,084, z=767

see the attached figure

Find the value of y

y=x+207 ----> y=1,084+207=1,291

therefore

1,084 tickets were sold that cost $10

1,291 tickets were sold that cost $20

767 tickets were sold that cost $30

Maria needed 88 gallons of gas to fill her​ car's gas tank. The mileage odometer read 40 comma 00040,000 miles. When the odometer read 40 comma 18040,180​, Maria filled the tank with 99 gallons. At the end of the​ trip, she filled the tank with 1616 ​gallons, and the odometer read 40 comma 48440,484 miles. How many miles per gallon did she get for the entire​ trip?

Answers

Answer:

about 29,748.3

Step-by-step explanation:

4000040000 - 4018040180 = 18000180

(11 gallons were used there^)

4018040180 - 4048440484 = 30400304

1616+11 = 1627 total gallons

18000180 + 30400304 = 48400484

48400484/ 1627 = 29,748.3

Suppose a random sample of 90 companies taken in 2006 showed that 14 offered​ high-deductible health insurance plans to their workers. A separate random sample of 120 firms taken in 2007 showed that 30 offered​ high-deductible health insurance plans to their workers. Based on the sample​ results, can you conclude that there is a higher proportion of companies offering​ high-deductible health insurance plans to their workers in 2007 than in 2006​? Conduct your hypothesis test at a level of significance alphaequals0.01.

Answers

Answer:

Step-by-step explanation:

Given that a random sample of 90 companies taken in 2006 showed that 14 offered​ high-deductible health insurance plans to their workers. A separate random sample of 120 firms taken in 2007 showed that 30 offered​ high-deductible health insurance plans to their workers.

H0: p1=p2

Ha: p1 <p2

(Two tailed test at99%)

Difference 14.44 %

Chi-squared 5.883

DF  1

Significance level P = 0.0153

Since p >0.01, our alpha reject null hypothesis.

NO. Based on the sample​ results, you can not  conclude that there is a higher proportion of companies offering​ high-deductible health insurance plans to their workers in 2007 than in 2006

Find a parametric representation for the surface. The part of the plane z = x + 3 that lies inside the cylinder x2 + y2 = 9. (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of s and/or θ.)

Answers

You can use

[tex]x=u\cos v[/tex]

[tex]y=u\sin v[/tex]

[tex]z=u\cos v+3[/tex]

with [tex]0\le u\le3[/tex] and [tex]0\le v\le2\pi[/tex].

Final answer:

The parametric equations for the part of the plane z = x + 3 that lies inside the cylinder x² + y² = 9 can be written as x = 3cos(θ), y = 3sin(θ), and z = 3cos(θ) + 3.

Explanation:

The parametric representation of a surface can be found by expressing the variables x, y, and z in terms of parameters. Given the cylinder equation x² + y² = 9, we can express x and y in terms of a single parameter θ as follows:

x = 3cos(θ)y = 3sin(θ)

Here we've used the parametric equations for a circle of radius 3. Moving further with the given plane equation z = x+3, we substitute x from our parametric equations above:

z = 3cos(θ) + 3

So, the parametric representation for the given surface is:

x = 3cos(θ)y = 3sin(θ)z = 3cos(θ) + 3

Learn more about Parametric Representation here:

https://brainly.com/question/34159526

#SPJ2

The production department of Celltronics International wants to explore the relationship between the number of employees who assemble a subassembly and the number produced. As an experiment, 2 employees were assigned to assemble the subassemblies. They produced 11 during a one-hour period. Then 4 employees assembled them. They produced 18 during a one-hour period. The complete set of paired observations follows.
Number of Assemblers One-Hour Production (units)
2 11
4 18
1 7
5 29
3 20
The dependent variable is production; that is, it is assumed that different levels of production result from a different number of employees.
a. Draw a scatter diagram.
b. Based on the scatter diagram, does there appear to be any relationship between the number of assemblers and production? Explain.
c. Compute the correlation coefficient.

Answers

Answer:

We are given that The dependent variable is production; that is, it is assumed that different levels of production result from a different number of employees.

Number of Assemblers(x)  One-Hour Production(y) (units)

2                                                           11

4                                                           18

1                                                            7

5                                                           29

3                                                           20

a. Draw a scatter diagram.

Solution : Refer the attached figure  

b. Based on the scatter diagram, does there appear to be any relationship between the number of assemblers and production? Explain.

Solution: The equation that shows the relationship between the number of assemblers and production is [tex]y=5.1x+1.7[/tex]

Where y is One-Hour Production (units)  and x is the Number of Assemblers

c.Compute the correlation coefficient.

Solution:

Formula of correlation coefficient:[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{[n \sum x^2 -(\sum x)^2][n \sum y^2 -(\sum y)^2]}[/tex]

            x        y         xy       [tex]x^2[/tex]   [tex]y^2[/tex]

           2        11        22              4                   121

           4        18       72               16                 324

           1          7         7                 1                    49

           5         29      145             25                  841

           3         20      60               9                    400            

Sum:   15     85       306           55                  1735

n=5

Substitute the values in the formula :

[tex]r=\frac{5(306)-(15)(85)}{[5 (55) -(15)^2][5 (1735) -(85)^2]}[/tex]

[tex]r=0.00351[/tex]

The correlation coefficient is 0.00351

Solve the inhomogeneius linear ode by undetermined coefficients
Y"+4y=3sin2x

Answers

Answer with explanation:

The given non Homogeneous linear differential equation is:

   y" +4 y'=3 Sin 2 x-------(1)

Put , u=y'

Differentiating once

u'=y"

Substituting the value of , y' and y" in equation (1)

⇒u' +4u =3 Sin 2x

This is a type of linear differential equation.

Integrating factor [tex]=e^{4t}[/tex]

Multiplying both sides of equation by Integrating factor

[tex]e^{4 x}(u'+4u)=e^{4x}3 \sin 2x\\\\ \text{Integrating both sides}\\\\ue^{4x}=\int {3 \sin 2x \times e^{4x}} \, dx \\\\ue^{4x}=\frac{3e^{4x}}{2^2+4^2}\times (4\sin 2x -2 \cos 2x)\\\\ue^{4x}=\frac{3e^{4x}}{20}\times (4\sin 2x -2 \cos 2x)+C_{1}\\\\ \text{Using the formula of}\\\\\int{e^{ax}\sin bx } \, dx=\frac{e^{ax}}{a^2+b^2}\times (a \sin bx-b \cos bx)+C[/tex]

where C and [tex]C_{1}[/tex] are constant of integration.

Replacing , u by , y' in above equation we get the solution of above non homogeneous differential equation

  [tex]y'(x)=\frac{3}{20}\times (4\sin 2x -2 \cos 2x)+C_{1}e^{-4 x}[/tex]

1. Suppose you take a coin and flip it 4 times in a row. After each flip you record whether the coin landed heads or tails. What is the probability you’ll get at least 2 heads?

Answers

Answer:

25%

Step-by-step explanation:

Great question, since a regular coin has two sides one heads and one tails. That gives us a 50% probability of it landing on either side of the coin. Since we would like to know the probability of getting 2 heads in a row, we would need to multiply the probability of the first toss landing on heads with the second toss landing on heads, like so...

[tex]\frac{1}{2} *\frac{1}{2} =\frac{1}{4}[/tex]

So we can see that the probability of us getting two heads in a row is that of \frac{1}{4}[/tex] or 25%.

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

(1 point) Suppose that for two random variables X and Y the joint density function is f(x,y)=6xe−x(y+6), for x>0 and y>0. Find each of the following. (a) fX|Y(x,y)= (b) fY|X(x,y)=

Answers

Final answer:

The question is about calculating the conditional probability density functions of two random variables X and Y given their joint density function. However, without the marginal density functions for X and Y, it is not possible to provide exact numerical answers. General formulas involve dividing the joint density function by the respective marginal density function.

Explanation:

The question relates to the field of probability and statistics, specifically pertaining to joint density functions of two random variables (X and Y). We have the joint density function f(x, y) = 6xe^(−x(y+6)) where x > 0 and y > 0.

For the conditional probability density function, the general formula for fX|Y(x, y) is the joint density function divided by the marginal density function of Y. Similarly, for fY|X(x, y), it is the joint density function divided by the marginal density function of X.

However, the marginal density functions for X and Y are not specified in the question. Typically, to find these, one would integrate the joint density function with respect to the other variable. Due to this missing information, it's not possible to provide an exact numerical answer.

Learn more about Conditional Probability here:

https://brainly.com/question/32171649

#SPJ2

13. Determine whether B = {(-1, 1,-1), (1, 0, 2), (1, 1, 0)} is a basis of R3.

Answers

Answer:  Yes, the given set of vectors is a basis of R³.

Step-by-step explanation:  We are given to determine whether the following set of three vectors in R³ is a basis of R³ or not :

B = {(-1, 1,-1), (1, 0, 2), (1, 1, 0)} .

For a set to be a basis of R³, the following two conditions must be fulfilled :

(i) The set should contain three vectors, equal to the dimension of R³

and

(ii) the three vectors must be linearly independent.

The first condition is already fulfilled since we have three vectors in set B.

Now, to check the independence, we will find the determinant formed by theses three vectors as rows.

If the value of the determinant is non zero, then the vectors are linearly independent.

The value of the determinant can be found as follows :

[tex]D\\\\\\=\begin{vmatrix} -1& 1 & -1\\ 1 & 0 & 2\\ 1 & 1 & 0\end{vmatrix}\\\\\\=-1(0\times0-2\times1)+1(2\times1-1\times0)-1(1\times1-0\times1)\\\\=(-1)\times(-2)+1\times2-1\times1\\\\=2+2-1\\\\=3\neq 0.[/tex]

Therefore, the determinant is not equal to 0 and so the given set of vectors is linearly independent.

Thus, the given set is a basis of R³.

Suppose a company did $3,000,000 in annual maintenance in 2013 and expects 85% of those to renew for 2014. Suppose that product sales for 2013 were $3,000,000 (which included free maintenance in 2013) and 60% of those were expected to pay an annual maintenance of 20% of the purchase price in 2014. What will be the annual maintenance collected in 2014?

Answers

Answer:

In year 2013 annual maintenance done = $ 3,000,000

Out of this 85% is expected to renew in 2014 = [tex]0.85\times3000000[/tex] = $2,550,000

Now Sales in 2013 = $3,000,000

60% of these sales = [tex]0.60\times3000000[/tex] = $1,800,000

Now out of this 60%, 20% annual maintenance was expected to be paid

In 2014 = [tex]0.20\times1800000[/tex] = $360000

So, Total annual maintenance in 2014 = [tex]2550000+360000[/tex]

= $2,910,000

A fair coin is flipped 4 times. What is the probability that at least two heads are flipped?

Answers

The probability of flipping at least two heads in four tosses of a fair coin is calculated using the binomial distribution, and the total probability is found to be 0.6875 or 68.75%.

To calculate the probability of flipping at least two heads in a series of four coin tosses with a fair coin, we need to consider all the possible outcomes in which we can get at least two heads. The different numbers of heads that can be obtained are 0, 1, 2, 3, or 4. To find the probability of each specific event, we use the binomial distribution formula, which for flipping two heads is:

P(2 heads) = (4 choose 2) × (0.5)² × (0.5)² = 6 × 0.25 × 0.25 = 0.375.

We can also find the probabilities of obtaining three and four heads:

P(3 heads) = (4 choose 3) × (0.5)³ × (0.5)¹ = 4 × 0.125 × 0.5 = 0.25,

P(4 heads) = (4 choose 4) × (0.5)⁴ = 1 × 0.0625 = 0.0625.

Next, we add these probabilities together to get the total probability of flipping at least two heads:

Total probability = P(2 heads) + P(3 heads) + P(4 heads) = 0.375 + 0.25 + 0.0625 = 0.6875.

Therefore, the probability of flipping at least two heads in four tosses of a fair coin is 0.6875 or 68.75%.

1. A box contains 4 red and 6 green balls. Two balls are drawn. You receive $10 if both are red and you pay $1 otherwise. What are your expected winnings?

Answers

Answer:

Your Winnings are $ -1

Step-by-step explanation:

Hello, great question. These types are questions are the beginning steps for learning more advanced Algebraic Equations.

Since we are not told what two balls were actually drawn, then the expected winnings would be of the greatest probability occurring. To figure this out we need to calculate the probability of getting two red balls consecutively and the probability of getting two different colors consecutively. Since there are a total of 10 balls the probabilities of getting one ball would be the following,

Red: [tex]\frac{4}{10} =  40%[/tex]

Green: [tex]\frac{6}{10} = 60%[/tex]

Now we need to know the probability of us getting 2 reds together, two greens, or one of each.

2 Reds: [tex]\frac{4}{10} *\frac{4}{10} = \frac{16}{100}  = 16%[/tex]

2 Greens:  [tex]\frac{6}{10} *\frac{6}{10} = \frac{36}{100}  = 36%[/tex]

1 Each:  [tex]\frac{4}{10} *\frac{6}{10} = \frac{24}{100}  = 24%[/tex]

So we can see that the highest probability is getting 2 Greens in  a row. Meaning you would have to pay $1

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

2- suppose a ball is thrown upward to a height of h0 meters . each time the ball bounces, it rebounds to a fraction r of its previous height . let hn be the hight after the nth term biunces. cosider the following value of h0 and r

a- find the first 4 terms of the sequence of heights(hn)

b- find a general expression for the nth term of the sequence (hn)

h0=20 , r=0.5

Answers

Answer:

a) 40, 50, 55, 57.5

b) [tex]S_n=h_0+2h_0\sum_{n=1}^{\infty}r^n[/tex]

Step-by-step explanation:

h₀ = Initial height of the ball =20

r = Rebound fraction = 0.5

a) The series of bouncing balls is given by

Sₙ=h₀+2h₀(r¹+r²+r³+r⁴.........rⁿ)

S₁=h₀+2h₀r¹=20+2×20×0.5=40

S₂=h₀+2h₀(r¹+r²)=20+2×20×(0.5+0.5²)=50

S₃=h₀+2h₀(r¹+r²+r³)=20+2×20×(0.5+0.5²+0.5³)=55

S₄=h₀+2h₀(r¹+r²+r³+r⁴)=20+2×20×(0.5+0.5²+0.5³+0.5⁴)=57.5

b) General expression for the nth term of the sequence

[tex]S_n=h_0+2h_0\sum_{n=1}^{\infty}r^n[/tex]

Final answer:

The first 4 heights after each bounce form a geometric sequence with the first term h₀ being 20 meters and subsequent terms being 10, 5, and 2.5 meters. The general expression for the nth term (hn) is given by the formula hₙ = 20 * (0.5)ⁿ

Explanation:

Given an initial height h₀ of 20 meters and a rebound fraction r of 0.5, the sequence of heights after each bounce forms a geometric sequence.

The first height is h₀ which is 20 meters. Subsequent heights can be found by multiplying the previous height by the rebound fraction r.

Third term : h2 = h= 10 * 0.5 = 5 meters

General Expression for the nth Term (b)

The nth term (hₙ) of the sequence can be found using the formula for the nth term of a geometric sequence:

hₙ = h₀ * rⁿ

For this particular sequence:

hₙ = 20 * (0.5)ⁿ

Assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. Find the probability that a given score is between negative 2.13 and 3.88 and draw a sketch of the region.

Answers

Answer: 0.9834

Step-by-step explanation:

Given : The test scores are normally distributed with

Mean : [tex]\mu=\ 0[/tex]

Standard deviation :[tex]\sigma= 1[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = -2.13

[tex]z=\dfrac{-2.13-0}{1}=-2.13[/tex]

For x = 3.88

[tex]z=\dfrac{3.88-0}{1}=3.88[/tex]

The p-value = [tex]P(-2.13<z<3.88)=P(z<3.88)-P(z<-2.13)[/tex]

[tex]0.9999477-0.0165858=0.9833619\approx0.9834[/tex]

Hence, the probability that a given score is between negative 2.13 and 3.88 = 0.9834

Other Questions
Which expression is equivalent to 15n 20? How did Islam influence the government of the Safavid Empire?OA. Sunni Muslims within the Safavid Empire were forced to becomeShia Muslims.OB. Safavid laws were administered by Muslim advisers calledulemas.OC. Safavid sultans were subservient to Muslim priests called grandviziers.D. Hindus and Sikhs within the Safavid Empire paid higher taxes thanMuslims did. A solenoid of length 0.700 m having a circular cross-section of radius 5.00 cm stores 6.00 J of energy when a 0.400-A current runs through it. What is the winding density of the solenoid? ( 0 = 4 10-7 T m/A Can someone please help me with this math question Suppose you wanted to start a fire using sunlight and a mirror. Which of the following statements is most accurate? A) It would be best to use a plane mirror. B) It would be best to use a concave mirror, with the object to be ignited positioned halfway between the mirror and its center of curvature. C) It would be best to use a concave mirror, with the object to be ignited positioned at the center of curvature of the mirror. D) It would be best to use a convex mirror. E) One cannot start a fire using a mirror, since mirrors form only virtual images. Automobile air bags are inflated with nitrogen gas, which is formed by the decomposition of solid sodium azide (NaN3). The other product is sodium metal. Calculate the volume of nitrogen gas at 27 C and 756 torr formed by the decomposition of 125 g of sodium azide. Without using a calculator, fill in the blanks with two consecutive integers to complete the following inequality. Need help on square roots. Define a graph. Draw a directed and undirected graph with 8 vertices and explain all the terminologies associated with that graph Note: Terminologies are cycles, path, directed and undirected graph, circuit, loop, adjacency, degrees, Euler circuit, Hamiltonian circuit y''-4y=cosx find general solution. What will the following code display?int number = 6int x = 0;x = --number;cout What is the volume of the cylinder shown below? I WILL MARK BRAINLIEST The burden of proof in a lawsuit alleging professional negligence requires that:a. a duty to the patient existed b. care was given only by registered professional nurses.c. the injuries were caused by the patient's failure to follow procedures.d. the patient's injuries occurred only after his discharge. How did the concept of separate spheres affect women?OA. They were able to own property and vote in national elections.OB. They were allowed to work on social issues if their husbandsagreed.OC. They were allowed to work in schools, churches, and hospitals.OD. They were expected to focus only on their homes and families.SUBMIT Which equation using element symbols correctly describes the reaction: "One molecule of methane plus two molecules of diatomic oxygen react to form two molecules of water and one molecule of carbon dioxide?" A. CH4+2O2+2H2OCO2 B. 2H2O+CO2CH4+2O2 C. CH4+2O22H2O+CO2 D. CO2+2O22H2O+CO2 Suppose a revenue function is given by: R ( q ) = q 3 + 140 q where q is thousands of units and R ( q ) is thousands of dollars. For what value of q is revenue maximized. Round your answer to the nearest tenth (one decimal place). q = Incorrect thousand units 15 points!!Look at the picture to see the problem. What do you think? A concrete mix calls for 3 buckets of sand for every gallon of water. How much water is needed for 1 bucket of sand? Software built and delivered in pieces is known as Alexa is designing a paper airplane whose final shape, when viewed from the top or bottom, is a trapezoid. A sketch of her plane, viewed from the top, is shown on the left.What are the dimensions of one of the identical triangular pieces of the plane?2 cm base, 3 cm height3 cm base, 3 cm height3 cm base, 4 cm height3 cm base, 6 cm height Which two events are independent? A and XA and YB and XB and Y